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 Accelerometers are widely used in several mechanisms of high sensitivity. 

They are employed for example in tilt-control in spacecraft,  

inertial navigation, oil exploration, seismic monitoring, etc. In order to 

improve the sensitivity of the measurements, implementation of 

Displacement-amplifying Compliant Mechanisms (DaCMs) in a capacitive 

accelerometer have been reported in the literature. In this paper, a system 

composed of two elements; capacitive accelerometer with extended beams 

(CAEB) and a DaCM geometry, of single and souble layer, are analysed. 

Three materials were considered, in the case, for the second layer.  

The DaCM implementation improves the operation frequency and 

displacement sensitivity, under different proportions, at the same time. 

Furthermore, three sweeps were performed: a range of thickness from 25 µm 

up to 30 µm (to determine the appropriate silicon mass value, using SOI 

technology), a range of second layer thickness (to choose the more 

appropriate material and its thickness) and a range of gravity values  

(to determine the maximum normal stress in the beams, which defines 

the superior value of the g operation range). The in-plane mode (y-axis) was 

considered in all analysed cases. This characterization was developed using 

the Finite Element Method. Structural and modal analysis responses were 

under study. 
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1. INTRODUCTION  

Accelerometers measure the acceleration of an object by utilizing the classical Newtonian Law of 

Forces, where forces of the same magnitude will be generated in the opposite direction of the applied force. 

This force is normally detected by a movable part in the accelerometer and is translated into electrical signal 

using various electrical principles for further processing and data extraction [1]. These measurements are 

performed in one, two or three orthogonal axes. The acceleration measurements are typically used to 

calculate in-plane velocity and position, inclination, tilt or orientation in two or three dimensions with respect 

to the acceleration of gravity (g, equivalent to 9.81 m/s2), as well as to measure vibration and impact [1-3]. 

The first batch-fabricatable accelerometer was reported in 1979 [4]. It was capable of measuring 

accelerations from 0.001 to 50g over a 100 Hz bandwidth. Since 1990, accelerometers are commercialized 

and widely used in the automobile industries for triggering air-bag system in convertibles [1]. They have seen 

significant success in a large spectrum of applications, ranging from the automotive control and safety 

systems, consumer electronics for mobile, gaming, wearable and healthcare devices, and also in industrial, 
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geophysical, and military/aero sectors [2, 5-9]. Capacitance accelerometers may be more suitable for some 

applications like automotive crash detection and air-bag deployment (high g force, such as 50g) [2]. 

Combination of desirable features like small size, low power dissipation, high sensitivity and low cost are 

nearly always needed for many of their applications [2]. Part of their research is focused on the optimization 

of the devices sensitivity, looking for a better efficiency. There are diverse types of accelerometers in the 

market, in [1] they are classified as: Capacitive, Piezoelectric, Piezoresistive, Hall Effect, Magneto resistive, 

Heat Transfer, Optical, and Tunnelling. Several materials have been studied to provide some advantages in 

the fabrication or in the response of accelerometers, as in [10]. A study of a controllable aluminium doped 

zinc oxide (AZO) patterning by wet etching for MEMS applications is given in [11].  

Other structures have been developed to increase the displacement obtained in several 

accelerometers, such as mechanical amplifier, which can transform the displacement applied to the input in 

an amplified version of it, obtained at the output of the system. Mechanical amplifiers can have very simple 

geometries, as lever devices [12-14]. More complex devices are also implemented, such as the Displacement-

amplifying Compliant Mechanism (DaCM) shown in [15]. DaCMs are compliant equivalent of displacement-

amplifying levers, but they do not transfer the entire energy available to them at the input to the output 

because some of it is stored as the elastic strain energy within the mechanism [16]. A DaCM is used in [17] 

to enhance both the sensitivity and bandwidth of in-plane capacitive micromachined accelerometer. The input 

of the DaCM is attached to the proof-mass, allowing  to obtain amplification or gain of mechanical signals, 

due to the assembling of simple parts such as rigid beams connected by assembly bolts [18]. 

This paper is focused on capacitive accelerometers, which uses the change in capacitance as a mean 

for measuring the acceleration of an object. They consist of a moveable central proof mass which provides 

the necessary inertia for providing the acceleration force for measurement, a fixed capacitive electrode to 

form a capacitor with the moveable proof mass, an anchor for providing support and springs to provide the 

flexure of the proof mass. Structural supports of mass are called suspension beams.  

The objectives of this work are, by means of simulation and using the in-plane mode:   

a. Make variations in the thickness of the moveable central proof mass, made with a Silicon layer, from 25 

to 30 µm to observe the changes produced in Sx, and in the operation frequency for a single capacitive 

accelerometer with extended beams (CAEB) and for the arrangement CAEB-DaCM. 

b. Analyse the change on the Sx and operation frequency when a second layer made of Aluminium, Silicon 

Nitride or Copper (materials commonly used in MEMS fabrication) is deposited over a Silicon layer of 

thickness t1=25 µm and to perform variations in the thicknesses of t2, from 1 up to 5 µm. 

c. Demonstrate that the implementation of double-layer DaCMs improves Sx and operation frequency in 

the double-layer accelerometers, with the proposed materials.  

d. Perform a sweep of gravity values to know the operating limit of double-layer CAEB and CAEB-DaCM. 

Extreme operating conditions were obtained using the analysis of stress. 

 

 

2. RESEARCH METHOD 

For the case of capacitive accelerometer, Sx, can be calculated from (1) [19] 
 

𝑺𝒙 = 𝑚𝒂 𝑘⁄  (1) 
 

where m is the mass of the system, a is the acceleration, and k is the stiffness or spring constant, given by: 
 

𝑘 = 𝐸𝑡(𝑤𝑏 𝑙𝑏⁄ )3 (2) 
 

where E is the Young´s modulus of material, t, wb and lb are the thickness, width and length of the suspension 

beams, respectively. 

The accelerometer will have an adequate Sx corresponding to each acceleration value, as long as no 

resonance frequencies are present. It is well known, that before any resonance frequency is generated,  

the device will operate in accordance with the design requirements. For this reason, it is recommended to 

design devices for high operating frequencies in order to avoid low resonance frequencies.  

Operation frequency can be calculated, by (3), [19]. 
 

   𝑓 = (1 2⁄ )(𝑁𝐸𝑡𝑤𝑏
3 𝑚𝑙𝑏

3⁄ )
1 2⁄

                                                            (3) 

 

where N is the number of suspension beams. 

About the implemented devices, CAEB is depicted in Figure 1, its elements and dimensions,  

are given in Table 1. Table 2 shows the properties of Silicon and the additional layer materials. Results for 
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Silicon CAEB of constant thickness, considering the in-plane mode and one g applied were published in [19]; 

they are used in this paper only for comparison purposes. 
 

 

Table 1. CAEB dimensions values 
Element Value (mm) Element Value (mm) 

Beam length, Lb 4.5 Anchor length, La 0.01 
Beam width, Wb 0.025 Reduced mass width, Wr 0.70 

Mass length, Lm 7 Reduced mass length, Lr 2 

Mass width, Wm 5.55   

 

 

Table 2. Properties values 

Properties 
Silicon Aluminium Aluminium Nitride Copper 

(Semiconductor) (Metal) (Piezo electric) (Metal) 

Density, ρ [kg/m3] 2330 2689 3260 8933 

Thermal Expansion Coefficient, 

α [1/°C] 
2.6x10-6 24x10-6 3.3x10-6 16.5x10-6 

Young´s modulus, E [GPa] 131 65 280 120 

Poisson ratio [Dimension-less] 0.33 0.33 0.32 0.34 

Tensile yield strength, [MPa] 250 140 120 270 

 

 

 

 
 

Figure 1. CAEB (a) elements and (b) transversal section, the thickness of the silicon layer and the additional 

layer (when it is applied) are t1 and t2, respectively 

 

 

3. RESULTS AND ANALYSIS 

In all simulated cases of subsections 3.1-3.3, one g is applied at Y axis direction. 

 

3.1.  Displacement sensitivity and operating frequency of Silicon CAEB of different thickness 

In Table 3, calculated (with eq. (1-3)) and simulated values of parameters under analysis are shown. 

There are very small variations in both parameters, which can be considered as negligible. However, it is 

important to mention that there are very small percentages of variation between the theoretical and simulated 

results, of 0.46% and 0.15%, for the displacement sensitivity and the operation, respectively. It can be said 

that the proposed equations and the boundary conditions (fixed anchors) established in the simulation of 

the devices are adequate, since they provide variations of less than 1%, in both cases. 

 

 

Table 3. Parameter values for CAEB made only with Silicon 

Thickness [µm] 
Calculated values Simulated values 

Sx [µm/g] f [Hz] Sx [µm/g] f [Hz] 

25 10.74 152.06 10.79 151.82 

26 10.74 152.06 10.79 151.82 

27 10.74 152.06 10.78 151.94 

28 10.74 152.06 10.79 151.82 

29 10.74 152.06 10.79 151.82 

30 10.74 152.06 10.79 151.81 
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3.2.  Displacement sensitivity and operating frequency of double layer CAEB  

 In Table 4, parameter values for the CAEB are shown, when Silicon layer of 25 μm thickness was 

used and another layer was added. In Figure 2, a representative case of Sx and operating frequency of a 

double-layer CAEB is shown (the rest of cases are similar). Figures of Silicon CAEB were reported in [19]. 

From (1-3), Sx and operation frequency have a direct and inversely proportional relationships to the mass of 

the system, respectively. This fact is also observed in the results shown in Table 4. For example, the structure 

made with additional Copper layer has higher Sx (45.18 μm/g). However; it is the one with the lowest 

operation frequency (74.22 Hz). The opposite case is shown by the structure with additional layer of 

Aluminium Nitride, which presents higher frequency (187.6 Hz), but lower Sx value (7.06 μm/g). 

 

 

 
(a) 

 

 
(b) 

 

Figure 2.   a) Sx and b) Operating frequency of Aluminium over Silicon 

 

 

Table 4. Parameter values of CAEB of double layer (t1=25 µm of Silicon), obtained from simulation 
Additional layer 

thickness [µm] 

Aluminium over Silicon Aluminium Nitride over Silicon Copper over Silicon 

Sx [µm/g] f [Hz] Sx [µm/g] f [Hz] Sx [µm/g] f [Hz] 

1 10.467 152.01 9.82 159.17 11.53 146.89 
2 10.771 151.97 9.67 160.68 12.44 141.41 

3 11.012 150.29 9.49 161.89 13.44 135.99 
4 11.224 148.89 9.29 163.59 14.35 131.63 

5 11.436 147.47 9.12 165.06 15.20 127.87 

 

 

3.3.  Displacement sensitivity and operating frequency of double layer CAEB-DaCM. 

For the CAEB structure made only with Silicon, the implementation of a DaCM improves both 

parameters simultaneously [19]. In this subsection, the effect of displacement amplifier on the CAEB of 

Silicon, with different thicknesses as shown in Table 5, and with double-layer also with different thickness as 

shown in Table 6. The shape of the displacement amplifier is similar to the given in [19]. For each case of 

double-layer CAEBs, the corresponding displacement amplifiers, have also an additional layer.  

 

 

Table 5. Parameter values of CAEB-DaCM, made with Silicon of different thickness 
Thickness [µm] Sx [µm/g] f [Hz]  

25 13.15 245.62 

26 13.14 245.66 
27 13.14 245.72 

28 13.15 245.63 

29 13.14 245.76 
30 13.15 2456.62 
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Table 6. Parameter values of double layer CAEB-DaCM. Silicon layer has t1=25 µm 
Second layer 

thickness [µm] 
Aluminium over Silicon Aluminium Nitride over Silicon Copper over Silicon 

Sx [µm/g] f [Hz] Sx [µm/g] f [Hz] Sx [µm/g] f [Hz] 

1 12.22 254.8 12.85 257.34 12.9 247.85 

2 13.52 242.69 12.08 257 15.59 226.22 
3 13.93 238.84 11.89 258.73 16.97 216.49 

4 14.27 235.89 11.77 259.84 18.25 208.69 

5 14.53 234.08 11.58 262.28 19.31 203.23 

 

 

In Figure 3, a representative case of the behaviour of the displacement sensitivity and the operating 

frequency of double layer CAEB-DaCM, are shown. Silicon case was previously reported [19]. Width of 

CAEB was reduced at one half of the original size, shown in Figure 1, in order to obtain lower mass to 

improve the operation frequency, since the implementation of the DaCM will improve Sx. The total length of 

displacement amplifier is 11 mm and its width is 3.5 mm. 

Differences in the parameter values for the case of variation parameters for Silicon CAEB-DaCM, 

as shown in Table 5, are negligible for the case of Sx and slight for operation frequency, when additional 

layer has different thickness as shown in Table 6. From Table 6, although the increment occurs in both 

parameter values, it is much higher in the case of the operation frequency, compared to the case of single 

CAEB structure response. Table 7 shows the percentages of improvement in operation frequency,  

from 61.6% (for Aluminium Nitride over Silicon) up to 70% (for Aluminium over Silicon). While, Sx shows 

improvements from 13.56 up to 30.87 µm/g. In both cases, a second layer thickness of 1 µm was considered. 

 

 

 
(a) 

 
(b) 

 

Figure 3.   a) Sx and b) Operating frequency of double layer CAEB-DaCM (Aluminium over Silicon) 

 

 

Table 7. Percentage of improvement for CAEB-DaCM, compared to single CAEB response 
Material Improvement of Sx,  % Improvement of f, %   

Silicon 21.87 61.78 

Aluminium over Silicon 13.56 70 
Aluminium Nitride over Silicon 30.8 61.6 

Copper over Silicon 11.88 68.7 

 

 

3.4.  Range of g for single and double layer CAEB. 

             The range of gravities for operation will be determined, verifying that the elastic limit in the normal 

effort is not exceeded in each case. Limit values of gravity are given in Tables 8 and 9 for CAEB made with 

Silicon and double layer, respectively. In all cases, the changes on the normal stress values are small for 

the considered thickness values. Gravity values are smaller in the case of double layer CAEB. In Figure 4, 

the zone with maximum Normal Stress for the case of CAEB of double layer made with Aluminium over 

Silicon is shown, as representative case. The zone of the higher normal stress for all these cases is located at 

the same extreme of the corresponding suspension beam. 
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Table 8. Limit values of gravity for CAEB made with Silicon of different thickness 
Thickness [µm] Gravity [g] Normal Stress, [MPa] 

25 49 249.04 

26 48 244.85 
27 48 246.2 

28 49 248.92 

29 49 248.6 
30 48 247.73 

 

 

Table 9. Limit values of gravity for CAEB of double layer (t1=25 µm) 
Additional layer 
thickness [µm] 

Aluminium over Silicon Aluminium Nitride over Silicon Copper over Silicon 
Gravity [g] Normal Stress [MPa] Gravity [g] Normal Stress [MPa] Gravity [g] Normal Stress [MPa] 

1 23 135.4 16 114.25 12 234.63 

2 23 136.15 16 114.86 12 235.91 
3 23 134.84 16 113.79 12 233.56 

4 23 134.67 16 113.61 12 233.33 

5 23 136.99 16 115.6 12 237.28 

 

 

3.5.  Range of g for CAEB with DaCM 

The limit values of gravity are shown in Tables 10 and 11, for CAEB-DaCM Silicon and double 

layer structures. It is remarkable for the cases with additional layers, under a not linear variations.  

Again, gravity values for double layer CAEB-DaCM are considerably reduced, comparing with 

the implementation only with Silicon, except for the case of Copper over Silicon, with t2=1 um. Figure 5 

shows the maximum normal stress zone, for a representative system made with Aluminium over Silicon (all 

cases have similar zone location). 
 

 

Table 10. Limit values of gravity for CAEB-DaCM made with Silicon with different thickness 
Thickness [µm] Gravity [g] Normal Stress [MPa] 

25 100 247.6 

26 102 248.9 

27 101 248.8 
28 104 247.2 

29 105 249.02 

30 103 249.3 

 

 

Table 11. Limit values of gravity for double layer CAEB-DaCM (t1=25 µm) 
Second layer 

thickness [µm] 

Aluminium over Silicon Aluminium Nitride over Silicon Copper over Silicon 

Gravity [g] Normal Stress [MPa] Gravity [g] Normal Stress [MPa] Gravity [g] Normal Stress [MPa] 

1 61 137.5 21 119.04 102 246.8 

2 42 137.1 16 112.7 61 245.8 

3 49 135.3 22 116.4 70 247.5 
4 49 135.3 24 116.6 68 246.5 

5 42 137.4 21 115.07 56 247.1 

 

 

  
 

Figure 4. Normal Stress of CAEB of Aluminium 

over Silicon 

 

Figure 5. Normal Stress of CAEB-DaCM of 

Aluminium over Silicon 
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4. CONCLUSION 

For Silicon CAEB: Values of Sx and operation frequency show very small changes for different 

thickness (25 to 30 μm). Very small percentages of variation between the theoretical and simulated results,  

of 0.46% and 0.15%, were obtained for Sx and operation frequency, respectively.  

For two layer CAEB: Sx and operation frequency, have a direct and inversely proportional 

relationships to the proof mass, respectively, as for case of the previous case, in accordance to  

Equations (1-3). The lower values of Sx (9.12 μm/g) correspond to an additional layer of Aluminium Nitride  

(with t2 of 5 μm) and the bigger one (15.20 μm/g) corresponds to Cooper (with t2=5 μm). The lower values of 

operation frequency (127.87 Hz) correspond for Copper (with t2 of 5 μm) and the bigger value (165.06 Hz) to 

Aluminium Nitride (with t2=5 μm), for operation frequency. This value of Sx exceeds the corresponding 

value of the Silicon CAEB by 40.87%, while the bigger value of (Aluminium Nitride over Silicon) exceeds 

the same reference by 8.73%. 

For Silicon CAEB-DaCM: A light increment in Sx, and a stronger one in operation frequency were 

obtained (13.15 μm/g and 245.62 Hz, equivalent to 21.87% and 61.78%, respectively), compared to 

the Silicon CAEB parameter values without displacement amplifier. 

CAEB-DaCM with additional Copper layer: It has higher Sx (19.31 μm/g). However, it is the one 

with the lowest operation frequency (203.23 Hz). The opposite case is presented by the structure with 

additional layer of Aluminium Nitride, which presents higher frequency (262.28 Hz), but lower Sx  

(11.58 μm/g).  

Gravities´ swept applied to single and double-layer CAEB accelerometers: the effect of their 

thickness was not relevant, in each case. But, the range is considerably reduced for the double layer cases,  

in comparison with the single layer CAEB, especially for Copper over Silicon (75%). For Aluminium Nitride 

(t2=1µm) over Silicon, the reduction is of (66.66%). 

Gravities´ swept applied to CAEB-DaCMs systems: g values are considerable reduced when a 

second layer is implemented. It was observed that different values of gravities produce maximum normal 

stress values, depending of its thickness value, under a nonlinear tendence.  

Values of tensile yield strength are near for Silicon and Copper, but differences on the limit 

operation range of g values for single and double layer (made with Copper) CAEB-DaCM are considerable, 

varying from 100g (for 25 μm) up to 105g (for 29 μm), for the Silicon case, and from 102g (for 25μm/1μm) 

down to 56g (for 25μm/5μm), for the double layer case, improving the double layer CAEB response.  

The lower value of g corresponds to the case of additional layer of Aluminium Nitride over Silicon with a 

thickness ratio of 25μm/2μm, of only 16g. CAEB-DaCM of the analysed cases could be used for different 

applications, in accordance to the requirements of displacement sensitivity, operation frequency or 

acceleration range. 
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