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1. INTRODUCTION AND PRELIMINARIES 

In this paper, we follow the notions and terminologies as appeared in [1]. As defined by Kelly in [2], 

the triple (𝑋, 𝜏1, 𝜏2) where 𝑋 is a set and 𝜏1, 𝜏2 are topologies on 𝑋 is called a bitopological space. Later on, 

several authors had studied this notion and other related concepts. Author in [3] studied some ordinary 

homogeneity concepts in bitopological spaces. By a similar method to that used in defining bitopological 

spaces, the notion of fuzzy bitopological spaces was defined in [4]. Let (𝑋, 𝜏1, 𝜏2) and (𝑌, 𝜎₁, 𝜎₂) be two 

bitopological spaces. A map𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) is called s-homeomorphism if the maps 𝑓: (𝑋, 𝜏₁) →
(𝑌, 𝜎₁) and 𝑓: (𝑋, 𝜏₂) → (𝑌, 𝜎₂) are homeomorphisms. Let(𝑋, 𝜏1, 𝜏2) be a bitopological space. (𝑋, 𝜏1, 𝜏2) is s-

homogeneous [3] if for any two points 𝑥₁, 𝑥₂ ∈ 𝑋, there is an s-homeomorphism 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) 

such that ℎ(𝑥₁) = 𝑥₂. (𝑋, 𝜏1, 𝜏2) is n-s-homogeneous if for any two n-tons 𝐴 = {𝑎₁, 𝑎₂, … , 𝑎𝑛}, 
𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} in 𝑋, there is an s-homeomorphism ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) such that ℎ(𝑎𝑖) = 𝑏𝑖  for 

every 𝑖 = 1,2, . . . , 𝑛. (𝑋, 𝜏₁, 𝜏₂) is weakly n-s-homogeneous for any two n-tons 𝐴 and 𝐵 in 𝑋, there is 

an s-homeomorphism ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) such that ℎ(𝐴) = 𝐵 for every 𝑖 = 1,2, . . . , 𝑛. Several fuzzy 

homogeneity concepts were discussed in [5-14]. Let (𝑋, ℑ₁, ℑ₂) and (𝑌, 𝛤₁, 𝛤₂) be two fuzzy bitopological 

spaces. A map 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛤₁, 𝛤₂) is called a fuzzy s-homeomorphism if the maps 

 𝑓: (𝑋, ℑ₁) → (𝑌, 𝛤₁) and 𝑓: (𝑋, ℑ₂) → (𝑌, 𝛤₂) are fuzzy homeomorphisms. 

Let (𝑋, 𝜏) be a topological space. The class of all lower semicontinuous mappings from (𝑋, 𝜏) to [0,1] 
with the usual topology forms a fuzzy topology on 𝑋, this fuzzy topology is denoted by 𝜔(𝜏). 

Also, the family {𝜒𝑈 ∶ 𝑈 ∈ 𝜏} forms a fuzzytopology on 𝑋, this topology is denoted by 𝑋|𝜏. As defined, for 

fuzzy topological space (𝑋, ℑ), the associatedtopological space {𝐵⁻¹(𝑎, 1]: 𝐵 ∈ ℑ} is called the 𝑎-cut (level) 

topological space and denoted by ℑ𝑎. 
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The following three propositions will be used in the sequel: 

Proposition 1.1. [15] Let (𝑋, 𝜏₁) and (𝑌, 𝜏₂) be two topological spaces and 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) 

be a map. Then the following are equivalent: 

i. 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜏₂) is a homeomorphism. 

ii. 𝑓: (𝜔(𝑋), 𝜏₁) → (𝜔(𝑌), 𝜏₂) is a fuzzy homeomorphism. 

iii. 𝑓: (𝑋, 𝑋|𝜏₁) → (𝑌, 𝑌|𝜏₂) a fuzzy homeomorphism. 

Proposition 1.2. [1] Let (𝑋, 𝜏) be a bitopological space. Then the following are equivalent: 

i. (𝑋, 𝜏₁, 𝜏₂) is n-homogeneous. 

ii. (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) fuzzy n-homogeneous. 

iii. (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is fuzzy n-homogeneous. 

Proposition 1.3. [11] Let (𝑋, ℑ) be a fuzzy topological space and let 𝑓: (𝑋, ℑ) → (𝑋, ℑ) be a fuzzy 

continuous (homeomorphism) map. Then 𝑓: (𝑋, ℑ𝑎) →  (𝑋, ℑ𝑎) is continuous (homeomorphism) for all  
𝑎 ∈ [0,1). 

 

 

2. N-S-HOMOGENEOUS FUZZY BITOPOLOGICAL SPACES 

Defintion 2.1. A fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) is said to be 

i. fuzzy s-homogeneous if for any two points 𝑥₁, 𝑥₂ ∈ 𝑋, there is a fuzzy s-homeomorphism 

 ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥₁) = 𝑥₂. 

ii. fuzzy n-s-homogeneous if for any two n-tons 𝐴 = {𝑎₁, 𝑎₂, . . . , 𝑎𝑛}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} in X, there is a fuzzy 

s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑎𝑖) = 𝑏𝑖  for every 𝑖 = 1,2, . . . , 𝑛. 

iii. fuzzy weakly n-s-homogeneous if for any two n-tons 𝐴, 𝐵 ⊆ 𝑋, there is a fuzzy s-homeomorphism 

ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝐴) = 𝐵. 

 

Remark 2.2. Fuzzy s-homogeneous, fuzzy 1-s-homogeneous and fuzzy weakly 1-s-homogeneous are all 

equivalent. 

 

Theorem 2.3. A fuzzy topological space (𝑋, ℑ) is fuzzy n-homogeneous (fuzzy weakly n-homogeneous) iff the 

fuzzy bitopological space (𝑋, ℑ, ℑ) is fuzzy n-s-homogeneous (fuzzy weakly n-s-homogeneous). 

Proof. Obvious. 

 

Theorem 2.4. Let (𝑋, 𝜏₁, 𝜏₂) be a bitopological space and ℎ: 𝑋 → 𝑋 be a bijective map. Then the following are 

equivalent: 

i. ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) is an s-homeomorphism. 

ii.  ℎ: (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) → (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) is a fuzzy s-homeomorphism. 

iii.  ℎ: (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) → (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is a fuzzy s-homeomorphism. 

Proof. (i) ⇒ (ii): Suppose that ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) is an s-homeomorphism. Then each of the functions 

ℎ: (𝑋, 𝜏₁) → (𝑋, 𝜏₁) and ℎ: (𝑋, 𝜏₂) → (𝑋, 𝜏₂) is a homeomorphism. By Proposition 1.1, the functions 

ℎ: (𝑋, 𝜔(𝜏₁)) → (𝑋, 𝜔(𝜏₁)) and ℎ: (𝑋, 𝜔(𝜏₂)) → (𝑋, 𝜔(𝜏₂)) are fuzzy homeomorphisms. Hence, 

ℎ: (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) → (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) is a fuzzy s-homeomorphism. 

The proof of each of (ii) ⇒ (iii) and (iii) ⇒ (i) is similar to the proof of (i) ⇒ (ii). 

 

Theorem 2.5. Let (𝑋, 𝜏₁, 𝜏₂) be a bitopological space. Then the following are equivalent: 

i. (𝑋, 𝜏₁, 𝜏₂) is n-s-homogeneous. 

ii. (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) fuzzy n-s-homogeneous. 

iii. (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is fuzzy n-s-homogeneous. 

Proof. (i) ⇒ (ii): Suppose that (𝑋, 𝜏₁, 𝜏₂) is n-s-homogeneous and let 𝐴 = {𝑎₁, 𝑎₂, . . . , 𝑎𝑛}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} 

be any two n-tons in 𝑋. Then there is an s-homeomorphism ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑋, 𝜏₁, 𝜏₂) such that ℎ(𝑎𝑖) = 𝑏𝑖 for 

every 𝑖 = 1,2, . . . , 𝑛. By Theorem 2.4, ℎ: (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) → (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) is a fuzzy s-homeomorphism. 

It follows that (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) fuzzy n-s-homogeneous. 

The proof of each of (ii) ⇒ (iii) and (iii) ⇒ (i) is similar to the proof of (i) ⇒ (ii). 

 

Corollary 2.6. Let (𝑋, 𝜏₁, 𝜏₂) be a bitopological space. Then the following are equivalent: 

i.  (𝑋, 𝜏₁, 𝜏₂) is s-homogeneous. 

ii.  (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) fuzzy s-homogeneous. 

iii.  (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is fuzzy s-homogeneous. 
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Theorem 2.7. Let (𝑋, 𝜏₁, 𝜏₂) be a bitopological space. Then the following are equivalent: 

i. (𝑋, 𝜏₁, 𝜏₂) is n-s-homogeneous. 

ii. (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) fuzzy weakly n-s-homogeneous. 

iii. (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is fuzzy weakly n-s-homogeneous. 

Proof. Similar to the proof of Theorem 2.5. 

 

Theorem 2.8. If (𝑋, ℑ₁, ℑ₂) is a fuzzy n-s-homogeneous fuzzy bitopological space, then (𝑋, ℑ₁) and (𝑋, ℑ₂) 

are fuzzy n-homogeneous. 

Proof. 𝐴 = {𝑎₁, 𝑎₂, . . . , 𝑎𝑛}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} be any two n-tons in 𝑋. Then there is a fuzzy s-

homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑎𝑖) = 𝑏𝑖 for every 𝑖 = 1,2, . . . , 𝑛. Then ℎ: (𝑋, ℑ₁) →
(𝑋, ℑ₁) and ℎ: (𝑋, ℑ₂) → (𝑋, ℑ₂) are fuzzy homeomorphisms. Hence, (𝑋, ℑ₁) and (𝑋, ℑ₂) are fuzzy n-

homogeneous. 

 

Corollary 2.9. If (𝑋, ℑ₁, ℑ₂) is a fuzzy s-homogeneous fuzzy bitopological space, then (𝑋, ℑ₁) and (𝑋, ℑ₂) are 

fuzzy homogeneous. 

 

The following example shows that the converse of each of Theorem 2.8 and Corollary 2.9 is not true in general: 

 

Example 2.10. Let 𝑋 = {1,2,3,4,5,6}, 𝜏₁ = {∅, 𝑋, {1,2,3}, {4,5,6}} and 

𝜏₂ = {∅, 𝑋, {1,2}, {3,4}, {5,6}, {1,2,3,4}, {1,2,5,6}, {3,4,5,6}}. Then (𝑋, 𝜏₁) and (𝑋, 𝜏₂) are homogeneous. 

So, by Proposition 1.2, (𝑋, 𝑋|𝜏₁) and (𝑋, 𝑋|𝜏₂) are fuzzy homogeneous. It is not difficult to check that 

(𝑋, 𝜏₁, 𝜏₂) is not s-homogeneous and by Corollary 2.6, (𝑋, 𝑋|𝜏₁, 𝑋|𝜏₂) is not fuzzy s-homogeneous. 

 

Theorem 2.11. If (𝑋, ℑ₁, ℑ₂) is a fuzzy n-s-homogeneous fuzzy bitopological space, then for each 𝑎 ∈
[0,1), (𝑋, (ℑ₁)𝑎 , (ℑ2)𝑎) is n-s-homogeneous. 

Proof. Let 𝑎 ∈ [0,1) and let 𝐴 = {𝑎₁, 𝑎₂, . . . , 𝑎𝑛}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} be any two n-tons in 𝑋. Then there is a 

fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑎𝑖) = 𝑏𝑖 for every 𝑖 = 1,2, . . . , 𝑛. 

Thus, ℎ: (𝑋, ℑ₁) → (𝑋, ℑ₁) and ℎ: (𝑋, ℑ₂) → (𝑋, ℑ₂) are fuzzy homeomorphisms and by Proposition 1.3, 

ℎ: (𝑋, (ℑ₁)𝑎) → (𝑋, (ℑ₁)𝑎) and ℎ: (𝑋, (ℑ2)𝑎) → (𝑋, (ℑ2)𝑎) are homeomorphisms. 

Hence, ℎ: (𝑋, (ℑ₁)𝑎 , (ℑ2)𝑎) → (𝑋, (ℑ₁)𝑎, (ℑ2)𝑎) is an s-homeomorphism. 

 

Corollary 2.12. If (𝑋, ℑ₁, ℑ₂) is a fuzzy s-homogeneous fuzzy bitopological space, then for each 

𝑎 ∈ [0,1), (𝑋, (ℑ₁)𝑎, (ℑ2)𝑎) is s-homogeneous. 

 

The implication in Corollary 2.12 is not reversible in general as it cab be seen from Example 4.7 of [7]. 

 

Theorem 2.13. If (𝑋, ℑ₁, ℑ₂) is a fuzzy n-s-homogeneous fuzzy bitopological space, then (𝑋, ℑ₁, ℑ₂) is weakly 

fuzzy n-s-homogeneous. 

Proof. Obvious. 

 

The following Example shows that the implication in Theorem 2.13 is not reversible in general: 

 

Example 2.14. The author in [3], showed that (ℝ, 𝜏𝑙.𝑟 , 𝜏𝑑𝑖𝑠𝑐) is weakly 2-s-homogeneous but not 

2-s-homogeneous. Therefore, by Theorems 2.5 and 2.7 (ℝ, 𝜔(𝜏𝑙.𝑟), 𝜔(𝜏𝑑𝑖𝑠𝑐)) is fuzzy weakly 

2-s-homogeneous but not fuzzy 2-s-homogeneous. 

 

Theorem 2.15. If (𝑋, ℑ₁, ℑ₂) is a fuzzy n-s-homogeneous fuzzy bitopological space with |𝑋| ≥ 𝑛, then 

(𝑋, ℑ₁, ℑ₂) is a fuzzy k-s-homogeneous for every 𝑘 ≤ 𝑛. 

Proof. Let 𝐴 = {𝑎₁, 𝑎₂, . . . , 𝑎𝑘}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑘} be any two k-tons in 𝑋. Choose distince points 

𝑎𝑘+1, 𝑎𝑘+2, . . . , 𝑎𝑛from 𝑋 − 𝐴 and choose distinct points 𝑏𝑘+1, 𝑏𝑘+2, . . . , 𝑏𝑛 from 𝑋 − 𝐵. 

Then {𝑎₁, 𝑎₂, . . . , 𝑎𝑛} and {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} are two n-tons in (𝑋, ℑ₁, ℑ₂). Since (𝑋, ℑ₁, ℑ₂) is fuzzy n-s-

homogeneous, then there a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑎𝑖) = 𝑏𝑖 for 

every 𝑖 = 1,2, . . . , 𝑛. Therefore, we have ℎ(𝑎𝑖) = 𝑏𝑖 for every 𝑖 = 1,2, . . . , 𝑘. This ends the proof. 

 

In Theorem 2.15, the cardinality is condition cannot be dropped as the following example shows: 

 

Example 2.16. Let 𝑋 = {1,2} and 𝜏 = {∅, 𝑋, {1}}. Then (𝑋, 𝜔(𝜏), 𝜔(𝜏)) is fuzzy 3-s-homogeneous but not 

fuzzy 2-s-homogeneous. 
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The following example shows that Theorem 2.15 is not true for fuzzy weak n-s-homogeneity: 

Example 2.17. Let 𝑋 = {1,2}, 𝜏₁ = {∅, 𝑋, {1}} and 𝜏₂ = {∅, 𝑋}. Then (𝑋, 𝜔(𝜏₁), 𝜔(𝜏₂)) is fuzzy weakly 

2-s-homogeneous but not fuzzy weakly 1-s-homogeneous. 

 

 

3. CHARACTERIZATIONS 

Definition 3.1. [1] A collection of fuzzy points 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} in a set 𝑋 is said to be fuzzy 

n-tons(f-n-tons) iff𝑝𝑖  and 𝑝𝑗 are distinct for all 𝑖, 𝑗 ∈  {1,2, . . . , 𝑛} with 𝑖 ≠ 𝑗. 

 

Definition 3.2. [1] Let Ƒ be a collection of fuzzy sets in a set 𝑋 and 𝑓 be a map from 𝑋 to 𝑌. Define 𝑓(Ƒ) 

by 𝑓(Ƒ) = {𝑓(𝜆): 𝜆 ∈ Ƒ}. 

 

Definition 3.3. [1] Let 𝐴𝑓 be a collection of fuzzy (crisp) points in a set 𝑋 and 𝑡 ∈  (0,1]. Then 𝐶(𝐴𝑓 , 𝑡) will 

denote 𝐶(𝐴𝑓 , 𝑡) = |{𝑝 ∈ 𝐴𝑓: 𝑝(𝑥𝑝) = 𝑡}|. 

 

Proposition 3.4. [1] Let ℎ: 𝑋 → 𝑌 be a bijective map and let 𝑝 and 𝑞 be two fuzzy points in 𝑋. Then ℎ(𝑝) = 𝑞 

iff 𝑝(𝑥𝑝) = 𝑞(𝑥𝑞) and ℎ(𝑥𝑝) = ℎ(𝑥𝑞). 

Proposition 3.5. [1] Let ℎ: 𝑋 → 𝑌 be a bijective map and let {𝜆𝛼: 𝛼 ∈ 𝛥} be a collection of fuzzy sets in 𝑋. 

Then ℎ(⋃ 𝜆𝛼𝛼∈𝛥 ) = ⋃ ℎ(𝜆𝛼)𝛼∈𝛥 . 

 

Proposition 3.6. [1] Let 𝑋 be a non-empty set and 𝐴𝑓 = {𝑝𝛼: 𝛼 ∈ 𝛥}, 𝐵𝑓 = {𝑞𝛼 ∶ 𝛼 ∈ 𝛺} be two collections of 

mutually distinct fuzzy (crisp) points in 𝑋. Then ⋃ 𝑝𝛼𝛼∈𝛥 = ⋃ 𝑞𝛼𝛼∈𝛺 iff 𝐴𝑓 = 𝐵𝑓. 

 

Theorem 3.7. Let (𝑋, ℑ₁, ℑ₂) be a fuzzy bitopological space.Then the following are equivalent: 

i. (𝑋, ℑ₁, ℑ₂) is fuzzy n-s-homogeneous. 

ii. For any two f-n-tons 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} of 𝑋 with 𝑝𝑖(𝑥𝑝𝑖
) = 𝑞𝑖(𝑥𝑞𝑖

) for every 

𝑖 = 1,2, . . . , 𝑛, there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑝𝑖) = 𝑞𝑖 for 

every 𝑖 = 1,2, . . . , 𝑛. 

iii. For any two f-n-tons 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛}of 𝑋 with 𝐶(𝐴𝑓 , 𝑡) = 𝐶(𝐵𝑓 , 𝑡) for all 

𝑡 ∈  (0,1], there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝐴𝑓) = 𝐵𝑓. 

iv. For any two f-n-tons 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} of 𝑋 with 𝐶(𝐴𝑓 , 𝑡) = 𝐶(𝐵𝑓 , 𝑡) for all 

𝑡 ∈  (0,1], there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(⋃ 𝑝𝑖
𝑛
𝑖=1 ) =

⋃ 𝑞𝑖
𝑛
𝑖=1 . 

 

Proof. (i) ⇒ (ii): Let 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} of 𝑋 with 𝑝𝑖(𝑥𝑝𝑖
) = 𝑞𝑖(𝑥𝑞𝑖

) for every 𝑖 =

1,2, . . . , 𝑛. Then 𝐴 = {𝑥𝑝1
, 𝑥𝑝2

, . . . , 𝑥𝑝𝑛
} and 𝐵 == {𝑥𝑞1

, 𝑥𝑞2
, . . . , 𝑥𝑞𝑛

} are two n-tons. So by (i), there exists a 

fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥𝑝𝑖
}) = 𝑥𝑞𝑖

 for every 𝑖 = 1,2, . . . , 𝑛. Since 

by assumption 𝑝𝑖(𝑥𝑝𝑖
) = 𝑞𝑖(𝑥𝑞𝑖

) for every 𝑖 = 1,2, . . . , 𝑛, then by Proposition 3.4, ℎ(𝑝𝑖) = 𝑞𝑖 for every 𝑖 =

1,2, . . . , 𝑛. 

(ii) ⇒ (iii): Let 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} be any two f-n-tons of 𝑋 with 𝐶(𝐴𝑓 , 𝑡) =

𝐶(𝐵𝑓 , 𝑡) for all 𝑡 ∈  (0,1]. Since 𝐶(𝐴𝑓 , 𝑡) = 𝐶(𝐵𝑓 , 𝑡) for all 𝑡 ∈  (0,1], then we can rewrite 𝐴𝑓 and 𝐵𝑓 as 𝐴𝑓 =

{𝑝₁₁, 𝑝₂₁, . . . , 𝑝𝑛1} and 𝐵𝑓 = {𝑞₁₁, 𝑞₂₁, . . . , 𝑞𝑛1} such that 𝑝𝑖1(𝑥𝑝𝑖1
) = 𝑞𝑖1(𝑥𝑞𝑖1

) for every 𝑖 = 1,2, . . . , 𝑛. By (ii), 

there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑝𝑖1) = 𝑞𝑖1 for every 𝑖 =
1,2, . . . , 𝑛. Therefore, ℎ(𝐴𝑓) = 𝐵𝑓. 

(iii) ⇒ (iv): Let 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} be any two f-n-tons of 𝑋 with 𝐶(𝐴𝑓 , 𝑡) =

𝐶(𝐵𝑓 , 𝑡) for all 𝑡 ∈  (0,1]. Then by (iii), there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) 

such that ℎ(𝐴𝑓) = 𝐵𝑓 and hence ℎ(⋃ 𝑝)𝑝∈𝐴𝑓
= (⋃ 𝑞)𝑞∈𝐵𝑓

. Therefore, by Proposition 3.5 it follows that 

ℎ(⋃ 𝑝𝑖
𝑛
𝑖=1 ) = ⋃ 𝑞𝑖

𝑛
𝑖=1 . 

(iv) ⇒ (i): Let 𝐴 = {𝑥₁, 𝑥₂, . . . , 𝑥𝑛} and 𝐵 = {𝑦₁, 𝑦₂, . . . , 𝑦𝑛} be any two n-tons in X. Define 𝐴𝑓 = {𝑝₁, 𝑝₂, . . . , 𝑝𝑛} 

and 𝐵𝑓 = {𝑞₁, 𝑞₂, . . . , 𝑞𝑛} by 𝑥𝑝𝑖
= 𝑥𝑖 , 𝑥𝑞𝑖

= 𝑦𝑖and 𝑝𝑖(𝑥𝑝𝑖
) = 𝑞𝑖(𝑥𝑞𝑖

) = (1/(1 + 𝑖)) for every 𝑖 = 1,2, . . . , 𝑛. 

Then 𝐴𝑓 and 𝐵𝑓 are two f-n-tons of 𝑋 with 𝐶(𝐴𝑓 , 𝑡) = 𝐶(𝐵𝑓 , 𝑡) for all 𝑡 ∈  (0,1]. By (iv), there exists a fuzzy 

s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(⋃ 𝑝𝑖
𝑛
𝑖=1 ) = ⋃ 𝑞𝑖

𝑛
𝑖=1 . Since ℎ is bijective, then by 

Proposition 3.5 ⋃ ℎ(𝑝𝑖
𝑛
𝑖=1 ) = ⋃ 𝑞𝑖

𝑛
𝑖=1 . Since ℎ is one to one {ℎ(𝑝𝑖): 𝑖 = 1,2, . . . , 𝑛} is a set of mutually distinct 

fuzzy (crisp) points. Therefore, by Proposition 3.6 it follows that {ℎ(𝑝𝑖): 𝑖 = 1,2, . . . , 𝑛} = {𝑞𝑖: 𝑖 = 1,2, . . . , 𝑛} 
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and thus ℎ(𝑝𝑖) = 𝑞𝑖 for every 𝑖 = 1,2, . . . , 𝑛. This implies that ℎ(𝑥𝑖) = 𝑦𝑖for every 𝑖 = 1,2, . . . , 𝑛. Therefore, 

(𝑋, ℑ₁, ℑ₂) is fuzzy n-s-homogeneous. 

 

Corollary 3.8. A fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) is fuzzy s-homogeneous iff for any two fuzzy points 𝑝, 𝑞 

in the set 𝑋 with 𝑝(𝑥𝑝) = 𝑞(𝑥𝑞), there exists a fuzzy s-homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that 

ℎ(𝑝) = 𝑞. 

 

Theorem 3.9. If (𝑋, ℑ₁) and (𝑋, ℑ₂) are two fuzzy topological spaces one of which is fuzzy n-homogeneous 

and the other consists of constant fuzzy sets, then (𝑋, ℑ₁, ℑ₂) is fuzzy n-s-homogeneous. 

Proof. Let (𝑋, ℑ₁) be fuzzy n-homogeneous and (𝑋, ℑ₂) consists of constant fuzzy sets. Let 𝐴 =
{𝑎₁, 𝑎₂, . . . , 𝑎𝑛}, 𝐵 = {𝑏₁, 𝑏₂, . . . , 𝑏𝑛} be two n-tons in 𝑋. Since (𝑋, ℑ₁) is fuzzy n-homogeneous, there exists a 

fuzzy homeomorphism ℎ: (𝑋, ℑ₁) → (𝑋, ℑ₁) such that ℎ(𝑎𝑖) = 𝑏𝑖  for every 𝑖 = 1,2, . . . , 𝑛. Let 𝜆 ∈ ℑ₂. Then 

ℎ⁻¹(𝜆) = 𝜆 ∈ ℑ₂. Thus, ℎ: (𝑋, ℑ₂) → (𝑋, ℑ₂) is fuzzy continuous. Similarly, ℎ⁻¹: (𝑋, ℑ₂) → (𝑋, ℑ₂) is fuzzy 

continuous. Since h is bijective, then ℎ: (𝑋, ℑ₂) → (𝑋, ℑ₂) is a fuzzy homeomorphism. Therefore, we have 

ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) is a fuzzy s-homeomorphism with ℎ(𝑎𝑖) = 𝑏𝑖 for every 𝑖 = 1,2, . . . , 𝑛. It follows 

that (𝑋, ℑ₁, ℑ₂) is fuzzy n-s-homogeneous. 

Corollary 3.10. If (𝑋, ℑ₁) and (𝑋, ℑ₂) are two fuzzy topological spaces one of which is fuzzy homogeneous 

and the other consists of constant fuzzy sets, then (𝑋, ℑ₁, ℑ₂) is fuzzy s-homogeneous. 
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