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 This paper proposes a new stochastic metaheuristic optimization algorithm 

which is based on kinematics of projectile motion and called projectile-target 

search (PTS) algorithm. The PTS algorithm employs the envelope of 

projectile trajectory to find the target in the search space. It has 2 types of 

control parameters. The first type is set to give the possibility of the 

algorithm to accelerate convergence process, while the other type is set to 

enhance the possibility to generate new better projectiles for searching 

process. However, both are responsible to find better fitness values in the 

search space. In order to perform its capability to deal with global optimum 

problems, the PTS algorithm is evaluated on six well-known benchmarks and 

their shifted functions with 100 dimensions. Optimization results have 

demonstrated that the PTS algoritm offers very good performances and it is 

very competitive compared to other metaheuristic algorithms.  
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1. INTRODUCTION  

Optimization techniques, especially stochastic nature-inspired metaheuristic algorithms have 

become the important and popular tools to deal with complex high dimensional global optimization problems 

in many real-life applications. The global optimization problems can be multimodal with a huge number of 

local optima and non-differentiable which cannot be solved by using traditional numerical optimization 

methods [1]. Therefore, many metaheuristic optimization algorithms have been proposed to alleviate  

the problems. 

The nature of a stochastic metaheuristic optimization algorithm is employing the random-search 

mechanism to visit different parts of the search space and then approaches as close as possible to global 

optimum point [2, 3]. Important problem of the metaheuristic algorithms is how to increase the probability to 

overcome the local optima and find the better global optimum value.  

In this paper, a new metaheuristhic algorithm is introduced. The proposed algorithm is based on 

kinematics of projectile motion. The projectile is launched from a point at the ground level with a given 

velocity, moved in various directions under a uniform gravity, and landed on a target at a surface. However, 

the proposed projectile-target search (PTS) algorithm does not emphasize on the projectile trajectory that 

launched from an angle. The algorithm tends to utilize the tracking of the envelope of projectile trajectory 

which encloses all possible points in the search space.  The envelope of projectile trajectory could reach 

points in the search space which are out of reach from any projectiles moving with any initial points and 

velocities [4]. The information of the trajectory could be usefull for a projectile to hit a target from its starting 

point. In the proposed PTS algorithm, the beneficial property of the envelope of projectile trajectory is 
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applied to find a target on a linear shape surface. Futhermore, the PTS algorithm has two main control 

parameters in order to accelerate convergence and searching processes and hence, it can find the better global 

optimum value faster than any other optimization algorithms. In order to examine the general performance of 

the proposed algorithm, it is tested on six benchmarks and their shifted functions. The performance is 

compared to other algorithms’ results which have been reported in [5-10]. 

 

 

2. PROJECTILE MODEL 

The projectile is defined to be launched from a ground level (h = 0), with an initial velocity v, and at 

an angle of inclination θ measured with respect to the horizontal as shown in Figure 1. The path function of 

the projectile (y) as a function of horizontal distance (x) is specified as follows: 
 

𝑦(𝑥) = 𝑥. 𝑡𝑎𝑛(𝜃) −
𝑔. 𝑥2

2𝑣2
𝑠𝑒𝑐2(𝜃) (1) 

 

where: g = 9.81 m/s2 

The size and shape of the projectile trajectories vary according to the launch angles at an initial 

velocity v above the horizontal, as seen in Figure 2. These trajectories have an envelope of projectile 

trajectory. The envelope of projectile trajectory (φ) is a path that encloses and intersects all possible projectile 

paths to find its target onto a hill. The shape of the hill surface is defined as the impact function ψ. 

 

 

 
 

Figure 1. The projectile moving path 

 
 

Figure 2. The enveloping parabola path 

 
 

The equation for the envelope of projectile trajectory [4, 11] is determined by 
 

𝜑(𝑥) =
𝑣2

2𝑔
−

𝑔

2𝑣2
𝑥2 (2) 

 

For a continuous impact function ψ(x) on 0 ≤ x <  with ψ (0) = 0, the surface of ψ and the path of φ 

have exactly one point of intersection. It is noted that there exists a unique target for which ψ(x) = φ(x). 

The main goal of the proposed PTS algorithm is to minimize the difference between ψ and φ in 

order to ensure a projectile reach the target precisely. A function γ(x) is then implemented to search the target 

on the impact surface and it is given by 
 

𝛾(𝑥) =  𝜓(𝑥) − 𝜑(𝑥) (3) 

 

 

3. PROJECTILE-TARGET SEARCH ALGORITHM 

The initial parameters of the PTS algorithm are the population size N, the number of variables D, 

the lower bound xmin, the upper bound xmax, and the maximum iteration Imax. The lower and upper bounds 

of variables are expressed by  
 

𝒙𝑚𝑖𝑛𝑗 = [𝑥𝑚𝑖𝑛1 𝑥𝑚𝑖𝑛2
… 𝑥𝑚𝑖𝑛𝐷], 𝒙𝑚𝑎𝑥𝑗 = [𝑥𝑚𝑎𝑥1 𝑥𝑚𝑎𝑥2

… 𝑥𝑚𝑎𝑥𝐷] (4) 
 

The initial projectile population as candidate solutions is randomly generated by assigning random 

values (randj) within [0, 1] to each boundary as follows: 
 

𝒙𝑖,𝑗
(𝐼=1) =  𝒙𝑚𝑖𝑛𝑗 + 𝑟𝑎𝑛𝑑𝑗 . (𝒙𝑚𝑎𝑥𝑗 − 𝒙𝑚𝑖𝑛𝑗), 𝑖 = 1, 2, … , 𝑁;  𝑗 = 1, 2, … , 𝐷   (5) 

v

θ

y(x)

ψ(x)

y(x)

φ(x)
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The target population is randomly created by perturbing a randomly selected projectile with 

the difference of the two other randomly selected projectiles. The target population is generated by 
 

𝒕𝑘,𝑗
(𝐼) =  𝒙𝑎1,𝑗

(𝐼) +  0.5 (𝒙𝑎2,𝑗
(𝐼) − 𝒙𝑎3,𝑗

(𝐼)), 𝑘 = 1, 2, … , 𝑁;  𝑗 = 1, 2, … , 𝐷   (6) 
 

where the indices a1, a2, and a3  {1,2,…,N} are randomly chosen integers and must be different from each 

other and all are also different from the base index.  

Evaluating the fitness values of the projectiles and the targets are carried out by using (7) and (8) as 

follows: 
 

𝑓𝑖
(𝐼) =  𝑓(𝑥𝑖,𝑗

(𝐼)) 
 

(7) 

𝑓𝑘
(𝐼) =  𝑓(𝑡𝑘,𝑗

(𝐼)) (8) 
 

The best projectile xbestj
(I) and its best value fbest

(I) are then selected by comparing the fitness values of 

each xi,j
(I) and ti,j

(I), as follows: 
 

𝑥𝑏𝑒𝑠𝑡𝑗
(𝐼) = { 

𝑥𝑖,𝑗
(𝐼)  𝑖𝑓 𝑚𝑖𝑛(𝑓(𝑥𝑖,𝑗

(𝐼))) ≤ 𝑚𝑖𝑛(𝑓(𝑡𝑘,𝑗
(𝐼)))

𝑡𝑘,𝑗
(𝐼)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

   

 

(9) 

𝑓
𝑏𝑒𝑠𝑡

(𝐼) =  𝑓(𝑥𝑏𝑒𝑠𝑡𝑗
(𝐼)) (10) 

 

where I = 1,2,…, Imax which denotes the subsequent generation created for each iteration. 

The main process of PTS optimization is iterating the projectile in order to reach its best fitness 

value. The projectile search model for converging towards to the target is as follows: 

for i = 1:N 

for j = 1:D 

If rand < 0.5 

𝑥𝑖,𝑗
(𝐼+1) =  𝑥𝑏𝑒𝑠𝑡1,𝑗

(𝐼) −   𝛼 (
𝛾(𝑑𝑖,𝑗

(𝐼))

𝛾′(𝑑𝑖,𝑗
(𝐼))

) 

 

(11) 

Else 

𝑥𝑖,𝑗
(𝐼+1) =  𝑥𝑖,1

(𝐼) +   𝛼 (
𝛾(𝑑𝑖,𝑗

(𝐼))

𝛾′(𝑑𝑖,𝑗
(𝐼))

) 
(12) 

end 

end 

end 

In this PSA optimization, a linear shaped hill with a slope of m is used as the impact function. 

The impact function is  
 

𝜓(𝑥) = 𝑚. 𝑥 (13) 
 

As the impact function has been specified, the function γ(x) could be defined here by 
 

𝛾(𝑥) =  𝑚. 𝑥 −
𝑣2

2𝑔
+

𝑔

2𝑣2
𝑥2 (14) 

 

and 
 

(
𝛾(𝑑𝑖,𝑗

(𝐼))

𝛾′(𝑑𝑖,𝑗
(𝐼))

) = (
𝑚. 𝑑𝑖,𝑗

(𝐼) −
𝑣2

2𝑔
+

𝑔
2𝑣2 . (𝑑𝑖,𝑗

(𝐼))2

𝑚 +
𝑔
𝑣2 . 𝑑𝑖,𝑗

(𝐼)
) (15) 

 

The distance between projectile and target at the current iteration is calculated as follows: 
 

𝑑𝑖,𝑗
(𝐼) = [𝑎𝑏𝑠((𝑡𝑖,𝑗

(𝐼))𝑟 −  (𝑥𝑖,𝑗
(𝐼) )𝑟)]1/𝑠 (16) 
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There are 2 parameters for controlling the distance (d), those are r and s, where (r, s) > 0. 

Other control parameter for (11) and (12) is defined by 
 

𝛼 =  𝑝𝑞  , 𝑝 = (1 −
𝐼

𝐼𝑚𝑎𝑥
) , q > 0 (17) 

 

The new target population (tk,j
(I+1)) is also created in here. Finally, the best projectile for the next 

iteration is  
 

𝑥𝑏𝑒𝑠𝑡𝑗
(𝐼+1) = { 

𝑥𝑖,𝑗
(𝐼+1)  𝑖𝑓 𝑚𝑖𝑛(𝑓(𝑥𝑖,𝑗

(𝐼+1))) ≤ 𝑚𝑖𝑛(𝑓(𝑡𝑘,𝑗
(𝐼+1)))

𝑡𝑘,𝑗
(𝐼+1)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      

   

 

(18) 

𝑓
𝑏𝑒𝑠𝑡

(𝐼+1) =  𝑓(𝑥𝑏𝑒𝑠𝑡𝑗
(𝐼+1)) (19) 

 

The processes are repeated until fbest
(I+1) meets its desired accuracy level (ɛ) or the iteration has 

reached Imax and results in xbestj
(I+1) as the satisfied projectile landing onto the target. 

 

 

4. RESULTS AND ANALYSIS  

There are six benchmarks and their shifted functions used to evaluate performance of the proposed 

PTS algorithm. The mathematical formulation of the benchmark functions are given in Table 1. In order to 

verify the performance of the proposed PTS algorithm, it is compared to other algorithms which have been 

reported in [5-10]. To carry out the comparison of algorithm performance, the approach using is to compare 

the accuracies for a fixed number of iterations. In the experiment, 100 dimensions (D = 100), 30 search 

agents (N = 30), and 1000 iterations (Imax = 1000) are implemented for each algorithm. The statistical results 

after 30 independent experiments are evaluated. The mean and standard deviation (SD) values of the best 

solutions from the last iterations are put as the metrics to assess the performance of algorithms. 
 

 

Table 1. Benchmark functions 

Function Formula 
Test range  

(x) 

Shift 

position (o) 

Global optimum 

x* F(x*) 

Sphere 𝐹1(x) = ∑ [𝑥𝑖
2𝐷

𝑖=1 ]   [-100, 100]D - [0, 0, …, 0] 0 

Rosenbrock 𝐹2(x) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2𝐷−1

𝑖=1 ]  [-30, 30]D - [1, 1, …, 1] 0 

Schwefel 𝐹3(x) = − ∑ [𝑥𝑖sin (√|𝑥𝑖|
𝐷
𝑖=1 )] [-500, 500]D - 

[s, s, …, s] 

S = 420.968746 
-41898.2887 

Rastrigin 𝐹4(x) = ∑ [𝑥𝑖
2𝐷

𝑖=1 − 10 cos(2𝜋𝑥𝑖) + 10]  [-5.12, 5.12]D - [0, 0, …, 0] 0 

Ackley 

𝐹5(x) = 𝑒1 + 20 −

20. exp (−
1

5
√

1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) −

exp (
1

𝐷
∑ cos (2𝜋𝑥𝑖

𝐷
𝑖=1 ))  

[-32, 32]D - [0, 0, …, 0] 0 

Griewank 𝐹6(x) = 1 +
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝐷

𝑖=1   [-600. 600]D - [0, 0, …, 0] 0 

Shifted 

Sphere 
𝐹7(x) = ∑ [𝑧𝑖

2𝐷
𝑖=1 ], z = x - o   [-100, 100]D [-30,-30, 

…, -30] 

[-30, -30, …, -

30] 
0 

Shifted 

Rosenbrock 
𝐹8(x) = ∑ [100(𝑧𝑖+1 − 𝑧𝑖

2)2 + (𝑧𝑖 − 1)2𝐷−1
𝑖=1 ],  

z = x - o 
[-30, 30]D [-15,-15, 

…, -15] 

[-14, -14, …, -

14] 
0 

Shifted 

Schwefel 
𝐹9(x) = − ∑ [𝑧𝑖sin (√|𝑧𝑖|

𝐷
𝑖=1 )], z = x - o [-500, 500]D [-300, -300, 

…, -300] 

[s, s, …, s] 

S = 120.968746 
-41898.2887 

Shifted 

Rastrigin 
𝐹10(x) = ∑ [𝑧𝑖

2𝐷
𝑖=1 − 10 cos(2𝜋𝑧𝑖) + 10],   

z = x - o 
[-5.12, 5.12]D [-2, -2, …, 

-2] 
[-2, -2, …, -2] 0 

Shifted 

Ackley 

𝐹11(x) = 𝑒1 + 20 −

20. exp (−
1

5
√

1

𝐷
∑ 𝑧𝑖

2𝐷
𝑖=1 ) −

exp (
1

𝐷
∑ cos (2𝜋𝑧𝑖

𝐷
𝑖=1 )),  z = x - o 

[-32, 32]D [-5, -5, …, 

-5] 
[-5, -5, …, -5] 0 

Shifted 

Griewank 
𝐹12(x) = 1 +

1

4000
∑ 𝑧𝑖

2𝐷
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑧𝑖

√𝑖
)𝐷

𝑖=1 , 

 z = x - o 
[-600. 600]D [-400, -400, 

…, -400] 

(-400, -400, …, 

-400) 
0 

 

 

The parameters needed to drive the PTS algorithm are: gravitational acceleration (g), initial velocity 

of projectile (v), slope of target’s surface (m), q, r, and s. Gravitational acceleration is a constant of g = 9.81. 

The initial velocity of projectile, the slope of the target’s surface, and q give important contributions to 

the convergence processes, while r and s are controlled the searching process of the PTS algorithm. 
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 To facilitate the analysis, selected functions are used as experiment objects. Figure 3 describes 

the influence of v on convergence process of the Ackley function under fixed m condition, while Figure 4 is 

its performance with variations of m at v fixed condition. As seen in Figure 3, v has a strong effect to 

convergence speed of the PTS algorithm. The convergence process runs relative slowly when v has large 

values. On the other hand, m has slightly effect to the convergence speed. However, the final fitness values of 

the searching process vary significantly with both v and m as seen in Table 2.  

Other control parameter of the PTS algorithm is q, as shown in Figure 5. Increasing the value of q 

will speed up the convergence process of the PTS algorithm. This parameter also gives very high 

contribution to the best final fitness value which could be reached by the algorithm. Table 3 presents the best 

final fitness value of Sphere function according to its q values. However, not all problems behave the same 

way as Ackley and Sphere functions. For example, Schwefel function will suffer from stagnation condition 

and lose its convergence to the global optimum if q is set to a high value, as shown in Figure 6. 

The parameter q speeds up convergence process for all test functions, but Schwefel function needs relative 

small speed in order to go to the global optimum path. 
 

 

 
 

Figure 3. Fitness value curves with variations of v 

 
 

Figure 4. Fitness value curves with variations of m 

 

 

Table 2. Influence of v and m upon the best final fitness value 
Performance of the Ackley function with variations of m at v 

m  = 10      
v 0.1 1 5 20 50 

  2.66E-15 5.82E-13 3.76E-12 4.95E-11 4.13E-09 

v  =  0.1 

     m 0.1 1 5 20 50 

  1.48E-13 3.82E-14 2.66E-15 2.66E-15 2.66E-15 

 

 

 
 

Figure 5. Fitness value curves with variations of q 

 
 

Figure 6. Fitness value curves with variations of q 

for Schwefel function 
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Table 3. Influence of q upon the best final fitness value 

q 0.1 1 5 10 20 30 40 50 

  0.832749 1.37E-08 1.94E-28 2.85E-47 3.76E-69 8.18E-90 1.17E-102 1.14E-128 

 

 

It has been mentioned that parameters v, m, and q influence to the convergence speed and the closest 

optimum value that could be reached by the PTS searching processes. However, the convergence towards 

global optimum will be failed if the projectiles are trapped into local optima in the search space. Furthermore, 

the projectiles generated by iteration processes are also dependent to distance control parameters: r and s. 

These parameters are very important in order to enhance probability of the new projectiles to avoid from 

local optima.  

Comparisons of algorithms’ performances are summarized in Table 4 and Table 5. The obtain 

results for benchmarks F1-F6 are shown in Table 4. As summarized in Table 4, PTS outperforms hybrid 

firefly algorithm (HFA), velocity-based artificial bee colony algorithm (VABC), alternative differential 

evolution algorithm (ADE) and opposition-based magnetic optimization algorithm (FMOA), excluding 

modified monkey algorithm (MMA), on F1. Once again, PTS has the best performance on F2 and F3. 

Investigation on F4 shows that ADE is the best, but PTS and VABC are almost as good. On function F5, PTS 

is the best, but MMA, FA, and ADE perform almost as well as PTS. The comparative results also 

demonstrate that PTS, firefly algorithm (FA), and ADE have the best performances on F6. Experiments on F7 

and F12 show that PTS could find their best global optima points as seen in Table 5. For shifted functions 

F7-F12, PTS performs much better than moth-flame optimization algorithm (MFO) [6]. 

 

 

 

Table 4. Algorithm performance metrics for basic functions, D = 100 

F 
PTS MMA [6] HFA/FA [7] VABC [8] ADE [9] FMOA [10] 

MeanSD MeanSD MeanSD MeanSD MeanSD MeanSD 

F1 

9.85E-177 

0.00E+00 

0.00E+0 

0.00E+00 

2.64E-171 

0.00E+00 

1.05E-25 

2.34E-25 

6.37E-45 

1.12E-44 

1.67E-01 

8.00E-02 

F2 

2.62E-19 

4.77E-19 - 0.077152 

0.16183 

1.60E-11 

2.62E-11 

8.90E+01 

3.46E+01 

9.80E+01 

3.21E-03 

F3 

-39212.93 

4044.13 
- 

-12439 

133.24 
- - 

-6.17E+03 

2.42E+03 

F4 

2.31E-15 

2.39E-15 - 3.39E-08 

7.29E-09 

3.34E-14 

7.47E-14 

0.00E+00 

0.00E+00 

8.74E-02 

4.93E-02 

F5 

4.03E-15 

2.07E-15 

4.4E-15 

0.00E+00 

1.25E-14 

3.36E-15 

1.50E-05 

3.33E-05 

6.21E-15 

0.00E+00 

6.58E-02 

1.34E-02 

F6 

0.00E+00 

0.00E+00 
- 

0.00E+0 

0.00E+00 

 -100 

0.00E+00 

0.00E+00 

0.00E+00 

1.15E+00 

7.98E-02 

 

 

Table 5. Algorithm performance metrics for shifted functions, D = 100 

Function 
PTS MFO [11] 

Mean SD Mean SD 

F7 0.00E+00 0.00E+00 0.000117 0.00015 

F8 3.214048E-22 6.740477E-22 139.1487 120.2607 

F9 -42600.949577 1473.517398 -8496.78 725.8737 

F10 1.928150E-06 1.222059E-06 84.60009 16.16658 

F11 1.170795E-07 9.668957E-08 1.260383 0.72956 

F12 0.00E+00 0.00E+00 0.01908 0.021732 

 

 

5. CONCLUSION 

From experiments on selected well-known benchmarks and their shifted functions, it has been 

demonstrated that PTS algorithm is an effective optimization algorithm to deal with high dimensions global 

optimization problems. It is also proven to be a very competitive algorithm compared to other well-known 

metaheuristic algorithms 
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