
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 6, December 2019, pp. 4908~4919

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i6.pp4908-4919  4908

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Efficient multi-task offloading with energy and computational

resources optimization in a mobile edge computing node

Mohamed El Ghmary, Tarik Chanyour, Youssef Hmimz, Mohammed Ouçamah Cherkaoui Malki
Department of Computer Science, Sidi Mohamed Ben Abdellah University, Morocco

Article Info ABSTRACT

Article history:

Received Jan 15, 2019

Revised Jun 2, 2019

Accepted Jun 26, 2019

 With the fifth-generation (5G) networks, Mobile edge computing (MEC) is a

promising paradigm to provide near computing and storage capabilities to

smart mobile devices. In addition, mobile devices are most of the time

battery dependent and energy constrained while they are characterized by

their limited processing and storage capacities. Accordingly, these devices

must offload a part of their heavy tasks that require a lot of computation and

are energy consuming. This choice remains the only option in some

circumstances, especially when the battery drains off. Besides, the local CPU

frequency allocated to processing has a huge impact on devices energy

consumption. Additionally, when mobile devices handle many tasks, the

decision of the part to offload becomes critical. Actually, we must consider

the wireless network state, the available processing resources at both sides,

and particularly the local available battery power. In this paper, we consider

a single mobile device that is energy constrained and that retains a list of

heavy offloadable tasks that are delay constrained. Therefore, we formulated

the corresponding optimization problem, and proposed a Simulated

Annealing based heuristic solution scheme. In order to evaluate our solution,

we carried out a set of simulation experiments. Finally, the obtained results

in terms of energy are very encouraging. Moreover, our solution performs

the offloading decisions within an acceptable and feasible timeframes.

Keywords:

Computation offloading

Energy optimization

Mobile edge computing

Simulated annealing

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mohamed El Ghmary,

Department of Computer Science,

Sidi Mohamed Ben Abdellah University,

FSDM, LIIAN Labo, Fez, Morocco.

Email: mohamed.elghmary@usmba.ac.ma

1. INTRODUCTION

Mobile Edge Computing (MEC) concept [1-3], it has been recognized as the next generation

computing infrastructure that is based on Mobile Cloud Computing paradigm [4-7]. It can offer nearby

customized services that require good transmission bandwidth, additional data storage and processing.

As illustrated in Figure 1, MEC can augment mobile devices’ capabilities by offloading [8-10] some parts of

their havy applications via wireless access to a resource-rich edge node, and then effectively reduces their

power consumptions [11]. Moreover, to efficiently offload a greedy application while respecting deadlines,

it is often decomposed into several independent offloadable tasks with a deadline constraint [12-14].

Many papers studied resource allocation within a MEC infrastructure to optimize the procecing time [15-18].

On the other hand, many state of the art works studied resource allocation within a MEC infrastructure to

optimize the energy consumption [13, 19, 20]. In [21], the authors investigate a resource allocation policy to

maximize the available processing capacity for MEC IoT networks with constrained power and unpredictable

tasks.Unfortunatly, most of them consider users with a unique task only. However, current Smart Mobile

Dvices (SMDs) can host several greedy applications that have to offload a part of their tasks to improve

the quality of the experience or simply to avoid the waste of their available resources. Therefore,

mailto:mohamed.elghmary@usmba.ac.ma

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4909

the offloading decision should be generalized according to a multi-task scenario. This problem relies on

the joint decision of tasks’ offloading and the allocation of communication or computing resources.

Figure 1. Mobile edge computing illustration

Recently, the authors of [13] studied a single-user multi-task offloading senario by optimizing radio

resources and local frequency. They did not consider the local energy availability nor the remote server’s

frequency. Besides, they consider tasks with the same deadline Td. In this work, we study the general multi-

task offloading senario where we introduce the control of the available local energy, and consider the edge

server’s frequency as a decision parameter in our optimization problem. Moreover, we consider a general

setting where each offloadable task has to be executed within its specific deadline ti
max. According to our

vision, we can prolong the battery life of the mobile device by considering the amount of its available power,

and reduce the tasks’ processing time by adjusting the edge server’s frequency. Subsequently, we have

formulated an optimization problem that minimizes the energy consumed by jointly deciding the local and

edge computing frequencies, as well as the offloading decisions. Due to its combinatorial nature and after its

decomposition, we propose a heuristic solution based on a simulated annealing algorithm to jointly decide the

tasks’ offloading and the allocation of computing resources. The objective is to minimize the consumed

energy via the offloading by considering the tasks’ latency constraints and a threshold of available energy.

The remainder of this paper is organized as follows : the system’s model and the optimization

problem formulation are presented in Section 2. In Section 3, we present our method to solve the

optimization problem. In section 4 we present the simulation results and their discussion. Finally, Section 5

concludes the paper.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. System model

Figure 2. Shows a single smart mobile device (SMD) containing an offloadable multi-task list.

In this work, we plan to study the behavior of the offloading process for a multi-task SMD in an edge

environment, while we optimize computation resources available at the edge server as well as at the mobile

device. Particularly, the available energy at the SMD for tasks execution is limited. Besides, in the context of

offloading, some pieces of a computationally intensive application are divided into multiple mutually

independent offloadable tasks [22, 23]. Therefore, according to the available computational and radio

resources, some tasks are pick-up from the resulting tasks list to be offloaded to the edge servers for

computing. The others are performed locally on the SMD itself. The execution of the whole list must happen

within the time limit of the application. Additionally, it is assumed that the SMD concurrently performs

computation and wireless transmission.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4908 - 4919

4910

Figure 2. System model illustration

For all these considerations, we derive a mathematical energy consumption model that considers

three main decisions: the offloading decision for each task, the local execution frequency of the SMD, and

the server execution frequency at the edge. Then, we formulate an energy minimization problem.

Practically, the SMD is connected to an Edge Node (EN), and is intended to offload a set of

independent tasks by the mean of an Edge Access Point (EAP).Additionally, the wireless channel conditions

between the SMD and the wireless access point are not considered in this work. Moreover, at the time of

the offloading decision and the transmission of the offloadable tasks, the uplink rate r is assumed almost

unchanged.

As shown in Figure 2., the considered smart mobile device contains N independent tasks denoted

as τ ≜ {τ1, τ2, … , τN}. In addition, these tasks are assumed to be computationally intensive and delay

sensitive and have to be completed. Each task τi can be processed either locally or at the edge. It represents

an atomic input data task that cannot be divided into sub-tasks. Moreover, it is characterized by the following

three parameters τi ≜ 〈di, λi, ti
max〉. The first one denoted di[bits] identifies the amount of the input

parameters and program codes to transfer from the user’s local device to the edge server. The second one

denoted λi [cycles] specifies the workload referring to the computation amount needed to accomplish

the processing of this task. The third parameter ti
max refers to the required maximum latency for this task.

The execution nature decision for a task τi either locally or by offloading to the edge server is

denoted xiwhere xi ∈ {0; 1}. xi = 1 indicates that the SMD has to offload τi to the edge server, and xi = 0

indicates that τi is locally processed.

From this point, all time expressions are given in Seconds, and energy consumptions are given in

Joule. Then, if the SMD locally executes task τi, the completion time of its local execution is ti
L =

λi

fL
. So, for

all tasks, we have:

 tL = ∑ (1 − xi)
λi

fL

N
i=1 (1)

Additionally, the corresponding energy consumption is given by: ei
L = kL. fL

2. λi [24]. Hence,

the total energy consumption while executing all tasks that were decided to be locally executed in the SMD is

given by

 𝑒𝐿 = ∑ 𝑒𝑖
𝐿(1 − 𝑥𝑖)

𝑁
𝑖=1 = 𝑘𝐿 . 𝑓𝐿

2. ∑ 𝜆𝑖(1 − 𝑥𝑖)
𝑁
𝑖=1 (2)

If task 𝜏𝑖 is offloaded to the edge node, the offloading process completion time is: 𝑡𝑖
𝑂 = 𝑡𝑖

𝐶𝑜𝑚 +

𝑡𝑖
𝐸𝑥𝑒𝑐 + 𝑡𝑖

𝑅𝑒𝑠, where ti
Com is the time to transmit the task to the EAP, and it is given by ti

Com =
di

r
 . ti

Exec is

the time to execute the task τiat the EN, and it can be formulated as ti
Exec =

λi

fS
. ti

Res is the time to receive

the result out from the edge node. Because the data size of the result is usually ignored compared to the input

data size, we ignore this relay time and its energy consumption as adopted by [25]. Hence, for the 𝜏𝑖 task

𝑡𝑖
𝑂 = 𝑥𝑖 (

𝑑𝑖

𝑟
+

𝜆𝑖

𝑓𝑆
), and for all tasks, we have:

 tO = ∑ xi (
di

r
+

λi

fS
)N

i=1 (3)

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4911

So, the energy consumption of the communication process can be obtained by multiplying the

resulting transmission period by the transmission undertaken power 𝑝𝑇 , and the rest of the execution period

by the idle mode power 𝑝𝐼 . Thus, this energy is:

 eC =
pT ∑ 𝑥𝑖𝑑𝑖

𝑁
𝑖=1

r
+

pI∑ 𝑥𝑖𝜆𝑖
𝑁
𝑖=1

fS
 (4)

Similarly, energy consumption at the edge server while executing 𝜏𝑖 is given by:

𝑒𝑖
𝑆 = 𝑘𝑆. 𝑓𝑆

2. 𝜆𝑖 [8]. The execution energy for all the offloaded tasks is:

 eS = kS. fS
2. ∑ λixi

N
i=1 (5)

Finally, given the offloading decision vector 𝕏 for all tasks, the local execution frequency 𝒇𝑳 of the

SMD, and the server execution frequency 𝒇𝑺 at the edge, the total energy consumption for the SMD is

composed of its local energy consumption, the communication energy as well as the execution energy at the

EN, and it is given by 𝔼(𝕏, 𝑓𝐿 , 𝑓𝑆) = 𝑒
𝐿 + 𝑒𝐶 + 𝑒𝑆. Then, according to Equations (2), (4) and (5) and if we

note Λ = ∑ 𝜆𝑖
𝑁
𝑖=1 , the total energy consumption can be formulated as:

𝔼(𝕏, fL, fS) = (kSfS
2 − kLfL

2 +
pI

fS
)∑ λixi

N
i=1 +

pT

r
∑ dixi
N
i=1 + kLfL

2Λ (6)

2.2. Problem formulation

In this section, we present our optimization problem formulation that aims to minimize the overall

energy consumption in the local execution or the offloading process. Initially, to prepare the problem’s data

we start with an initial sorting of the tasks list τ ≜ {τ1, τ2, … , τN} according to their deadlines ti
max. Hence,

the tasks execution order within the SMD or the edge server in the final solution must fulfill the initial order

for both cases. Accordingly, the obtained problem is formulated as:

𝓟𝟏: min
{x,fL,fS}

{(kSfS
2 − kLfL

2 +
pI

fS
)∑λixi

N

i=1

+
pT

r
∑dixi

N

i=1

+ kLfL
2Λ}

 s.t.(C1.1) xi ∈ {0; 1}; i ∈ ⟦1; N⟧;
(C1.2) FL

min ≤ fL ≤ FL
max;

(C1.3) 0 < fS ≤ FS ;

(C1.4) ti
L =

(1−xi)

fL
∑ λk(1 − xk)
i
k=1 ≤ ti

max; i ∈ ⟦1; N⟧;

(C1.5) ti
O = xi∑ xk (

dk

r
+

λk

fS
)i

k=1 ≤ ti
max ; i ∈ ⟦1; N⟧;

(C1.6) e
L = kL. fL

2. ∑ λi(1 − xi)
N
i=1 ≤ Emax.

In this work, each one of the available tasks can be either executed locally or offloaded to the edge

node. Thus, every feasible offloading decision solution has to satisfy the above constraints:

The constraint (C1.1) refers to the offloading decision variable xi for task τi which equals 0 or 1.

The second constraint (C1.2)indicates that the allocated variable local frequency fLbelongs to a priori fix

interval given by [FL
min, FL

max]. Similarly, the allocated variable remote edge server frequency fSbelongs to

the interval]0, FS
max] in constraint (C1.3). The constraint (C1.4) shows that the execution time of each decided

local task must satisfy its deadline ti
max. Similarly, in constraint (C1.5), the offloading time of each decided

offloadable task must satisfy the same deadline ti
max. The final constraint (C1.6) imposes that the total local

execution energy must not exceed the tolerated given amount Emax. This constraint is important especially

for SMDs with critical battery.

3. PROBLEM RESOLUTION

In this section, we will introduce how we derive our solution from the obtained optimization

problem.

3.1. Problem decomposition

In our proposed model, the offloading decision vector for all the tasks is denoted 𝕏. Let define

the vector that contains the offloadable tasks’ identifiers:

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4908 - 4919

4912

𝕏1 = {i ∈ 𝕏 / xi = 1 } (7)

𝕏0 = {i ∈ 𝕏 / xi = 0 } (8)

Additionally, we define: Λi = ∑ λi
i
k=1 , Λi

1 = ∑ xiλi
i
k=1 , Di = ∑ di

i
k=1 , Di

1 = ∑ xidi
i
k=1 .

Also, given the decision vector 𝕏1, constraint (C1.4) for a local task can be reformulated as

Λi−Λi

1

ti
max ≤ fL; ∀ i ∈ ⟦1; N⟧. Finally, it is equivalent to one constraint: max

i
{
Λi−Λi

1

ti
max } ≤ fL. Likewise, constraint

(C1.5) for an offloadable task means
Di
1

r
+

Λi
1

fS
≤ ti

max (∀ i ∈ ⟦1; N⟧). So
Di
1

r
 and

Λi
1

fS
 must be strictly less than

ti
max (∀ i ∈ ⟦1; N⟧) ; particularly min

i
{ti
max −

Di
1

r
} > 0. In this case constraints (C1.5) can be reformulated as

Λi
1

ti
max−

Di
1

r

≤ fS; ∀ i ∈ ⟦1; N⟧. Finally, it is equivalent to one constraint: max
i
{

Λi
1

ti
max−

Di
1

r

} ≤ fS. Similarly,

constraint (C1.6) can be reformulated as fL ≤ √
Emax

kL(ΛN−ΛN
1)

. For ease of use, let note:

fL
− = max

i
{
Λi−Λi

1

ti
max } (9)

fL
+ = √

Emax

kL(ΛN−ΛN
1)

 (10)

fS
− = max

i
{

Λi
1

ti
max−

Di
1

r

} (11)

Thus, for a given offloading decision vector 𝕏, we get the following optimization sub-problem:

𝓟𝟐(𝕏): min
{fL,fS}

{(ΛN − ΛN
1)kLfL

2 + ΛNkSfS
2 + ΛN

pI

fS
+ DN

1
pT

r
}

 s.t.(C2.1) FL
min ≤ fL ≤ FL

max;
(C2.2) fL

− ≤ fL ;

(C2.3) fS
− ≤ fS ≤ FS ;

(C2.4) kLfL
2(ΛN − ΛN

1) ≤ Emax.

Considering the continuous variables fL and fS, problem P2 is a continuous multi-variable

optimization problem. The objective function 𝔼𝕏(fL, fS) = (ΛN − ΛN
1)kLfL

2 + ΛN
1 kSfS

2 + ΛN
1 pI

fS
+ DN

1 pT

r
 can be

decomposed into the following two independent functions 𝔼1(fL) and 𝔼2(fS) where

𝔼1(fL) = (ΛN − ΛN
1)kLfL

2 and 𝔼2(fS) = ΛN
1 kSfS

2 + ΛN
1 pI

fS
+ DN

1 pT

r
. Moreover, given the disjunction between

constraints (C2.1), (C2.2) and (C2.4) on the one hand, and (C2.3) in problem P2 on the other hand, this last can

be equivalently decomposed into the following two independent optimization sub-problems.

𝓟𝟑. 𝟏(𝕏): min
{fL}

{𝔼1(fL) = (ΛN − ΛN
1)kLfL

2}

 s.t.(C3.1.1) FL
min ≤ fL ≤ FL

max;

 (C3.1.2) fL
− ≤ fL ≤ fL

+.

𝓟𝟑. 𝟐(𝕏): min
{fS}

{𝔼2(fS) = Λ1kSfS
2 + ΛN

1
pI

fS
+ DN

1
pT

r
}

 s.t.(C3.2.1) fS
− ≤ fS ≤ FS.

3.2. Problems resolution

For the 𝒫3.1 problem, the objective function 𝔼1(fL) is a strictly increasing continuous function

according to its variable fL. Hence, by taking into consideration the obtained constraints (C3.1.1) and (C3.1.1),
we can derive the following function’s optimum fL

∗ given by:

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4913

fL
∗ =

{

0 if 𝕏 = 𝕏1
∅ if fL

− > FL
maxor fL

+ < FL
min or fL

− > fL
+

FL
min

fL
−

if fL
− < FL

min

otherwise

 (12)

For the 𝒫3.2 problem, the objective function 𝔼2(fS) is a continuous function according to its

variable fSwith a first order derivate:
∂𝔼2(fS)

∂fS
= 2ΛN

1 kSfS −
ΛN
1 pI

fS
2 ; consequently, 𝔼2(fS) decreases on]0, √

pI

2kS

3
]

and increases on [√
pI

2kS

3
, +∞[. Then, 𝔼2(fS) has an optimal minimum value at the point √

pI

2kS

3
 without

considering constraint (C3.2.1). Therefore, with (C3.2.1), we can derive the following function’s optimum fS
∗

given by:

 fS
∗ =

{

 ∅ if min

i
{ti
max −

Di
1

r
} ≤ 0 or fS

− > FS

FS if
pI

2kS
≥ FS

3

fS
−

√
pI

2kS

3
if

pI

2kS
≤ (fS

−)3

otherwise

 (13)

3.2.1. Processing frequencies determination

From the above results, with a given offloading decision vector 𝕏 , we present the next Algorithm 1

that gives the optimal allocated local frequency fLas well as the remote edge server’s processing frequency fS.

3.2.2. The energy consumption determination

Similarly, given an offloading decision vector 𝕏 the next algorithm 2 uses the first algorithm to

determine the minimal energy consumption:

Algorithm 1: frequencies optimum for a given 𝕏

Input: The offloading policy 𝕏.

Output: fLand fS.

1: Determinate 𝕏1 according to (7);

2: if 𝕏 = 𝕏1then

3: fL = 0;
4: goto 16;

5: end if

6: Calculate: fL
−, fL

+ according to (9) and (10) respectively;

7: if fL
− > FL

maxor fL
+ < FL

min or fL
− > fL

+then

8: return ∅;

9: else

10: if fL
− < FL

minthen

11: fL = FL
min;

12: else

13: fL = fL
−;

14: end if

15: end if

16: if min
𝑖
{𝑡𝑖
𝑚𝑎𝑥 −

𝐷𝑖
1

𝑟
} ≤ 0 then

17: return ∅;
18: else
19: Calculate: fS

− according to (11);
20: if fS

− > FS then
21: return ∅;

22: else if
pI

2kS
≥ FS

3 then

23: fS = FS;

24: else if
pI

2kS
≤ (fS

−)3then

25: fS = fS
−;

26: else

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4908 - 4919

4914

27: fS = √
pI

2kS

3
;

28: end if

29: end if

30: end if

31: end if

32: return (fL, fS);

 Algorithm 2: Energy calculation

Input: The list 𝜏 of N sub-tasks, offloading policy 𝕏.

Output:𝔼(𝕏, 𝑓𝐿 , 𝑓𝑆).
1: Call Algorithm 1 to calculate (𝑓𝐿, 𝑓𝑆) using 𝕏;

2: if 𝑓𝐿 = ∅ or 𝑓𝑆 = ∅ then

3: return ∞;

4: else

5: Calculate 𝔼(𝕏, 𝑓𝐿, 𝑓𝑆)according to (6);

6: return 𝔼(𝕏, 𝑓𝐿, 𝑓𝑆) ;
7: end if

3.3. Proposed solutions

Next, the problem relies on determining the optimal offloading decision vector 𝕏 that gives

the optimal energy consumption. However, to iterate over all possible combinations of a list of N binary

variables, the time complexity is exponential (the exhaustive search over all possible solutions requires 2N

iterations). Subsequently, the total time complexity of the whole solution (including Algorithm 1) is

O(2N)*O(1)=O(2N) that is not practical for large values of N. In the following, we propose a low complexity

approximate algorithm to solve this question.

3.3.1. Brute force search solution

For comparison purpose, we introduce the Brute Force Search method for feasible small values of

N. This method explores all cases of offloading decisions and saves the one with the minimum energy

consumption as well as its completion time. Now, the next algorithm summarizes the Brute Force Search

Solution.

Algorithm 3 : Brute Force Search Offloading

Input:The list τ of N sub-tasks;

Output: the offloading policy 𝕏∗.
Initialize: minEnergy=∞;

1: for i=1 to 𝟐𝐍 − 𝟏 do

2: Use the N bits representation of integer i to build the policy 𝕏;

3: Call Algorithm 2 to get newEnergy using τ and 𝕏;

4: if 𝐧𝐞𝐰𝐄𝐧𝐞𝐫𝐠𝐲 < 𝐦𝐢𝐧𝐄𝐧𝐞𝐫𝐠𝐲 then

5: 𝐦𝐢𝐧𝐄𝐧𝐞𝐫𝐠𝐲 ← 𝐧𝐞𝐰𝐄𝐧𝐞𝐫𝐠𝐲 ;

6: 𝕏∗ ← 𝕏;

7: end if

8: end for

9: return 𝕏∗ ;

3.3.2. Simulated annealing offloading based on workload density threshold

For the second solution, we propose the use of a Simulated Annealing (SA) based method. The SA

technique was adopted as a heuristic solution in the optimization field especially for hard problems.

To improve a solution, it employs iterative random solution variation. Interested readers can refer to

the following works [26] and [27] for more details about this issue. Some references dealing with

the offloading in cloud environments [19, 28, 29] use tasks’ workload density defined as ωi =
λi

di
[cycle / bit]

as a priority factor to decide the tasks’ offloading. Additionally, the generated tasks are generally with

different workload densities. Moreover, if two tasks are given with a slightly different data sizes, the one that

consumes less energy is the one given by the smallest cycles’ count. Besides, with almost the same cycles’

count, the one that consumes less offloading energy is the one given by the smallest data size. In both cases,

the task with the highest workload density is favorable for offloading (provided to have an offloading energy

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4915

gain compared to the local execution and not to exceed its execution deadline). On the other hand, a task with

a high workload density often has a large number of cycles. Its local execution is generally very expensive

and thus makes its offloading often very favorable. In this context, we introduce a workload density threshold

ωT such that: tasks with ωi > ωT are more favorable to be offloaded. The others are executed locally or

offloaded with a proportional probability to their computational densities. Those with small densities are

favorable for local execution, and those with high densities are favorable to be offloaded. Accordingly, if we

note ωmin = min
i
{ωi}, ωmax = max

i
{ωi} and the middle of the interval [ωmax, ωmin] as

ωT = (ωmax + ωmin)/2 then ωT can be chosen such that ωT ≤ ωT < ωmax.

In our proposed second solution, which we denote Workload Density based Simulated Annealing

Offloading (WDSAO), we adopted the following general threshold probability:

p = e−∆Ei/T0 (14)

where T0 is the initial temperature constant. ∆Ei is the solutions’ energy variation while changing the task i

state. Then, in each stage of our solution and with the intention to avoid local optimums, random solutions

with poor energy performance are accepted in line with a certain probability threshold. Accordingly,

Algorithm summarizes our heuristic solution.

Algorithm 4 takes as input: the sub-tasks’ list 𝜏, the initial temperature T0, the cooling factor CF,

the temperature treshold 𝜀, and the workload density threshold 𝜔𝑇.

random(0,1) is a function’s call that generates a random number in [0,1].

3.3.3. Original simulated annealing offloading

For the third solution and for comparison purpose, we take the version of the solution proposed

by [5] and denote it Original Simulated Annealing Offloading (OSAO). In this solution, the local execution

probability increases with the increase of the computing density. This fact leads to offload tasks with big data

size and workload and prevent tasks with low data size and high workload to take high offload priority.

Algorithm 4: workload density based Simulated Annealing Offloading

Input:The list 𝜏 of N sub-tasks,T0, CF, 𝜀, 𝜔𝑇;

Output: the offloading policy 𝕏∗.
Initialize: a random policy 𝕏;

1: Call Algorithm 2 to calculate oldEnergy using 𝜏 and 𝕏;

2: minEnergy=∞;

3: while T0> 𝜀 do

4: for each i in 𝜏 do

5: if 𝜔𝑖 > 𝜔𝑇 then

6: if task i not in 𝕏1 then

7: add i to 𝕏1 ;
8: end if

9: else if 𝜔𝑇 − 𝜔𝑖 > (𝜔𝑇 − 𝜔𝑚𝑖𝑛) ∗ random(0,1) then

10: if task i in 𝕏1 then

11: move i from 𝕏1 to 𝕏0 ;
12: end if

13: else if task i in 𝕏0 then

14: move i from 𝕏0 to 𝕏1 ;
15: end if

16: end if

17: end if

18: Update 𝕏 using the new 𝕏1;

19: Call Algorithm 2 to get newEnergy using 𝜏 and 𝕏;

20: if newEnergy≠ ∞ then

21: ∆𝐸𝑖 = newEnergy − oldEnergy
22: if ∆𝐸𝑖 < 0 then
23: oldEnergy=newEnergy;

24: if newEnergy<minEnergy then

25: minEnergy =newEnergy ;

26: 𝕏∗ = 𝕏 ;
27: end if

28: else

29: Calculate p according to (13);

30: if 𝑒−∆𝐸𝑖/𝑇0 > random(0,1) then

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4908 - 4919

4916

31: oldEnergy = newEnergy;

32: else
33: Put back i to its original set;

34: end if

35: end if

36: end if

37: end for

38: T0= T0*CF

39: end wile

40: return 𝕏∗ ;

4. RESULTS AND DISCUSSION

4.1. Simulation setup

The presented results in this work are averaged for 100 time executions. We implement all

the algorithms on the C++language. Additionally, they are run on a laptop equipped with a 2.4 GHz Intel

Core i5 processor and 8 GB of RAM. The transmission bandwidth between the mobile device node and

remote edge server is set tor = 100Kb/s. The local CPU frequency fLof the mobile device will be optimized

between FL
min = 1MHz and FL

max = 60MHz. The CPU frequency of the remote edge server node will be

optimized under the value FS = 6GHz. The deadlines ti
max are uniformly defined from 0.5s to 2s.

The threshold energy Emax is uniformly chosen in [0.6 , 0.8] ∗ Λ. kL. (FL
max)2.Additionally, the data size of

each one of the N tasks is assumed to be in [30,300] Kb. For the cycle amount of each task, it is assumed to

belong to [60,600]MCycles. The idle power and transmission power are set to be pI = 0.01 Watt and

pT = 0.1 Watt respectively. For the energy efficiency coefficients, we set kL = 10−26 and kS = 10−29.
For the simulated annealing methods, the following parameter values are adopted: factor = 0.5,

ε= 0.3, T0 = 200, Δt = 0.02(in OSAO), and CF=0.85.

4.2. Performance analysis

We present our results in terms of average decision time and average energy consumption. We start

by studying the average energy’s consumption throughput for each method. Thus, we carried an experiment

where we vary the number of tasks parameter between 2 and 50 tasks.

4.2.1. The parameter 𝛚𝐓

The Figure 3 shows a rapid decrease of the energy consumption using the WDSAO method for ωT

between 0.3 and 0.45 for N in {10,15,20,25,30}. Then, this energy increases from ωT = 0.5 to ωT = 0.75 for

all values of N. In addition it slightly decreases after ωT = 0.75 only for N = 10 and N = 30. As a result, we

find that the best value of ωT that minimizes the energy consumption for most of the values of N is

ωT = 0.5. Thereafter, we will set ωT to the value 0.5.

Figure 3. Average Energy consumption for ωT between 0.25 and 0.85

4.2.2. The energy consumption

In terms of energy consumption, the experiment’s results are depicted in the following two figures.

Figure 4 represents the obtained results for the three methods where N is taken between 3 and 25. On the one

hand, it shows a small distance between the results of the optimal BFS method and the OSAO method.

This difference varies from 1.53% to 9.30%. On the other hand, the WDSAO results are almost the same as

the optimal results. The difference varies from 0.00% to 2.88%.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4917

Beyond the value N=25, and because of the considerable processing time of the BFS solution, we

compared only the OSAO and the WDSAO methods. Figure 5 shows that the results of the WDSAO solution

are better than those of OSAO for all N values. The results of the first represent a gain in energy consumption

that varies between 5.55% and 8.33%.

Figure 4. Average energy consumption for

N between 3 and 25

Figure 5. Average energy consumption for N

between 26 and 50

4.2.3. The Average Execution Time

Now, we consider the average execution time in both Figure 6 and Figure 7. The first one illustrates

the execution time comparison for all the three methods while N is between 3 and 25. It clearly shows the

exponential variation of the BFS solution time with the N parameter. Additionally, The OSAO and WDSAO

solutions give a stable execution time that reached for N=25 respectively 0.27ms and 0.91ms for both

methods.

Figure 6. Executuion time average for N

between 3 and 25

Figure 7. Executuion time average for N

between 26 and 50

The second Figure 7 illustrates the execution time comparison for OSAO and WDSAO methods

while N is between 26 and 50. The OSAO curve illustrates a stable running time that starts from 0.28 ms for

N=26 and reaches 0.75 ms for N=50. On the other hand, the WDSAO curve illustrates a near linear running

time that starts from 1.01 ms for N=26 and reaches 3.11 ms for N=50. Accordingly, the performances in

terms of the execution time of the OSAO method are slightly higher than those of the WDSAO method.

Nevertheless, both solutions’ performances are always very very high and more acceptable compared to the

FBS exact solution. This last reaches an execution time of 34862.35 ms for N=25 only, which is

inappropriate for the context of this work.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4908 - 4919

4918

4.3. Discussion

In view of the experiments’ results, in the first experiment we study the effect of the ωT parameter

for our WDSAO solution. Thus, this study revealed that a value for the threshold ωT=0.5 is beneficial for

the energetic performance without any effect on the execution time. On the other hand, a second series of

experiments revealed thet the OSAO and WDSAO heuristic solutions give satisfactory results in terms of

execution time compared to the BFS exact solution which is with exponential time complexity. In addition,

our WDSAO developed solution gives an energy consumption that is comparable and very close to the BFS

exact solution with almost a linear execution time. Moreover, compared to the OSAO method, eventhough

the execution time of our solution is slightly greater, its energetic performace are very close to the exact

solution.

5. CONCLUSION

In this paper, we propose a simulated annealing based heuristic to solve a hard decision problem

that jointly optimizes energy and computational resources for a smart mobile device within a mobile edge-

computing node. The mobile device intends to optimally offload the content of a list of heavy tasks as much

as possible where each task is time-constrained with a proper deadline ti
max. The obtained results show

the performance of the proposed simulated annealing based algorithm. By optimally adjusting the local and

the remote computing frequencies, the proposed implementation shows the effectiveness of our solution.

It brought a real energy efficiency as well as near linear execution time that satisfies the decision’s time

constraints in such edge systems. As a future work, we plan to generalize our study to the multi-user case

while we introduce more relevant parameters, such as network state and wireless communication

interference.

REFERENCES
[1] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile edge computing-based augmented

reality applications,” IEEE Wireless Communications Letters, vol. 6, pp. 398-401, 2017.

[2] T. Francis and M. Madhiajagan, “A Comparison of Cloud Execution Mechanisms: Fog, Edge and Clone Cloud

Computing,” Proceeding of the Electrical Engineering Computer Science and Informatics, vol. 8, pp. 4646-4653,

2018.

[3] H. Chang, et al., “Bringing the cloud to the edge,” 2014 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pp. 346-351, 2014.

[4] L. Pallavi, et al., “ERMO2 algorithm: an energy efficient mobility management in mobile cloud computing system

for 5G heterogeneous networks,” International Journal of Electrical and Computer Engineering, vol. 9, pp. 1957-

1967, 2019.

[5] H. Mora, et al., “Multilayer Architecture Model for Mobile Cloud Computing Paradigm,” Complexity, vol. 2019,

2019.

[6] N. Fernando, et al., “Mobile cloud computing: A survey,” Future generation computer systems, vol. 29, pp. 84-106,

2013.

[7] H. M. Mora, et al., “Flexible framework for real-time embedded systems based on mobile cloud computing

paradigm,” Mobile information systems, vol. 2015, 2015.

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,” IEEE

Communications Surveys & Tutorials, vol. 19, pp. 1628-1656, 2017.

[9] P. Prakash, et al., “Fog Computing: Issues, Challenges and Future Directions,” International Journal of Electrical

and Computer Engineering, vol. 7, pp. 3669, 2017.

[10] J. Wang, et al., “Edge Cloud Offloading Algorithms: Issues, Methods, and Perspectives,” ACM Computing Surveys,

vol. 52, pp. 1-23, 2019.

[11] Y. Jararweh, et al., “Delay-aware power optimization model for mobile edge computing systems,” Personal and

Ubiquitous Computing, vol. 21, pp. 1067-1077, 2017.

[12] M. H. Chen, et al., “Joint offloading and resource allocation for computation and communication in mobile cloud

with computing access point,” presented at the IEEE INFOCOM 2017-IEEE Conference on Computer

Communications, 2017.

[13] H. Li, “Multi-task Offloading and Resource Allocation for Energy-Efficiency in Mobile Edge Computing,” vol. 5,

pp. 5-13, 2018.

[14] J. Liu, et al., “Delay-optimal computation task scheduling for mobile-edge computing systems,” presented at the

2016 IEEE International Symposium on Information Theory (ISIT), 2016.

[15] Y. Wu, et al., “Delay-Minimization Nonorthogonal Multiple Access enabled Multi-User Mobile Edge Computation

Offloading,” IEEE Journal of Selected Topics in Signal Processing, 2019.

[16] Y. Wang, et al., “Cooperative Task Offloading in Three-Tier Mobile Computing Networks: An ADMM

Framework,” IEEE Transactions on Vehicular Technology, vol. 68, pp. 2763-2776, 2019.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient multi-task offloading with energy and computational resources ... (Mohamed El Ghmary)

4919

[17] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet network,” IEEE Communications

Letters, vol. 21, pp. 1481-1484, 2017.

[18] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task allocation in fog computing systems,”

IEEE/ACM Transactions on Networking, vol. 27, pp. 85-97, 2019.

[19] M. H. Chen, et al., “Joint offloading decision and resource allocation for multi-user multi-task mobile cloud,”

presented at the IEEE International Conference on Communications (ICC), 2016.

[20] L. Huang, et al., “Multi-Server Multi-User Multi-Task Computation Offloading for Mobile Edge Computing

Networks,” Sensors, vol. 19, pp. 1446, 2019.

[21] M. Qin, et al., “Power-Constrained Edge Computing with Maximum Processing Capacity for IoT Networks,” IEEE

Internet of Things Journal, 2018.

[22] B. G. Chun, et al., “Clonecloud: elastic execution between mobile device and cloud,” presented at the Proceedings

of the sixth conference on Computer systems, 2011.

[23] Y. Mao, et al., “Dynamic computation offloading for mobile-edge computing with energy harvesting devices,”

IEEE Journal on Selected Areas in Communications, vol. 34, pp. 3590-3605, 2016.

[24] X. Chen, et al., “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM

Transactions on Networking, vol. 24, pp. 2795-2808, 2016.

[25] K. Zhang, et al., “Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks,” IEEE

access, vol. 4, pp. 5896-5907, 2016.

[26] Z. Fan, et al., “Simulated-annealing load balancing for resource allocation in cloud environments,” presented at the

International Conference on Parallel and Distributed Computing, Applications and Technologies, 2013.

[27] L. Chen, et al., “ENGINE: Cost Effective Offloading in Mobile Edge Computing with Fog-Cloud Cooperation,”

arXiv preprint arXiv:1711.01683, pp. 1-11, 2017.

[28] K. Liu, et al., “Multi-device task offloading with time-constraints for energy efficiency in mobile cloud

computing,” Future Generation Computer Systems, vol. 64, pp. 1-14, 2016.

[29] W. Chen, et al., “Multi-user multi-task computation offloading in green mobile edge cloud computing,” IEEE

Transactions on Services Computing, 2018.

