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 Optimal power generation along the cascaded Kainji-Jebba hydroelectric 

power system had been very difficult to achieve. The reservoirs operating 

heads are being affected by possible variation in impoundments upstream, 

stochastic factors that are weather-related, availability of the turbo-alternators 

and power generated at any time. Proposed in this paper, is an algorithm  

for solving the optimal release of water on the cascaded hydropower  

system based on steepest descent method. The uniqueness of this work is  

the conversion of the infinite dimensional control problem to a finite one,  

the introduction of clever techniques for choosing the steepest descent step 

size in each iteration and the nonlinear penalty embedded in the procedure. 

The control algorithm was implemented in an Excel VBA® environment to 

solve the formulated Lagrange problem within an accuracy of 0.03%. It is 

recommended for use in system studies and control design for the optimal 

power generation in the cascaded hydropower system. 
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1. INTRODUCTION 

Hydropower generation in Nigeria is currently provided at three major locations [1]. Two of these 

stations are located on the River Niger, operated in cascade. They are the Kainji hydroelectric power station 

(KHEPS) and the Jebba hydroelectric power station (JHEPS). They are the Kainji hydroelectric power station 

(KHEPS) and the Jebba hydroelectric power station (JHEPS). The KHEPS which is located at 09051′45′′𝑁,
04036′48′′𝐸 with an install capacity of 760 MW form eight units of turboalternators. The JHEPS is located 

103 km downstream of the KHEPS on  09008′08′′𝑁, 04047′16′′𝐸. It was commissioned on April 13, 1985, 

with a rated capacity of 578.4 MW from six (6) fixed blade [2, 3]. 

The Jebba Reservoir depends on discharge and spill from the KHEPS, this arrangement imposes  

the need for better water management if the units at Jebba are to operate efficiently all the year. The operators 

of the JHEPS face serious challenges that involve balancing conflicting needs involving the operational 

safety of the stations and the demand requirements from an energy-starved electricity grid [2, 4]. Practical 

observation of operations reveals the serious challenges confronting the JHEPS operators as they try to 

perform the functions of a regulator that was omitted in the fixed vane designs of the JHEPS turbo  

alternators [5, 6]. These operational problems are present in each HEPS in one form or the other, and it is 

only because of the robust nature of the turbo alternators that major catastrophes have not yet occurred [7]. 
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Nonetheless, there is evidence of such problems lurking in the possibilities when one observes that 

one turbo alternator catastrophically failed at JHEPS and another at KHEPS. Both cases share the feature that 

no local regulator was included in the initial design.  For example, the use of Francis Turbines at a very low 

head scheme as the KHEPS posed especial problems that meant poor performance and ultimately 

catastrophic failure. In the JHEPS case, the narrow operating head demanded by the fixed vane Kaplan 

turbines posed a very serious challenge to the operators [8]. 

The latter problem, however, lends itself to the application of optimal control methods. Indeed, 

this is the problem addressed in this research. It is posed as an optimal control problem to determine 

the inflow into the JHEPS reservoir so that the operating head falls within a specified range [9, 10]. 

This work considered the determination of optimal control law for the release of water from KHEPS such 

that the reservoir head at JHEPS remains relatively constant. The optimal control algorithm is to be 

incorporated into a real-time embedded controller.  

Unfortunately, the design of such a system that ensures the optimal use of hydropower resources to 

maximize power generation within a cascaded system is challenging. The problem must be properly posed in 

a standard form before it can be solved [11, 12]. Solutions of optimal control problems are often analytically 

intractable and computationally complex [9, 13].  

Due to the complexity of systems and applications, analytical methods are rarely used to compute 

the solutions to optimal control problems. Numerical solutions are mostly used in determining optimal 

control [14, 15]. In most cases, the numerical methods are highly sophisticated, and they do task  

computers [16, 17]. There have been numerous numerical procedures developed over the years, these 

procedures can be classified into two categories, the direct methods and indirect methods [18]. The direct 

method of computing optimal control involves the discretization of the state and the control in such a way 

that the problem is converted to a nonlinear optimization problem or nonlinear programming problem [17, 

19, 20]. The indirect method applies calculus of variation to set up necessary conditions that must be satisfied 

by the optimal control. 

 

 

2. STEEPEST DESCENT SOLUTION OF AN OPTIMAL CONTROL PROBLEM 

The steepest descent algorithm is generally used for determining the minimum of a differentiable 

function and hence, employed as a direct method of solving optimal control problem in this work [21-23]. 

Given a performance index 𝐽(ℎ, 𝑢) that is differentiable, the steepest descent direction is the path 

opposite ∇𝐽(𝑢). The search starts at a differentiable point 𝑢𝑘=0(𝑡) and decreases after each iteration until it 

reaches the minimum point with 𝑢∗(𝑡), such that: 

 

𝛻𝐽∗ =
∂𝐽∗      

𝜕𝑢∗(𝑡)
≈ 0 (1) 

 

Steepest descent algorithm is very fast in moving a solution from any local point within the feasible 

region to the vicinity of the point of convergence [21, 24, 25]. If a suitable method of solution is unknown, 

steepest descent is guaranteed to iterate towards the minimum point but characterised by slow convergence. 

Numerous researches on this method have been on the determination of appropriate step size and means of 

speeding it up [26]. 

 

2.1. Statement of the problem  

The optimal control solved in this work is the determination of the control signal 𝑢(𝑡) (generated by 

the control System) to be released from KHEPS (actuator) that will force the operating head ℎ(𝑡) of JHEPS 

(Controlled Plant) to follow a predefined trajectory within a given time (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡0 → 𝑓𝑖𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑓).  

The system is the dynamical model for the JHEPS operating head described by the nonlinear 

differential head 3.1 [8, 27]: 

 
𝑑ℎ(𝑡)

𝑑𝑡
= − 𝑛

𝐴2

𝐴1
√2𝑔  ℎ

1
2⁄ (𝑡) +  

1

𝐴1
(𝑄𝐽(𝑡) − 𝑄𝐿(𝑡) − 𝑄𝑠(𝑡)) (2) 

 

𝑄𝐽 = 𝑞𝑘 + 𝑄𝑠𝑘 + 𝑄𝐶𝐽 (3) 

 

𝑢(𝑡) = 𝑄𝐽(𝑡) − 𝑄𝐿(𝑡) − 𝑄𝑠(𝑡) (4) 

 

Hence, the system model can be written in d standard form as; 
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ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡);  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 (5) 

 

where: 

𝑡 : time 

ℎ : Operating head and the state variable 

𝑢  : Control signal 

𝑛 : Number of operating units (integer number 1 to 6) 

𝐴1 : Effective Surface area of the reservoir 

𝐴2 : Effective area of the scroll casing 

𝑔 : Acceleration due to gravity 

𝑄𝐽 : Inflow into JHEPS 

𝑄𝐿 : Evaporation loss on JHEPS 

𝑄𝑠 : Spillway discharge from JHEPS 

𝑞𝑘 : Total discharge from KHEPS tailrace 

𝑄𝑠𝑘 : Spillway discharge from KHEPS 

𝑄𝐶𝐽 : Inflow from catchment area between KHEPS and JHEPS 

𝑓 : Nonlinear function 

 

2.2. Performance index ‘J’ 

Performance indices can be selected to reflect the aspect of the system’s behaviour that is considered 

as vital. As a result, a performance index which accommodates and appropriately penalizes deviation from  

a specified head and ensures that the control does not require values outside the capability of KHEPS was 

selected. A quadratic performance index was selected consisting of the integral of the square error from  

the desired operational head and the square deviation from the maximum discharge possible. Given  

a performance index 𝐽(ℎ, 𝑢, 𝑡) that is differentiable: 

 

𝐼 =  min 𝐽 = 𝑚𝑖𝑛 ∫ {𝐾ℎ(ℎ(𝑡) − ℎ(𝑇))
2

}
𝑡𝑓

𝑡0
𝑑𝑡 (6) 

 

Subject to the system constraints: 

 

ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡)  ;  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓  

 

ℎ(𝑡0) =  ℎ0 (7) 

 

ℎ(𝑡𝑓) = ℎ(𝑇) (8) 

 

Nonlinear penalties on : [𝑢𝑚𝑖𝑛(𝑡), 𝑢𝑚𝑎𝑥(𝑡)], 
 

where ℎ(𝑇) represents the desired final value for the state and  𝑲𝒉 is a positive weighing scalar constant.  

 

2.3. Solution of optimal control using steepest descent algorithm  

A solution of the optimal control using steepest descent approach was earlier reviewed. The steepest 

descent direction is the path opposite ∇𝐽(𝑢). The search starts at a differentiable point 𝑢𝑘(𝑡) and decreases 

after each iteration until it reaches the minimum point 𝑢∗(𝑡). Where: 

 

𝛻𝐽∗ =
∂𝐽∗      

𝜕𝑢∗(𝑡)
≈ 0 (9) 

 

if  𝒛( 𝑢𝑘) is a unit vector along the increasing gradient, 

 

𝒛(𝑈(𝑡)
𝑘 ) =   

[
𝜕𝐽𝑘      

𝜕𝑈𝑘(𝑡)
]

𝑇

‖
𝜕𝐽𝑘      

𝜕𝑈𝑘(𝑡)
‖
 (10) 

 

then, moving in the direction  −𝑧( 𝑈𝑘), 
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 𝑈𝑘+1(𝑡) =  𝑈𝑘(𝑡) −  𝜓𝑘𝒛(𝑈𝑘) (11) 

 

𝜓𝑘 is the optimum steepest descent step size. An optimum value of 𝜓𝑘 must be determined because 

a larger value of 𝜓𝑘 results in the local minimum of 𝐽 being overshot. A smaller value for 𝜓𝑘 will require 

much time and iterations for the search. Hence, 𝜓𝑘 must be determined such as to move towards  

the minimum at the smallest computational time, this is another optimization. As shown in (12) gives  

an approximate end of the search in the present direction: 

 

𝑢𝑘+1(𝑡) =  𝑢𝑘(𝑡) −  𝜓(𝑚𝑖𝑛)
𝑘

𝜕𝐽𝑘      

𝜕𝑢𝑘(𝑡)

‖
𝜕𝐽𝑘      

𝜕𝑢𝑘(𝑡)
‖
 (12) 

 

An innovative approach to finding the optimum 𝜓𝑘 is by using the quadratic approach. 

 

𝐽(𝜓) = 𝒂 + 𝒃𝜓 + 𝒄𝜓2 (13) 

 
𝑑𝐽         

𝑑𝜓(𝑚𝑖𝑛)
𝑘 = 2𝒄𝜓 + 𝐛 = 0 (14) 

 

𝜓(𝑚𝑖𝑛)
𝑘 =  −

𝑏

2𝑐
 (15) 

 

Hence, 

 

[𝑈𝑘+1(𝑡)]𝑇 =  [𝑈𝑘(𝑡)]𝑇 −  𝜓(𝑚𝑖𝑛)
𝑘

[
𝜕𝐽𝑘    

𝜕𝑢1
𝑘(𝑡)

,     
𝜕𝐽𝑘     

𝜕𝑢2
𝑘(𝑡)

,    
𝜕𝐽𝑘    

𝜕𝑢3
𝑘(𝑡)

,   
𝜕𝐽𝑘    

𝜕𝑢4
𝑘(𝑡)

]

𝑇

√(
𝜕𝐽𝑘     

𝜕𝑢1
𝑘(𝑡)

)

2

 + (
𝜕𝐽𝑘     

𝜕𝑢2
𝑘(𝑡)

)

2

+(
𝜕𝐽𝑘    

𝜕𝑢3
𝑘(𝑡)

)

2

+(
𝜕𝐽𝑘     

𝜕𝑢4
𝑘(𝑡)

)

2

 

 (16) 

 

The computation was carried out numerically in an EXCEL VBA® programming environment.  

The Adams-moulton numerical integrator with steepest descent technique was employed in solving  

the system model and the computation of controls. 

 

2.4. Algorithm for the numerical solution of the optimal control using the steepest descent algorithm 

Set up: Declare a control vector 𝑈(𝑘)(𝑡) by using a finite partition of the time interval [𝑡0, 𝑡𝑓]. 

 

𝜋[𝑡0, 𝑡𝑓] = 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡𝑓 

 

𝑈(𝑘)(𝑡) = [𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡), 𝑢4

(𝑘)(𝑡)]𝑇 

 

Step 1:  Let 𝑘 = 0 

Set the initial condition ℎ(𝑘=0)(𝑡) = ℎ0  

Guess values for 𝑈(𝑘=0)(𝑡) from 𝑡0 →  𝑡𝑓. 

Step 2:  Numerically integrate 𝑓(ℎ(𝑡), 𝑢(𝑡), 𝑡) from  𝑡0 →  𝑡𝑓 to obtain ℎ(𝑘)(𝑡). The numerical integration is 

carried out using an Adams–Moulton technique with Adams–Bashforth as predictor and Runge-Kutta 

for starting. 

Step 3:  Compute the performance index 𝐽(𝑘) 

 

 𝐽(𝑘) = 𝐽(𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡), 𝑢4

(𝑘)(𝑡))  

 

The Trapezoidal rule was employed in this computation 

Step 4: Select a perturbation value  ∆𝑢 and compute 𝐽𝑚
(𝑘)

;    𝑚 = 1, 2, 3, 4 

 

 𝐽1
(𝑘)

= 𝐽 (𝑢1
(𝑘)(𝑡) + ∆𝑢, 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡),  𝑢4

(𝑘)(𝑡)) 

 

 𝐽2
(𝑘)

= 𝐽 (𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡) + ∆𝑢,  𝑢3
(𝑘)(𝑡), 𝑢4

(𝑘)(𝑡)) 
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 𝐽3
(𝑘)

= 𝐽(𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡) + ∆𝑢, 𝑢4

(𝑘)(𝑡)) 

 

 𝐽4
(𝑘)

= 𝐽(𝑢1
(𝑘)(𝑡), 𝑢2

(𝑘)(𝑡), 𝑢3
(𝑘)(𝑡),  𝑢4

(𝑘)(𝑡) + ∆𝑢) 

 

Step 5: Compute the approximate gradient vector  𝛻𝐽. 

 

 𝛻𝐽 =
𝜕𝐽𝑚

𝑘

𝜕𝑢𝑚
≈

𝐽𝑘−𝐽𝑚
𝑘

∆𝑢
;    𝑚 = 1, 2, 3, 4 

 

Step 6: Compute the norm of the gradient ‖𝛻𝐽‖. 
 

 ‖
𝜕𝐽(𝑘)         

𝜕𝑈(𝑘) (𝑡))
‖ =  √ (

𝜕𝐽(𝑘)

𝜕𝑢1
(𝑘)

(𝑡)
)

2

+ (
𝜕𝐽(𝑘)

𝜕𝑢2
(𝑘)

(𝑡)
)

2

+ (
𝜕𝐽(𝑘)

𝜕𝑢3
(𝑘)

(𝑡)
)

2

+ (
𝜕𝐽(𝑘)

𝜕𝑢4
(𝑘)

(𝑡)
)

2

 

 

Step 7: Compute the unit vector 𝑧(𝑈(𝑘)(𝑡)) 

 

 z (𝑈(𝑘)(𝑡)) =
[

𝜕𝐽(𝑘)         

𝜕𝑈(𝑘) (𝑡))
]

𝑇

‖
𝜕𝐽(𝑘)         

𝜕𝑈(𝑘)(𝑡))
‖

 

 

Step 8: Determine the optimum step  𝜓𝑚𝑖𝑛
(𝑘)

 

Select a set of three Fibonacci numbers  𝜓1, 𝜓2 𝑎𝑛𝑑  𝜓3 such as to obtain 

 

𝑈ψ1

(𝑘+1)(𝑡) = 𝑈(𝑘)(𝑡) − ψ1
(𝑘)

z (𝑈(𝑘)(𝑡))  𝑎𝑛𝑑   𝐽ψ1

(𝑘)
  

 

𝑈ψ2

(𝑘+1)(𝑡) = 𝑈(𝑘)(𝑡) − ψ2
(𝑘)

z (𝑈(𝑘)(𝑡))  𝑎𝑛𝑑   𝐽ψ2

(𝑘)
  

 

𝑈ψ3

(𝑘+1)(𝑡) = 𝑈(𝑘)(𝑡) − ψ3
(𝑘)

z (𝑈(𝑘)(𝑡))  𝑎𝑛𝑑   𝐽ψ3

(𝑘)
  

 

Step 9: Solve for the constants 𝑏 and 𝑐 

 

 [
𝑏
𝑐

] = [
(ψ1 − ψ2) (ψ1

2 − ψ2
2)

(ψ2 − ψ3) (ψ2
2 − ψ3

2)
]

−1

[
(𝐽(ψ1) − 𝐽(ψ2))

(𝐽(ψ2) − 𝐽(ψ3))
] 

 

Step 10: Compute 𝜓(𝑚𝑖𝑛) 

 

 ψ(𝑚𝑛)
(𝑘)

= −
𝑏

2𝑐
 

 

Step 11: Compute the control vector 

 

 [𝑈(𝑘+1)(𝑡)]
𝑇

= [𝑈(𝑘)(𝑡)]
𝑇

− ψ(𝑚𝑛)
(𝑘)

[
𝜕𝐽(𝑘)

𝜕𝑢1
(𝑘)

(𝑡)
,   

𝜕𝐽(𝑘)

𝜕𝑢2
(𝑘)

(𝑡)
,   

𝜕𝐽(𝑘)

𝜕𝑢3
(𝑘)

(𝑡)
,   

𝜕𝐽(𝑘)

𝜕𝑢4
(𝑘)

(𝑡)
]

𝑇

√(
𝜕𝐽(𝑘)

𝜕𝑢1
(𝑘)

(𝑡)
)

2

+(
𝜕𝐽(𝑘)

𝜕𝑢2
(𝑘)

(𝑡)
)

2

+(
𝜕𝐽(𝑘)

𝜕𝑢3
(𝑘)

(𝑡)
)

2

+(
𝜕𝐽(𝑘)

𝜕𝑢4
(𝑘)

(𝑡)
)

2
 

 

Step 12: Check if    ‖∇𝐽(𝑢(𝑘+1)‖ − ‖∇𝐽(𝑢(𝑘)‖ ≤ 10−𝑛  and   
𝜕𝐽∗

𝜕𝑈∗ ≈ 0,  where n is a positive constant.  

If this is true, then  𝑢∗(𝑡) = 𝑢(𝑘+1)(𝑡) and output ℎ∗(𝑡) 

else  
let 𝑘 = 𝑘 + 1, 𝑢(𝑘)(𝑡) = 𝑢(𝑘+1)(𝑡) and return to step 2 
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3. RESULTS AND ANALYSIS 

The results obtained from the computation of optimal control using the steepest descent algorithm 

are presented in case 1 to case 5. A notation is used for specifying operating conditions under a case being 

considered, the format is as follows: (number of machines, starting head (m), number of days, penalty). 

- Case 1: (5, 25.8, 1, 𝑈𝑛𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 

Applying the stated operating conditions into the steepest descent algorithm and assuming  

a convergence criterion of 10−5 for the gradient led to convergence after 15 iterations with ℎ(𝑡) trajectories 

as shown in Figure 1. The trajectories exhibit some overshoot because the interval of 6 hrs used to specify  

the controls prevent the adjustment of the control with the precision that would guarantee the desired terminal 

value nearly precisely. It is evident that operators using protocols based on this result will be able to more 

precisely control and manage their plants. The results demonstrate the use of the optimal control approach 

and provide dependable methods for operations with a negligible deviation of 0.03% of the optimum head 

ℎ∗(𝑡𝑓)  from the set value ℎ(𝑇).  

Figure 2 presents the control that is required to produce the needed head trajectory of Figure 1.  

The fifteenth iterations produced the desired optimal control. The control law starts with a high inflow in  

the first 6 hours of the day (𝑢1) and reduces to the minimum value in the second 6 hours of the day (𝑢2).  

The control increases lightly in the remaining 12 hours to move the head to the optimum level.  

The input parameters are: ℎ(0) = 25.8 𝑚, ℎ(𝑇) = 26.1 𝑚, 𝑢1(0) = 𝑢2(0) = 𝑢3(0) = 𝑢4(0) = 1000 𝑚3 𝑠⁄ . 

This generated an output with: 𝑁𝑜 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 15, ℎ∗(𝑡𝑓) = 26.10869 𝑚, 𝑢1
∗(𝑡) = 7127.522 𝑚3 𝑠⁄ ,

𝑢2
∗(𝑡) = 470.5617 𝑚3 𝑠⁄ , 𝑢3

∗(𝑡) = 1626.928 𝑚3 𝑠⁄ , 𝑢4
∗(𝑡) = 1714.475 𝑚3 𝑠⁄ , 𝐼 (𝑚𝑖𝑛 𝐽) = 501.4565,

‖𝛻𝐽‖ = 0.042747 𝑎𝑛𝑑 𝜓(𝑚𝑖𝑛) = 0.0053628. 
 

 

  
 

Figure 1. Reservoir head versus time (case 1) 

 

Figure 2. Optimum control (case 1) 

 

 

Plots showing the performance and characteristics of the steepest descent algorithm are shown in 

Figures 3 to 6. The plot in Figure 3 presents the successive iterations determined by using a unidirectional 

search along the descent on the gradient vector to the local minimum. A peculiar feature of this algorithm can 

be observed by studying 𝑢1(𝑡) 𝑎𝑛𝑑  𝑢2(𝑡). While 𝑢1(𝑡) kept increasing after every iteration, 𝑢2(𝑡) only 

increases for the first two iterations and it decreases till the allowable tolerance level. 

A necessary condition for a control to be optimum is that the performance index at the last iteration 

must be minimum. This can be observed in Figure 4 that the performance index keeps decreasing till the last 

iteration. If the curve differs from this expected behaviour, then the control is not optimum, and  

the trajectories may not be as seen in Figure 1. It can be observed that the first three iterations reduce  

the performance index greatly, this is a unique characteristic of steepest descent method. 

Figures 5 and 6 show the variation of the norm of gradient and the steepest descent steps size.  

The stopping criteria in the algorithm are that the norm of gradient must be approximately zero and  

the steepest descent step size should also be very small and insignificant. It is only then that the control can 

be assumed to be optimum. As could be seen during the implementation, the gradient attains the lowest value 

and the step size became so small that the changes computed were within the error of computation. 

This means that the head in Figure 1 and control in Figure 2 are optimum. 
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Figure 3. Control input versus iteration (case 1) 

 

 

 

Figure 4. Performance index versus iteration (case 1) 

  
 

Figure 5. Norm of gradient versus iteration 

 

Figure 6. Steepest descent steps versus iteration 

 

 

- Case 2: (5, 25.8, 1, 𝑢𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑢𝑚𝑎𝑥 = 3000 𝑚3 𝑠⁄ ) 

It is possible to modify the problem such that the control is penalized. The penalty is to impose  

a maximum and minimum value on the control. The control is not allowing to be negative or exceed a value. 

Different simulation for penalized optimal controls is presented in cases 2 and 3. Figures 7 and 8 presents  

the results of the case (5, 25.8, 1, 𝑢𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑢𝑚𝑎𝑥 = 3000 𝑚3 𝑠⁄  . The effect is that the overshoot on 

the state trajectory is removed, and it takes more iterations.  The optimum control looks more appropriate 

than the results produced with cases where the control is Unpenalized. 

 

 

  
 

Figure 7. Reservoir head versus time (case 2) 

 

Figure 8. Optimum control (case 2) 
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The input parameters are: (0) = 25.8 𝑚, ℎ(𝑇) = 26.1 𝑚, 𝑢1(0) = 𝑢2(0) = 𝑢3(0) = 𝑢4(0) = 1000 𝑚3 𝑠⁄ . 

This generated an output with: 𝑁𝑜 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 54, ℎ∗(𝑡𝑓) = 26.0905 𝑚,  𝑢1
∗(𝑡) = 3000 𝑚3 𝑠⁄ , 𝑢2

∗(𝑡) = 3000 𝑚3 𝑠⁄ ,

𝑢3
∗(𝑡) = 3000 𝑚3 𝑠⁄  𝑎𝑛𝑑  𝑢4

∗(𝑡) = 1148.74767 𝑚3 𝑠⁄ . 

Case 3: (3, 25.8, 1, 𝑢𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑢𝑚𝑎𝑥 = 3000 𝑚3 𝑠⁄ ) 

The results in Figures 9 and 10 are for the case with three operating machines while 
 𝑢𝑚𝑖𝑛 > 0 𝑎𝑛𝑑 𝑢𝑚𝑎𝑥 = 3000 𝑚3 𝑠⁄ . The algorithm converges after one iteration and the optimal control reduces 

gradually after every quarter of time. The input parameters are: ℎ(0) = 25.8 𝑚, ℎ(𝑇) = 26.1 𝑚, 𝑢1(0) = 𝑢2(0) =

𝑢3(0) = 𝑢4(0) = 1000 𝑚3 𝑠⁄ . This generated an output with: 𝑁𝑜 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 2, ℎ∗(𝑡𝑓) = 26.17741 𝑚,  𝑢1
∗(𝑡) =

 3000  𝑚3 𝑠⁄ , 𝑢2
∗(𝑡)  = 2697.7157 𝑚3 𝑠⁄ , 𝑢3

∗(𝑡) =  1996.9178 𝑚3 𝑠⁄  𝑎𝑛𝑑  𝑢4
∗(𝑡) = 1312.082816 𝑚3 𝑠⁄ . 

 

 

  
 

Figure 9. Reservoir head versus time (case 3) 

 

Figure 10. Optimum control (case 3) 

 

 

4. CONCLUSION 

The work has considered the development of an optimal control procedure for the cascaded KHEPS 

and JHEPS. There can be numerous optimal control problem, but the problem solved is the Lagrange 

problem for the optimal release for inflows into JHEPs such that its operating head remains relatively 

constant at 26.1 m. The control algorithm is based on the steepest descent, a method that ensure  

the determination of a local optimum for a convex problem. The quadratic line was employed for  

the determination of optimum steepest descent step size. When the control is penalized, the algorithm 

converges faster. The control algorithm was implemented in an Excel VBA® environment to ensure that  

the optimum head falls within 0.03%. It is recommended for use in system studies, decision making and 

control design for the optimal power generation in the cascaded hydropower system 
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