International Journal of Electrical and Computer Engineering (IJECE)
Vol. 10, No. 1, February 2020, pp. 377~386
ISSN: 2088-8708, DOI: 10.11591/ijece.v10il.pp377-386 a 377

Analysis and implementation of the impact of change:
application to heterogeneity algorithms in enterprise
architecture

Jihane Lakhrouit!, Karim Baina®
!Department of Computer Science, Higher Institute of Engineering and Business, ISGA Marrakech, Morocco
L2University Mohammed V, ENSIAS Alqualsadi research team on Enterprise Architecture, Morocco

Article Info ABSTRACT

Article history: Measurements play an important role in many scientific fields in general and
. in the analysis of enterprise architecture in particular. In software

Received Jan 16, 2019 engineering, the measures are used to control the quality of the software

Revised Jul 31, 2019 product and better manage development projects to control the cost of

Accepted Aug 29, 2019 production. In this article we proposed firstly models and measures to

evaluate and analyze the complexity of the enterprise architecture and

especially the heterogeneity of components and relationships, and secondely
Keywords: we developed a model to automatically detect the change of measures and
Analysis of EA their impact on enterprise architecture.

Complexity
EA patterns

Enterprise architecture EA
Heterogeneity Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Jihane Lakhrouit,

Higher Institute of Engineering and Business, ISGA Marrakech,
Department of Computer Science, University Mohammed V, ENSIAS,
Morocco.

Email: jihane.lakhrouit@gmail.com

1. INTRODUCTION

Today, many organisations are concerned with how to successfully transition to organisations
utilising information technology to its fullest strategic extent. It has become widely recognised that an
organisation's enterprise architecture plays a key role in the transition and many organisations are now
investing significant amounts of resources into developing or improving their enterprise architecture [1].
The enterprise architecture (EA) is the organizing logic for business processes and IT infrastructure,
reflecting the integration and standardization requirements of the company’s operation model, to analyze
the result of enterprise architecture we present in this paper, a complete methodology for analyzing
the heterogeneity of enterprise architecture. Our objective is to propose an evaluating methodology for
guiding designers and architects in evaluating and improving the EA models. Furthermore, our enterprise
architecture patterns system will be used for an automated support to manage the evaluation of enterprise
architecture complexity

The goal of this paper is to (1) present the enterprise architecture component regarding agility and
complexity measurement, (2) identify and apply the heterogeneity metrics to enterprise architecture
components and relationships (4) Detect changes in an enterprise architecture and update relevant metrics.
The paper is structured as follows: the second et alion describes the state of the art of our research, the third et
alion presents our proposed approach and presents some of our results, the fourth et alion presents
the pototype of our contribution and finally, the last et alion is dedicated to conclude our paper.

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

mailto:jihane.lakhrouit@gmail.com

378 a ISSN: 2088-8708

2. STATEOF THE ART

Enterprise architecture (EA) has in recent years tremendously increased across industries,
many organizations continue to encounter challenges which affect the development, implementation,
and practice [2]. Enterprise Architecture (EA) is a strategy to attain alignment between an enterprise’s
business and Information Technology (IT) to increase the competitiveness of an enterprise [3].
Among the success factors of this alignment is the study of complexity.

Complexity is considered one of the most critical issues to deal with because of the constraints and
difficulties that surround it [4], many companies seem to consider it as a general problematic source, it is held
responsible for the rise in coordination efforts [5], operating costs, and also increased effort to make changes,
which significantly hinders the agility and alignment of the information system [6, 7]. The Cambridge
Dictionary defines complexity as “the state of having many parts and being difficult to understand or find an
answer to”. Much of the existing architecture research endorses this view, by relating complexity to
the number of components or elements, their relationship, and totheir variation/variety, and
heterogeneity [8-11] adds that the total complexity of an EA must take into account complexity within each
domain, as well as the complexity of the interrelations between domains [12]: According to Davis and
LeBlanc [13] the complexity of application architecture is “number of its components or elements, kind or
type of elements and structure of the relationship between elements”. On the infrastructure architecture level
defined complexity as “The complexity can be defined here as the dramatic increase in the number and
heterogeneity of included components, relations, and their dynamic and unexpected interactions in IT
solutions” [14], another definition proposed by [15] covers all aspects of complexity “The complexity can be
defined on the basis of the number and variety of components and interactions plus the rate of change of
these”. From the different definitions cited we can notice that the complexity is a fuzzy term, because
different stakeholders have generally different views and conceptions of complexity term. From these
different definitions we will clarify the dimensions of complexity and proposed a global definition:
“The complexity of architecture is the description of its structure and quantification of the numbers and
heterogeneity of components and relations between them over the time” [16]. In this paper, we will discuss
the dimension of enterprise architecture heterogeneity (components and relations) and also the rate and
impact of change of heterogeneity dimension.

During the analysis of the identified contributions wich discussed enterprise architecture evaluation
complexity only few methods were presented to quantify complexity and the existing methods merely cover
parts of an EA, not the EA as a whole. Often the application is so specific that it is not possible to transfer
the method to other dimensions of an EA. In the paper [17] it discussed the metrics for EAs and application
landscapes are introduced as decision support techniques based on analysis of structural dependencies.
The approach emphasizes on operational risk, failure propagation and availability, based on a practitioner
survey. In order to explicate the structural dependencies analyzed in the paper, an information model with
derived attributes is used, along with Bayesian calculation formalism. An EA level application example is
also given in the paper [17] with visual analysis of ex post information about failure propagation to compare
different project proposals for the evolution of the application landscape. Thus, the project portfolio
management process is supported. Lagerstrom et al. [18] proposed to use an approach pervasive in
the software architecture discipline— Design Structure Matrix—to visualize the hidden structure of an AL
and thereby identify spots of increased complexity. Schuetz et al. [19] introduce a metric to quantify
the structural complexity of an IT landscape, which is also applicable to application landscape. The proposed
approach of Schutz [19] revolves around the conceptualization of the complexity of EA by adopting
the concept of the system to the context of EA. This approach presented a holistic conceptualization of
complexity but don’t apply it in the different layers of EA. After define and clarify the dimensions of
complexity we present our contribution to modelise and evaluate EA complexity.

3. OUR PROPOSAL PATTERNS FOR MODELLING

This et alion presents the information patterns for the analysis of the enterprise architecture.
We define firstly the patterns to analyze and implementing enterprise architecture heterogeneity algorithms
and secondly we detail our approach to modelize the impact of the changing algorithms.

3.1. Definition and conceptual foundation

Heterogeneity is defined as the diversity of elements or relationships of a system according to its
characteristics [20]. More precisely, in computer science, the heterogeneity of a computer landscape is
a statistical property that presents the diversity of the types of elements that compose it [17, 21] taking as an
example the heterogeneity of database management systems (DBMS). This heterogeneity can be understood
as a frequency distribution [22, 23] and can be expressed in graphical form as shown in the Figure 1.

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

Int J Elec & Comp Eng ISSN: 2088-8708 a 379

50,00
A5,00
40,00
35,00
10,00
15,00
10,00
15,00
10,00

500

Oretle WS 801 Sybage

Figure 1. The number of instances per DBMS

In the literature the most widely used method for measuring heterogeneity is the use of concentration
measurements, which is entropy measure H = EM = — Y1, p; In(p;) [23, 24].

3.2. Analyzing enterprise architecture heterogeneity

Based on the information pattern 1-50 presented on the paper [25] we present three types of concepts
in which we apply the measure of entropy. Concept 1 represents only the heterogeneity of a single
component of the enterprise architecture, concept 2 represents the relationship between two components and
calculates heterogeneity with respect the relation and the concept 3 is an exceptional case from concept 2 it
presents a relationship path that connects several components. These concepts are summarized in the Table 1.
The |- pattern 1-52 presents the measurements detailed in the Table 1. The measurements are illustrated and
numbered from 1 to 8 in the diagram (Figure 2).

_

Organizationnel unit Business Process reactsTo
[@name:sng |, uses . [&name : Sting :
EI a &name : Sting

prod

ion Components provides
Application Senice] bname : Sting Application Interface
&name: Double &typeComponent: Sting |, consumes . ame : Sting |
&endeur
__ uses * ‘:
- relies
[oBsenice *| Infrastructure Senvice | [systemSoftwareDeployment |
[&tpeDB: Stng| D]Q;name - String | .[@name : String
Device : SystemSoftware
& name : Sting &name : Sting

Figure 2. The I-Pattern diagram "Analysis of Heterogeneity" 1-52

Table 1. The application of heterogeneity to the threeconcepts of the heterogeneity measurements

Concept Concept of Number of instances The Heterogeneity of the Concept
Type Heterogeneity
—— Number of Application Concentrations of applications by vendor or type
Application Components Components (developed, purchased and adapted, purchased).
Tvoe 1 Application Interface Number of Interfaces Concentrations of the types of interfaces.
yp Computer Number of Computers Computer Concentrations by Type
Operating System Number of Operating System Operating System Concentrations by Type
Database Number of databases Database Concentrations by Type
Number of Implemented Concentration of implemented processes by
Implemented Processes Processes component
Type 2/3 Using application Number of gom_ponents_used by Concentration of processes by organizational unit.
components organizational units
Number of database instances

Using Databases Concentration of databases by component

used.

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

380 a ISSN: 2088-8708

3.3. Implementation of analysis algorithms

To propose an evolutionary implementation we must consider several constraints: 1- these
algorithms can evolve over time, 2- we can have several versions of the same algorithm during the life cycle
of our system and each version can represent an adaptation or an optimization of the old version, 3- we also
want to isolate the algorithms compared to others to facilitate their use their implementation and
maintenance. These cited constraints were managed and resolved by the "Strategy" design pattern; for that
we will adapt the design pattern "Strategy" and apply it to our context. The Figure 3 shows the application of
the design pattern to our context. We create a “Strategylnterface’ interface, we add an “applyAlgorithm”
method that will be the method that applies our strategy or in other words that implements our algorithm.
Concrete classes created implement this interface to encapsulate the algorithms and to redefine
the “applyAlgorithm” method for implementing the algorithm of each class. In our contribution we proposed
an algorithm hierarchy using the notion of "Abstract Class", we represent two large families of algorithms;
the heterogeneity algorithms "AlgorithmeHeterogeneite” divided into two subtypes; type 1 algorithms
and type 2 algorithms The Figure 4 shows an example of implementation and use of the database
concentration algorithm.

®chooseAlgorithm()

Algorithme Structure

1
-

| Algorithme He ferogene ite I/_/

| |

Strategy

®applyAlgorithm()

ithme Hete e Type 1
IA'DO” erEEroentie pe I [Algorithme Heerogene teType 2

ConcentrationSE Concentrationinter | £ %
[concentrationDesProcessis | I EONC EniEaRoNEle SARPILC 00 5 I
| |

ConcentrationOrdi ConcentrationApp
ConcentrationDesDB

ConcentrationDB

Figure 3. The implementation of strategy design pattern in our context

public class ConcentrationDB extends AlgorithmeHeterogeneteTypel
implements Observator|
Example of algorithm @override
class public double applylAlgorithmi()

return 0;}

public interface StrategyInterface |
The Strategy z
=- public abstract double applyAlgorithmi() ;
Interface
1
public class CTontaxt |
StrategyInterface
public double chooseAlgorithmi) {
return algorithees_ applicuerhAlgorichmsme () ;
public veid setAlgerithme (StrategyInterface algorithme)
The Context Class this.algoricthme = algorithme;
public class Strategy |
public static wvoid main(Stringl] args) {
Theclassto - R
. : Context ctx = new Contexti();
implement algorithm X .
ctx.setAlgorithme (new ConcentrationDB ())7
ctx.chooseAlgorithm() ;

Figure 4. An example of the implementation of Concetration databases algorithm

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

Int J Elec & Comp Eng ISSN: 2088-8708 a 381

Name: calculation of process concentration by component
Variables: BS: all business processes
CP: the application components
Map instances = map <String componentType, Integer processNumber>
Double sum
Double percentage
Integer Comp
Double heterogeneity
Create a map = instance: its key is a String for the application components and an integer for the number of processes
For all cp in CP do
For all r in cp.relations do
If (r.target = bs) then
count = count + 1
If instances contains componentType = cp.name
For any instance in the instances map
If (instance.composingType == cp.name)
Increment the number numberProcess by 1
End if
endfor
If not
Add a new entry in the map with the key cp.name and value 1
End if
If not
Do nothing and move on to the next relationship
End if
End For
End For
For any instance in the instances map
/I Divide instance.numberProcess by count
Double percentage = instance. numberProcess / comp
sum = sum + percentage * In (percentage)
endfor
heterogenity = -som
return heterogenite

3.4. Analysis the impact of change

Among the dimensions of complexity presented in the et alion 1, we have specified the impact of
change as an important dimension to consider; in this et alion we will propose an implementation to resolve
this need. The impact of managed change in our contribution is to automatically update the new measures
and to progressively follow the changes of our proposed system proposed in the I-Pattern 1-52 "Heterogeneity
of Enterprise Architecture™. In this et alion we will propose an implementation that detects the change of
the considered components and reflects this change at the level of the measurement algorithms.
To handle these constraints we propose to use the observer design patten. This pattern presents a solution to
send a notification to modules that play the role of observers. In the event of notification, the observers take
the appropriate action according to the information that arrives from the modules they observe
(the "observables™).

The diagram of the Observer pattern illustrated in the Figure 5 presents the proposed solution,
it defines two interfaces and two classes: The Observer interface will be implemented by any class that
wants to be an observer. This is the case of the ObservatorConcret class which implements the Observable
method, this method will be called during a state change of the observed class. There is also an
Observable interface that will be implemented by the classes that we want to observe. The
ObservableConcret class implements this interface, which allows it to keep observers and informed by
notifying them. Each ObservableConcret class has an attribute (or several) that we want to observe and a list
of observers. The state is an attribute whose observers wish to follow the evolution of its values. The list of
observers is the list of observers who are listening. The ObservableConcret class in our context is the
EAModel class, it represents our ArchiMate models. This class will contain two elements: components and
relationships. The EAModel class has the states that we want to observe, which are all the nodes and
relationships of the enterprise architecture landscape.

The EAModel class also contains all observers who will receive notifications on each change.
The ObserversConcret who are listening are the implementation classes of the analysis algorithms.
If a component or relationship is added, deleted, or modified, the observers concerned with this model update
are refreshed automatically. In our model the concrete observers are the algorithms of heterogeneity as shown
in Figure 6.

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

382 a ISSN: 2088-8708

Name: calculation of the heterogeneity of operating systems and computers

Variables: SSD: All Instances of Operating Systems Deployed SystemSoftwareDeployment
Map instancesSE = map <String instanceType, Integer numberinstance>

Map instancesComputer = map <String instanceType, Integer numberlnstance>

Double sum, sumDorDI

Double percentageSE, percentage ORDI

Double heterogeneity ORDI, heterogenite

Integer numberlnstanceSE, numberinstanceORDI

Create a map = instanceSE that has a String for the OS type and an integer for the number of instances
Create a map = instanceComputer that has a String for the computer type and an integer for the number of instances
For all ssd in SSD

If instanceSE contains instance Type = ssd.systemSoftware

numberInstanceSE = instanceSE.get (ssd.systemSoftware)

Increment the number numberinstanceSE by 1

instanceSE.get (ssd.systemSoftware) .SetValue (nombrelnstanceSE)

If not

Add a new entry in the instanceSE map as ssd.systemSoftware key and value 1

InstanceSE.add (ssd.systemSoftware, 1)

End if

If the computer instance contains instanceType = ssd.device

numberInstanceORDI = instanceComputer.get (ssd.device)

Increment the numberComputer instance by 1

instanceSE.get (ssd.device) .SetValue (nombrelnstanceORDI)

If not

Add a new entry in the computer instance instance as ssd.device key and the value 1
instanceOrdinateur.add (ssd.device, 1)

End if

End For

For i ranging from 0 to N = SSD.size ()

/I divide numberlnstance by N

Double percentage = instancesSE.get (i) .getValue () / N
sum = sum + percentage * log (percentage)

endfor

heterogeniteSE = -som

sum =0

For i from 0 to N = SSD.size ()

/I divide numberlnstance by N

Double percentage = computerinstance.get (i) .getValue () / N
sum = sum + percentage * log (percentage)

endfor

heterogeniteORDI = -som

Context
¥choosetlgorithm()
1
O 0
1O Obser\aeﬂﬁr Observable
Strategy ®actualize(Observable 0)() ®addobsenateur(Obsenvateur ob)()

deleteObse nator(Obsenvator O)()

@notifyObservato
@applyAlgorithm() ¥ 0

EAModel
®addComponent()

/ %addRelation()
0.*

EAModelComponents m EAModelRelations

AlgorithmeHeterogeneite Algorithme Structure

0.1 cible 0.7

Figure 5. The implementation of observer design pattern in our context

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

Int J Elec & Comp Eng

ISSN: 2088-8708

383

Example of an
algornithm class that
plays therole of an
observer

public class ConcentrationDB extends AlgorithmeHeterogeneteTypel
implements Observator{
@override
public double applyAlgorithm() {

return 0;}
@override
public void actualize(Observable o) {

The Model class that
plays the role of
observable

public class Model implements Observable(
List<Relation> relations;
List<Node> composants;
private Arraylist <Observator> Observators;

public void addRelations(Relation x){

notifyObservatozs();)
public void addComponents (Node n) (

notifyObservators();)

@Override

public void addObservator (Observator o) |
Observators.add(o);)

@Override

public void deleteObservator (Observator o) |
Observators.remove(o); }

@Override

public void notifyObservators() (

for(int 1%0;1<Observators.size();1+4+)
{ Observators.get(i).actualize(this); }}

Manipulation class of
algonithms

public static void main(String(] args) {
Model m = new Nodel();

m.add0bservator (new ConcentrationdB());

a.addComponents (new Node ("2App", "Pyramide",
"Applicaticn”, ""));

Figure 6. An example of the implementation of observer design pattern

4. PROTOTYPE

The application architecture is divided into three layers: an information management or backup layer
that stores data from a model or from existing source files in a data warehouse, a reporting layer that presents
the results as shwon in Figure 7. Heterogeneity measures in graphical form and an interaction layer that
offers the possibility of modeling the desired points of view.

Interaction Layer -

Reporting Layer

Archi @Archi e

JFreeChart

JFreeChart . “.h.

; neoj e
Backup Layer N eO4J @ LIJ %—";

Cypher

Figure 7. The three layers of prototype

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

384 a

ISSN: 2088-8708

The interaction layer represents the applications that will allow decision makers to model the views

of the enterprise architecture and enrich it with existing data. The modeling editor is as shown in Figure 8.

The illustrated tool represents the first step which is the modeling of the enterprise architecture by graphically

describing the elements and existing relations, it is an ArchiMate point of view modeled by the Archi

interface. It consists of an element set of each layer. The description of the AE is stored in two Comma-

separated values CSV files. To manage this metadata, we have developed a desktop application java,
illustrated in the Figure 9, which allows us to manage this metadata, to apply the heterogeneity measurement
algorithms and to visualize the output graphs.

&% Archi
File Edit View Tools Window Help Run Search
@I i el 100% - | Redy o | s o R | 2 e | S RO
L5 Project Explorer £3 = 8 8% (new model): Default View 52
Assistante de Responsable SI §
direction
I Abs(L(:
Saisie = Envoie des =
d'abscence — mails —_—
8= Outl = a8 T
Gestion des étudiants
. x
H
E oW __{__ - Absence
\ -h-'-—-n
X The point of vue |
3% Default View

Elements

EO0Ew c®OS

Quick Access
L=
»: Palette b | @ | The
BB relations o
RiZ-A lat f
&
Directrice des § V. enterprise
études s S A 67/:"‘ arclitecture
P point of vue
o S S e &
Convocation = DB /
des parents The
2 @ = business
D o 3 layer
components
£ I
o
o G o \
a 4 The
application
The layer
technology components
layer
components

Figure 8. The modeling interface

Ajouter les relations d'un noeud

()
i)

Dneodjelements csv | Charger J
id Nom Type Documentation
B14ec12d festuniversity AschimateModel .
05980203 Assitant DC BusinessActor
23000980 Vendeur BusinessAcior
47ad7r2 Vendeur Ivreur BusinessActor
Secdef37 Business Process BusinessProcess
Scc1914d CrA@ation de commande BusinessProcess
2¢0159¢9 Facturation BusinessProcess r
arannm. e A
E].um_nate _unused L Enregistrer les Modifications |
relationships -
. Load the relations
Re1ations | Raffinerles relations e
Dineodjelations.csv Charger) | Affecter les poids |
Id Type Name Poids Source Destination
5871126 AssignmentRelat 45980243 14169483 .
§7M71789 AssignmentRelati 47ap7122 061207
eaie8598 AssignmentRelat 23de0980 5b9ad365
b98c9649 AssignmentRelall 230e0980 Scc19tda
9736869 AssignmentRelal 230e0980 2ca169¢9
18159300 TriggeringRetadio. 509230385 1653545¢
00140¢59 TriggeringRelatio. 7928¢c9 Scc19fdd
7928cc9 5b9ad365
0c05atcd TriggeringRelatio. 1553545¢ 17928cco
ccadcaft TriggenngRelatio Scc19t4d 14100483
94pnehid . 14ma4R3 gA207Mm 1.4
Enregistrer les Modifications

Id de noeud: | - Séléctionner un cholx— (¥
Type de relation :

Nom :

Poids:

Id de | -S4 un chob— | %)
Id de target: | - Séiéctonner un chot- (¥

Figure 9. The Meta data management of EA components and relationships

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

Int J Elec & Comp Eng ISSN: 2088-8708 a 385

To manage this metadata, we have developed a java desktop application, illustrated in Figure 10,
that allows us to load relationships and components from csv files, view them and make changes if necessary.
Figure 11 show the report generated for the distribution of databases instances.

Générer les rapports d'hétérogénéité. | Generate Heterogeneity

Reports

(_ Les applications par type () Les interfaces par type

(U Les ordinateurs par type () les SE par type

@® Les DB partype

(_ Les processus implémentés par composant
(_ Les processus par unité organisationnelle

(U Les bases de données par composant

Figure 10. The interface to generate the heterogeneity graphs

'I. — %
[the pereentage ai the distribution database instances
-
=
LRI
(=0
Databases

Figure 11. The report generated for the distribution of databases instances

4 CONCLUSION

Enterprise Architecture (AE) is a cross-cutting discipline that deals with the process, models, tools
for describing organizations and building their IS. It also helps to plan the possible changes at
the organizational level and the architecture level. As a result, different approaches have been employed to
ascertain the challenges, yet they persist. Thus, the objective of this paper is to propose an evaluating
methodology for guiding designers and architects in evaluating and improving the EA models and especially
the impact of the change of the different components at the level of the complexity measures.

REFERENCES
[1] M. Hall and Tideman, “Measures of Concentration,” Journal of American Statistical Society, vol. 62, pp. 162-168,
1967

[2] T. lyamu, “Understanding the complexities of enterprise architecture through structuration theory,” Journal of
Computer Information Systems, vol. 59, pp. 287-295, 2019.

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

386

a ISSN: 2088-8708

(3]

(4]
(5]
(6]

[7]
(8]
(9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]

Rouhani, B. D., Ahmad, R. B., Nikpay, F., & Mohamaddoust, R. (2019). CRITICAL SUCCESS FACTOR
MODEL FOR ENTERPRISE ARCHITECTURE IMPLEMENTATION. Malaysian Journal of Computer Science,
32(2), 133-148.

C. Lucke, S. Krell, and U. Lechner, “Critical issues in enterprise architecting: A literature review,” In Americas
Conference on Information Systems, Lima, 2010.

C. B. Daniels, and W. J. LaMarsh II, “Complexity as a cause of failure in information technology project
management,” In IEEE International Conference on System of Systems Engineering, 1- 7, San Antonio, TX, 2007.

K. Wehling, D. Wille, C. Seidl, and I. Schaefer, “Decision support for reducing unnecessary IT complexity of
application architectures,” In 2017 IEEE International Conference on Software Architecture Workshops, 161-168,
2017.

C. Schmidt, “Business architecture quantified: How to measures business complexity,” In D. Simon and C. Schmidt
(Eds.), Business Architecture Management. Springer, 243-268, 2015.

J. S. Davis, and R. J. LeBlanc, “A study of the applicability of complexity measures,”I[EEE Transac- tion on
Software Engineering,14(9), 1366-1372, 1988.

R. L. Flood, and E. R. Carson, “Dealing with complexity: An introduction to the theory and applica- tion of
systems science,” In Dealing with Complexity: An Introduction to the Theory and Application of System Science,
23-38, Springer, 1993.

W. Kinsner, W., “Complexity and its measures in cognitive and other complex systems,” In 7th IEEE International
Conference on Cognitive Informatics, 13-29, Stanford, 2008

A. Schiitz, T. Widjaja, and J. Kaiser, “Complexity in enterprise architectures — Conceptualization and introduction
of a measure from a system theoretic perspective” In Proceedings of the 21sEuropean Conference on Information
Systems, Utrecht, Netherlands, 2013.

lacob, M. E., Monteban, J., van Sinderen, M., Hegeman, E., & Bitaraf, K. (2018). Measuring Enterprise
Architecture Complexity. 2018 IEEE 22nd International Enterprise Distributed Object Computing
Workshop (EDOCW). doi:10.1109/edocw.2018.00026.

J. S. Davis and R. J. LeBlanc, “A Study of the Applicability of Complexity Measures,” IEEE Transactions on
Software Engineering, vol. 14, pp. 1366.

Y. Y. Yusuf and E. O. Adeleye, “A comparative study of lean and agile manufacturing with related survey of
current practices in the UK,” International Journal of Production Research, vol. 40, pp. 4545-4562, 2002.

S. L. Schneberger and E. R. McLean, “The Complexity Cross: Implications for Practice,” Communications of
the ACM, vol. 46, pp. 216-225, 2003.

J. Lakhrouit and K. Baina, “A pattern based methodology for analyzing enterprise architecture landscape,”
International Journal of Computer Science Issues (1JCSI), vol. 13, pp. 15, 2016.

Widjaja T., et al., “Heterogeneity in IT landscapes and monopoly power of firms: a model to quantify
heterogeneity,” The international conference on information systems (ICIS), Orlando, FL, 2012.

Lagerstrom R., et al., “Visualizing and measuring enterprise application architecture: an exploratory telecom case,”
School working paper 13-103. Harvard Business, Cambridge, MA, 2013.

Schutz, et al., “Complexity in enterprise architectures—conceptualization and introduction of a measure from
a system theoretic perspective,” The European conference on information systems (ECIS), Utrecht, The
Netherlands, 2013.

J. S. Davis and R. J. LeBlanc, “A Study of the Applicability of Complexity Measures,” IEEE Transactions on
Software Engineering, vol. 14, pp. 1366-1372, 1988.

C. B. Garrison and A. S. Paulson, “An Entropy Measure of the Geographic Concentration of Economic Activity,”
Economic Geography, vol. 49, pp. 319-324, 1973.

J. E. Kwoka Jr, “The Herfindahl Index in Theory and Practice,” Antitrust Bull., vol. 30, pp. 915-947, 1985.

F. M. Gollop and J. L. Monahan, “A Generalized Index of Diversification: Trends in U.S. Manufactoring,”
The Review of Economics and Statistics, vol. 73, pp. 318-330, 1991.

A. P. Jacquemin and C. H. Berry, “Entropy Measure of Diversification and Corporate Growth,” The Journal of
Industrial Economics, vol. 27, pp. 359-369, 1979.

J. Lakhrouit and K. Baina, “A pattern based methodology for analyzing enterprise architecture landscape,”
International Journal of Computer Science Issues (IJCSI), vol. 13, pp. 15, 2016.

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

