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 In the latest years there has been a profound evolution in computer science 

and technology, which incorporated several fields. Under this evolution, 

Content Base Image Retrieval (CBIR) is among the image processing field. 

There are several image retrieval methods that can easily extract feature as a 

result of the image retrieval methods’ progresses. To the researchers, finding 

resourceful image retrieval devices has therefore become an extensive area of 

concern. Image retrieval technique refers to a system used to search and 

retrieve images from digital images’ huge database. In this paper, the author 

focuses on recommendation of a fresh method for retrieving image. For multi 

presentation of image in Convolutional Neural Network (CNN), 

Convolutional Neural Network - Slanlet Transform (CNN-SLT) model uses 

Slanlet Transform (SLT). The CBIR system was therefore inspected and the 

outcomes benchmarked. The results clearly illustrate that generally, the 

recommended technique outdid the rest with accuracy of 89 percent out of 

the three datasets that were applied in our experiments. This remarkable 

performance clearly illustrated that the CNN-SLT method worked well for 

all three datasets, where the previous phase (CNN) and the successive phase 

(CNN-SLT) harmoniously worked together. 
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1. INTRODUCTION  

Of late, there has been an upsurge in the consumption of digital images with the developing 

accessibility of the internet and computers, particularly because digital image media creation is speedily 

increasing. The availability of inexpensive storage devices and the user demand together with high quality 

printers give room for public consumers to print and collect digital images with ease from the Internet. 

In addition, the prompt development of network technologies has stimulated the application of digital images 

as one of the most essential communication media for everyday life. 

CBIR refers to the retrieval of pertinent images from an image database in accordance with 

spontaneously resultant features, for instance shape, color and texture representing the image’s information 

content. In several application areas, the need for efficient content-based image retrieval has immensely 

increased, for instance, entertainment, biomedicine, education, crime prevention, commerce, military and 

culture. In general, retrieval through documents or images founded on textual description is very easy though 

the process necessities to manually tag the images, which is time consuming and laborious apart from being 

highly susceptible to error. The manual process is reliant on the human knowledge and this clues the process 

to uncertainty since dissimilar individuals have diverse image understanding.  

Over the traditional text-based retrieval, CBIR has several benefits. CBIR is capable of overcoming 

the pointed out challenges by automatically tackling them or via machines, which is very efficient and 
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precise devoid of human interference as a result of the use of the visual contents of the query image in  

CBIR [1]. CBIR has previously been accomplished via several methods and research is still underway for 

progressive upgrading. In addition, with the current digital technology, as well as the enormous number of 

images all over the world, an automated system for the retrieval via images is therefore compulsory. It is a 

more effective and efficient means of discovering pertinent images as compared to searching according to 

text annotations. Moreover, CBIR does not use the wasted time in the process of text-based method’s manual 

annotation. In CBIR field, these benefits have encouraged this study to design image retrieval technique.  

This challenge has resulted in the increase of development and research in the CBIR field. Images are 

retrieved according to features that are extracted automatically from images in CBIR. 

Amongst the image features that are low-level, for instance, shape, color, spatial location and 

texture, texture used to be objective and effective in retrieval of content base image. Diverse methods 

advanced for extraction of texture features, largely categorized into the spectral (similarly referred to as 

frequency) and the spatial techniques. Generally, the spatial methods are reliant on statistical computations 

on the image. These statistic methods are however sensitive to image noise and lack adequate number of 

features [2]. Spectral techniques of texture analysis for image retrieval are on the other hand strong to noise. 

The spectral techniques comprise using multi-resolution texture extract approaches such as Wavelet 

Transform (WT) [3, 4] for texture illustration, discrete cosine transform [5] and Multi Resolution (MR) 

techniques for instance, Gabor filters [6, 7]. The disadvantage with these spectral techniques is that they do 

not effectively capture the image’s edge information. This is the rationale behind looking for a better 

resolution to conglomerate the finest features from spectral approach and spatial approach, which can be 

strong to noise with simple statistical computation. 

The problem background was discussed earlier. It indicated that the problems related to the CBIR 

process need further investigation. One of the major challenges of the CBIR was that the images must be 

represented using effective and accurate extraction techniques. The higher dimensionality of the colour 

feature vector along with the extracted features does not display any spatial information and consists of 

semantic gaps. These issues must be resolved for improving the precision of the retrieval performance [3, 4]. 

Along with developing techniques for combining the texture, shape or colour-based similarities, 

the drawbacks noted in the earlier studies were investigated for determining the questions that need answers.  

Here, the researchers have proposed and developed a novel automatic features extraction process that was 

based on the SLT and CNN method, which was considered as one of the best deep learning methods in the 

field of machine learning algorithms. 

 

 

2. RELATED WORK AND DEFINITION  

The finger veins are not visible to the naked human eyes under normal illuminating conditions. 

On the other hand, they could be viewed using the Near-InfraRed (NIR) light between the wavelengths of 

700 and 1000 nm. The human tissues are seen to absorb the NIR light waves, however, these waves get 

blocked by the deoxidised Haemoglobin (HbO) molecule, which is present in higher concentrations in the 

human veins, which make these veins darker in the acquired images [1]. The vein-scanners generally support 

the NIR light waves, which are generated from the Light Emitting Diodes (LEDs), and the Charge Coupled 

Device (CCD) cameras or the Complementary Metal-Oxide Semiconductor (CMOS) cameras. These devices 

capture the images of the veins from a particular region. Also, these devices comprise of several optical 

filters which scatter the NIR-emitted beams and also, increase the contrast of the captured raw images, 

as described in Figure 1. 

There are a number of factors that determine the CBIR; these aspects include feature extraction 

technique, using suitable features in CBIR, resemblance measurement technique and selected mathematical 

convert to compute operational characteristics, reaction procedure. In CBIR, all these aspects are very 

important. An efficient retrieval mechanism can be accomplished through improvement of some of the 

prompting aspects. We first avail a short review of the aspects that could influence CBIR for this purpose. 

From the discussion on CBIR in introduction, it is assumed that using low-level image features like color, 

shape and texture is to amass information from an image to restoration. A variety of spectral techniques of 

extracting texture features as well as all of the existing techniques of validating image texture characteristics 

in contemporary literature have been talked over with the intention of attaining the objective of the research, 

which is to ascertain the most sufficient characteristics in CBIR. We attempt to handle the weaknesses of a 

spectral method as well as the way a different method could offer resolutions, and which is the most 

operational among them in representation of texture characteristics in this discussion. The vital concerns of 

content based image retrieval system include the following: (1) Similarity measurement, (2) Low-level 

image, (3) features extraction, (4) Selection of image database, and (5) Performance evaluation of the 

retrieval process. 
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2.1.   Deep learning 

In numerous artificial intelligent tasks, for instance, machine translation, object detection and speech 

recognition, deep learning has radically enhanced the state-of-the-art [8]. Its deep architecture nature 

provides deep learning with the likelihood of resolving numerous problematical artificial intelligent tasks [9]. 

Therefore, researchers are prolonging deep learning to diverse contemporary domains and tasks together with 

traditional tasks such as face recognition,  language models, or object detection, [8] employs the insistent 

neural network to denoising speech signals, [10] applies stacked auto encoders in discovering gene 

expressions’ clustering patterns. [11] Applies a neural model in creating images with diverse styles [12].  

Make use of deep learning to enable instantaneous sentiment analysis from numerous modalities, [13]  Put 

into use deep learning for classification of biological image.  

This is an era of witnessing the deep learning research’s flourishing. Deep learning performs better 

as compared to other machine learning algorithms the way it is proposed by the empirical outcomes.  

There are a number who have recommended that it is due to the fact that it sloppily imitates the functions of a 

brain, neural networks’ numerous layers stacked one after another one such as the classical brain model.  

Up to date on the other hand, there is no strong hypothetical foundation for deep learning, [14] then deep 

learning machines regularly work better as compared to traditional ML devices since they learn the part of 

feature extraction as well. The aim of deep learning techniques is to learn feature hierarchies with 

characteristics from higher levels of the hierarchy designed by aligning features from lower level. 

Spontaneously learning characteristics at numerous levels of abstraction enable a system to learn intricate 

functions that directly map the input to the output from data, devoid of depending completely on human 

crafted characteristics [14]. A point in case is image recognition, where the traditional system is to remove 

handcrafted characteristics before feeding a Support Vector Machine (SVM). In contrast, deep learning 

schemes optimize the extracted features that largely enlighten on the rationale behind their better 

performance. 

The salient variance between traditional machine learning and deep learning is its performance as 

data increases’ scale. Deep learning algorithms do not perform well in a situation where the data is small. 

This is due to the fact that deep learning algorithms necessitate a huge amount of data for it to be perfectly 

understood [12]. 

 

2.2.   Convolutional neural network (CNN) 

One specific kind of deep feedforward network that was trained with much ease generalized much 

better as compared to networks having full connectivity between layers that are nearby. This was the 

CNN [15, 16], which accomplished several practical successes at a time when neural networks were beyond 

good turn and it had currently been widely adopted by the community of computer vision. 

CNN are aimed at processing data coming in the form of numerous arrays, and a point in case is a 

grayscale image comprising three Two Dimension (2D) arrays that contain pixel intensities. Numerous data 

modalities are in the form of manifold arrays: Three Dimensions (3D) for volumetric or video images; 

One Dimension (1D) for sequences and signals, comprising language; and 2D for audio or images 

spectrograms. Behind CNN, there are four crucial ideas taking advantage of natural signals’ properties: 

shared weights, the application of several layers, pooling and  local connections  [15-18].  

The typical CNN’s architecture as shown in Figure 1 is structured as a sequence of phases. The few 

initial stages comprise two kinds of layers: pooling layers and convolutional layers. In a convolutional layer, 

units are prearranged in feature maps, whereby every unit is linked to local patches in the preceding layer’s 

feature maps via a set of weights known as a filter bank. The outcome of this local weighted sum is therefore 

passed via a non-linearity, for instance a Rectified Linear Units (ReLU) [19]. In a feature map, each and 

every unit shares a similar filter bank. In a layer, diverse feature maps employ dissimilar filter banks.  

The rationale behind this architecture is double. Foremost, in array data, for instance images, local groups of 

values are usually greatly interrelated, as a result forms a unique local motifs that could be detected with 

ease. Secondly, the images’ local statistics as well as other signals are invariant to position. To simplify,  

in a situation where a motif could appear in the image’s one part, it can appear at anyplace, as a result the 

idea of units at diverse locations that share identical weights and detect similar pattern in the array’s diverse 

parts. Arithmetically, the filtering operation carried out by a feature map is a distinct convolution, 

and therefore the name. 
 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Combining convolutional neural networks and slantlet…  (Mohammed Sabbih Hamoud Al-Tamimi) 

4385 

 
 

Figure 1. Effects of selecting different switching under dynamic condition 
 

 

Despite the fact that the convolutional layer’s role is detection of local permutations of features from 

the preceding layer, the pooling layer’s role is integrating into one, the semantically comparable features. 

Because the relative positions of the features that form a motif could vary to some extent, consistent detection 

of the motif could be done by coarse-graining every feature’s position. In one feature map, a classic pooling 

unit calculates the supreme of a local patch of units.  

For instance, it is clearly demonstrated in Figure 2 that a CNN could learn to distinguish edges from 

raw pixels in the first layer in image taxonomy, and then apply the edges in detecting simple shapes in the 

second layer, and then apply these shapes in preventing higher-level characteristics, for instance shapes of 

faces in higher layers. Therefore, the final layer is a classifier that applies these characteristics of high level. 
 

 

 
 

Figure 2. Eyeris’ deep learning based facial feature extraction using convolutional neural network [20] 
 

 

2.3.   Convolutional neural network architecture 

As clearly demonstrated in Figure 1 [15, 21, 22], a CNN comprises an output and an input layer, 

together with numerous hidden layers. The hidden layers are either fully connected, convolutional or pooling. 
 

2.3.1. Convolutional layer 

Convolutional layers use a convolution procedure to the input, conveying the outcome to the subsequent 

layer. The convolution imitates a person’s response neuron to visual stimuli [23]. A convolutional layer 

comprises manifold neurons’ maps, referred to as feature filters or maps, with their size equivalent to the 

input image’s dimension. Two perceptions enable reduction of the number of model strictures: stricture 

sharing and local connectivity. Initially, not like in a network that is fully connected, every neuron in a 

feature map is simply linked to a local patch of neurons in the preceding layer, also known as receptive field. 

Secondly, each and every neuron in a certain feature map shares similar strictures. Therefore, each and every 

neuron in a feature map scans for equivalent feature in the preceding layer, though at diverse localities. 

Diverse feature maps could, for instance, perceive edges of diverse orientation in an image, or series motifs 

in a genomic series. The acquisition of neuron’s activity is via computation of a distinct convolution of its 

approachable field, whereby it is computation of the subjective sum of input neurons, as well as application 

of an activation function. Figure 3 clearly illustrate the Discreet Convolution. 
 

 

 
 

Figure 3. The CNN’s first layer is discreet convolution 
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2.3.2. Rectified linear units (ReLU) layers  

It is a resolution to use an activation layer (or a layer that is nonlinear ) instantaneously afterward 

following every convolutional layer [19]. This layer’s purpose is presentation of nonlinearity to a system that 

mainly has just been calculating linear operations in the course of the convolutional layers. In the past, 

nonlinear functions like sigmoid and tanh were applied, though researchers discovered that ReLU layers are 

more enhanced in the way they operate since  the network is capable of training a lot quicker (due to the 

computational effectiveness) devoid of making a substantial difference to the precision. In addition, it assist 

in relieving the challenge of vanishing gradient, which is the concern, whereby the network’s lower layers  

train sluggishly since the gradient exponentially declines via the layers. To all of the values in the input 

volume, the ReLU layer make use of the function f(x) = max (0, x). All the negative activations are changed 

to zero by this layer in simple terms [16]. The nonlinear properties of the model and the overall network are 

increased by this layer devoid of interfering the conv layer’s receptive fields.  Figure 4 illustrates the ReLU 

activation function. 

 

 

 
 

Figure 4. The relu activation function 

 

 

2.3.3. Pooling layer 

Pooling layer lessens their input’s size and gives room for analysis of multi-scale. The most popular 

pooling operators are average-pooling and max-pooling. Within a small spatial block, these operators 

calculate the average or the maximum value. Max pooling operation with (2×2) filters is illustrated in  

Figure 5.  

 In a number of applications, the features’ exact frequency and position is  not pertinent for the last 

expectation, for instance ability to recognize objects in an image [24]. With the use of this assumption, the 

pooling layer outlines adjoining neurons through computation, for instance, the average or maximum over 

their activity, leading to feature activities’ representation that is smoother. Through application of similar 

pooling operation to small image patches that are moved by pixel beyond one, the input image is efficiently 

down-sampled, and as a result reducing further the model parameters’ number.The size of the output could be 

regulated by three hyper strictures which are the zero-padding, depth and stride. 

a. Stride: amount of pixels the filter jumps as they slide over the image. 

b. Depth: in order to the input image, it is basically the amount of filters that is employed. These filters are 

capable of detecting structure for instance, blobs, edges and corners.  

c. Zero-Padding: padding zeros around the input’s borders for its size to be preserved. 

 

 

 
 

Figure 5. Max pooling operation with (2×2) filters 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Combining convolutional neural networks and slantlet…  (Mohammed Sabbih Hamoud Al-Tamimi) 

4387 

2.3.4. Fully-connected layer 

Usually, a CNN comprises numerous pooling and convolutional layers, which gives room for 

increasingly learning abstract characteristics at snowballing scales including object parts, entire objects and 

small edges. It is possible for one or more completely connected layers to follow the final pooling layer. 

Model hyper‐strictures for instance the size of receptive fields, the number of feature maps and the number of 

convolutional layers refer to application‐dependent and should be firmly chosen on a validation data set [23]. 

Fully-Connected layer attaches to each and every neuron of the preceding layer. Typically, fully 

connected layers are applied as the network’s final layer and carry out the taxonomy. Figure 6 depicts a 

CNN’s sample, illustrating all the three formerly revealed layers. 

 

 

 
 

Figure 6. A Sample of CNN architecture 

 

 

2.4.  Slantlet transform (SLT) 

The SLT refers to a orthogonal Discrete Wavelet Transform (DWT) with two zero moments, 

having enhanced time localization. SLT maintains typical filter bank implementation’s features having a 

scale dilation factor of two. Its foundation is not on reiterated filter bank such as DWT; as an alternative, 

diverse filters are applied for every scale. This paper recommends a new way of applying SLT in image 

retrieval through conversion of the image from spatial domain to convert domain with the intention of 

ordering them and selecting the most relevant and informative  part of image for the retrieval model to be 

improved. In multi CNN, a novel technique of image retrieval CNN-SLT model applies merging. As image 

representation, the researchers have therefore applied the transform domain. We will as well associate this 

novel technique with image retrieval’s present techniques. 

In a 2D SLT decomposition, there is usually an image that is divided into four parts, High-High 

(HH), Low-Low (LL), High-Low (HL) and Low-High (LH), as Figure 7 illustrates, where H and L represent 

the high and low frequency band, correspondingly. Each is carrying diverse image information. The low-

frequency band component of the image, which is marked as LL, retains the inventive image information. 

On the contrary, the high - and medium -frequency bands, HH, LH and HL carry the information associated 

with the contour, edge, as well as the image’s other details. In the image, the important information is 

characterized by high coefficients. In the meantime, the small (insignificant) coefficients are deliberated as 

worthless information or noise. These small coefficients therefore ought to be ignored for the best outcomes 

in succeeding operations to be attained. 

 

 

 
 

Figure 7. The conventional 2D SLT decomposition schemes for dividing an image 

 

 

 

Original Image 

 
L 

 
H 

 
LL 

 
LH 

 
HL 

 
HH 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 5, October 2019 :  4382 - 4395 

4388 

As a multi-resolution method, the SLT [17]  is well-matched for piecewise linear data. The SLT 

refers to an orthogonal DWT, having enhanced time localization characteristics and two zeros moments.  

It is founded on the principle of designing diverse filters for diverse scales not like iterated filters method 

with the use of DWT. Formerly, SLT was applied in a various applications, for instance, compression, 

de-noising of various input images, estimation and fast algorithms. SLT is executed as a filter-bank having 

parallel structures and used in parallel processing, where diverse filters are configured for every scale rather 

than filter reiteration at personal level.  According to Selesnick [17], the filters’ coefficients are computed 

with the use of the SLT equations.  

 

 

3. METHODS AND MATERIALS  

Primarily, the utilized datasets are high pointed with the intention of evaluating the recommended 

framework. After that, the construction of Network architecture is described accompanied by the deep 

convolutional network’s design. Subsequently, the merging input representation to the system is defined.  

To test the system, various experimental benchmarks are finally applied. 

 

3.1.  Data sets 

For the proposed image retrieval technique to be validated, three standard datasets are applied.  

The initial two datasets are acquired through Wang V2.0 and Wang V1.0 – the Wang refers to the Corel 

database’s subclass [18]. The third dataset is the Caltech 101, which consists of objects’ pictures, 

which belong to 101 classifications - approximately 40 to 800 images for each category, though majority of 

categories have approximately 50 images. Fei-Fei Li, Marco Andreetto, and Marc 'Aurelio Ranzato 

established the database in September 2003. Every image’s size is approximately 300×200 pixels.  The most 

widely used and popular database in numerous latest studies is WANG V1.0 database [25]. It comprises one 

thousand images of ten classes. Each class consists of 100 images that nearly resemble each other.  

These classes are beach, buses, elephant’s, horse, dinosaur, mountain, monuments, roses, food and Africa, 

illustrated in Figure 8. 

 

 

 
 

Figure 8. An example of image from each of the 10 classes of the WANG database 

as well as their class labels 

 

 

WANG_10000 Database V2.0 As compared to its predecessor, this dataset is ten times larger, 

Wang V1.0. Majority of the images have low resolution, which adversely influences any image retrieval 

systems’ performance. Figures 9 illustrate the images according to the categories that are established. 

Database V2.0 is however more comprehensive and challenging than database V1.0. 
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Figure 9. An example image from each of the 10 classes of the WANG V2.0 database 

together with their class labels 

 

 

Caltech 101 refers to a data set of digital images generated in September 2003  [26]. It aimed at 

facilitating image recognition, classification, and computer vision. The dataset consists of a total of 9,146 

images, divided between 101 distinct object classes (Pianos, Faces, Ants, Watches and others) as well as a 

background classification. For every category, it is approximately, 40 to 800 images. Majority of categories 

have approximately 50 images.  The size of every image is about 300 x 200 pixels. Figures 10 illustrate the 

images’ samples. Description of used datasets as shown in Table 1. 

 

 

 
 

Figure 10. An example image from each of the 10 classes of the caltech 101 database 

together with their class labels 

 

 

Table 1. Description of used datasets 
Dataset Name Number of Images Class Number of Images In Each Class Image Size 

WANG 1 1000 10 100 256×384 

WANG 2 10000 100 100 256×128 

Caltech 101 9146 101 40-800 300×200 
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3.2.  Benchmarking 

The benchmarking refers to the most imperative steps that ought to be used in most of the image 

processing research with the intention of determining the developed techniques’ reliability and effectiveness 

compared to the current one. Typically, the benchmarking is attained either by using similar dataset or using 

algorithms utilized in no different problem domain. The benchmarking is also performed with the use of the 

best and famous methods since in the literature, there was retrieval of image. A number of benchmarking 

techniques that use similar standard dataset are enlisted in Table 2. 

 

 

Table 2. Existing methods for benchmarking  
Dataset Name Benchmarking 

WANG 1 ElAlami  [28], Lin  [29], Wang  [25] 

WANG 2 Shrivastava & Tyagi [30] 

Caltech 101 Bosch [31] 

 

 

3.3.  CNN network architecture 

Following the collection of all the data, the convolutional architecture, having completely connected 

layers was deliberated as the avoidance architecture. In designing the recommended model configuration, 

the Krizhevsky principles [24] were applied, in which the source code might be seen [27]. 

The aforementioned generic design followed the configuration [24]. Figure 11 illustrates the suggested 

configuration, in which the images were passed via a stack of 4 convolutional (conv.) layers, where a (3×3) 

feature map size was applied for the conv. layers (this is a virtuous size for center, right/left, down/up). 

There were diverse number of pooling layers and conv. The initial two conv. layers applied 32 kernel filters; 

whereas the final two conv. layers applied 64 kernel filters. Max-pooling’s two layers separated every 

convolution’s step. This combination helped the models to mutually benefit from and upgraded the proposed 

configuration’s performance, leading to the retrieval of image. 

The conv. Layer was followed by the flattened layer (having architectures with diverse depths) and 

this assisted to transform into a vector the 2D matrix data. This gave room for the processing of the output 

with the completely-connected layers, referred to as dense layers. The initial completely-connected layer 

contained 256 nodes, whereas the second fully-connected layer was built using 128 nodes. The regularization 

layer applied dropouts and was configured to randomly omit 50 percent of the neurons with the intention of 

reducing overfitting. The final layer was designed by the softmax layer [14, 24, 23]. 

 

 

 
 

Figure 11. The recommended CNN configuration  
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a. CBIR based of merging and combine multi CNN: 

CBIR refers to a powerful device for retrieval of image. During translating an image into 

mathematical variables, major components of the technique are the illustrations that are applied. A number of 

image presentation and descriptors are corresponding to other descriptors; therefore if the combination is 

applied, better results could be produced. This opinion implies that diverse descriptors could create diverse 

outcomes for retrieval of image, and integrate several image presentations to combine and merge multi 

convolutional neural network model, which could enhance the CBIR model’s performance. The fundamental 

perception is accumulating in one CNN a variety of knowledge sources and features.  

Deep learning does perform better than other machine learning algorithms as the empirical results 

suggest.  Some has suggested that is because it loosely mimic the brain functions, multiple layers of neural 

networks stacked one after another like the classical brain model. However, until now there is no robust 

theoretical background for deep learning [8, 9, 11, 13], otherwise Deep Learning machines usually work 

better than traditional ML tools because they also learn the feature extraction part. Deep learning methods 

aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the 

composition of lower level features. Automatically learning features at multiple levels of abstraction allow a 

system to learn complex functions mapping the input to the output directly from data, without depending 

completely on human-crafted features [13, 14].  In image recognition, for example, the traditional setup is to 

extract handcrafted features and then feed a SVM. On the contrary, deep learning CNN schemes also 

optimize the features that are extracted which largely explains why they perform better. The most important 

difference between deep learning and traditional machine learning is its performance as the scale of data 

increases. When the data is small, deep learning algorithms don’t perform that well. This is because deep 

learning algorithms need a large amount of data to understand it perfectly. On the other hand, traditional 

machine learning algorithms with their handcrafted rules prevail in this scenario.  

By understanding the problem Statements which has been discussed earlier, the CBIR try to 

measure the similarities of images. Since the traditional CBIR systems still suffer from their poor retrieval 

accuracy and sensitivity, more works are still required to develop new approaches for the area of similarities 

of images measurement. Therefore, this research raises several challenges, such as improving the retrieval 

accuracy and enhancing the image descriptors and features extraction step.  

The concepts of combining and merging multi convolutional neural network model have employed 

to develop a novel CNN-SLT-CBIR model according to SLT presentation combination with CNN model 

with the intention of enhancing and improving the recommended CBIR model’s performance. The general 

CNN-SLT-CBIR model’s framework based on combination of SLT with CNN is illustrated in Figure 12. 

 

 

 
 

Figure 12. The general framework of CNN-SLT-CBIR model 

 

 

Development of CNN-SLT-CBIR model with the use of SLT image presentation combined with 

CNN model with the intention of developing novel CBIR model. The researchers introduce a new CNN 

architecture that joins information from two presentation of an image into a compact and single image 

descriptor that offers even better retrieval of image. 
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4. EXPERIMENTAL OUTCOMES 

In the Theano, the recommended code has been executed [28], which is a public deep learning 

software, according to the Keras [29]. In the neural networks, the weights were initialized according to the 

settings of Keras. In the deep network, all layers were simultaneously initialized using ADADELTA [30]. 

The entire network was trained with the use of the Dell Precision T1700 CPU system using the professional-

grade NVIDIA-Quadro discrete graphics and a 14GB memory.  

 

4.1.  Evaluation measures 

The performance of a retrieval system is assessed according to a number of criteria. Some of the 

commonly applied performance measures are average Accuracy and average precision. All these strictures 

are calculated with the use of precision and Accuracy values calculated for every query image. The retrieval 

precision is described as the fraction of the retrieved images that are definitely pertinent for the query. 

The Accuracy and precision measures are applied in assessing the image retrieval’s performance 

recommended system. They produce: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
  and   𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 
Whereby, False Positive (FP), True Negative (TN), True Positive (TP) and False Negative (FN) have 

their own implication.  

 

4.2.  Result 

The researcher in this study recommended new CBIR model according to the image and merging 

with presentation of SLT, which was a new CBIR. CNN-SLT-CBIR refers to a convolutional neural network, 

with a novel image representation, and is applied for retrieval of image. In addition, it is a deep learning 

system integrating the information of image. The recommended CNN-SLT-CBIR method was therefore 

associated with 5 other CBIR model existing in the literature.  

This subsection introduces discussions and outcomes of performance measures of the recommended 

CNN-SLT-CBIR method. Concerning that, experiments’ series were carried out with the use of three 

standard datasets, Caltech 101, Wang V1.0 and Wang V2.0. In accordance with standard practices in the 

retrieval of image domain, this study puts more emphasis on precision and accuracy with the intention of 

measuring the value of having high consistency and accuracy of the recommended technique. 

For a fast grasp of the performance assessment, the outcomes are given in the form of tables and 

Figures, benchmark, and lastly discussions and analyses. With regard to that, the entire outcomes are given in 

Tables 3, 4 and 5 together with its boxplot diagram in Figure 13 were carried out with the use of three 

standard datasets, Caltech 101 Wang V2.0 and Wang V1.0. 

 

 

Table 3. Accuracy and precision of retrieved images acquired by the CNN and CNN-SLT methods 

for the above ten classes of WANG V1.0 dataset 

Classes 
CNN CNN-SLT 

Accuracy Precision Accuracy Precision 

Africa 0.9331 0.716 0.9401 0.753 

Beach 0.9235 0.6443 0.9335 0.6743 

Monuments 0.9515 0.7837 0.9555 0.8057 

Buses 0.9736 0.896 0.9826 0.918 

Dinosaur 1 1 1 1 

Elephant’s 0.9532 0.8003 0.9622 0.8303 

Roses 1 1 1 1 

Horse 1 1 1 1 

Mountains 0.9349 0.7117 0.9379 0.7387 

Food 0.926 0.6613 0.93 0.6883 

Average 0.95958 0.82133 0.96158 0.84833 
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Table 4. Accuracy and precision of retrieved images attained by the CNN and CNN-SLT techniques 

for the above ten classes of WANG V2.0 dataset 

Classes 
CNN CNN-SLT 

Accuracy Precision Accuracy Precision 

Accordion 1 1 1 1 

Airplanes 1 1 1 1 

Beaver 0.9919 0.9257 0.9979 0.9507 

Binocular 0.9907 0.9263 0.9947 0.9473 

Bonsai 0.994 0.957 1 1 

Brontosaurus 0.9905 0.9067 0.9985 0.9307 

Buddha 0.9928 0.922 0.9958 0.945 

Camera 0.9952 0.9653 1 1 

Cannon 0.9855 0.8603 0.9915 0.8873 

Cellphone 1 1 1 1 

Chair 0.9885 0.914 0.9975 0.951 

Chandelier 0.9932 0.9317 0.9972 0.9547 

Cougar_Body 0.9754 0.7513 0.9824 0.7693 

Cougar_Face 1 1 1 1 

Crab 0.9945 0.946 0.9965 0.962 

Crayfish 0.9797 0.799 0.9807 0.824 

Crocodile 0.9853 0.8523 0.9913 0.8763 

Crocodile_Head 0.9838 0.8373 0.9908 0.8653 

ad     

Cup 1 1 1 1 

Dalmatian 0.9924 0.9367 1 1 

Dollar_Bill 0.9931 0.9367 0.9961 0.9567 

Dolphin 0.9877 0.8737 0.9897 0.8847 

Average  0.995 0.9202 0.998 0.9482 

 

 

Table 5. Accuracy and precision of retrieved images attained by the CNN and CNN-SLT methods 

for the above ten classes of caltech dataset 

Classes 
CNN CNN-SLT 

Accuracy Precision Accuracy Precision 

Accordion 1 1 1 1 

Airplanes 1 1 1 1 

Beaver 0.9919 0.9257 0.9979 0.9507 

Binocular 0.9907 0.9263 0.9947 0.9473 

Bonsai 0.994 0.957 1 1 

Brontosaurus 0.9905 0.9067 0.9985 0.9307 

Buddha 0.9928 0.922 0.9958 0.945 

Camera 0.9952 0.9653 1 1 

Cannon 0.9855 0.8603 0.9915 0.8873 

Cellphone 1 1 1 1 

Chair 0.9885 0.914 0.9975 0.951 

Chandelier 0.9932 0.9317 0.9972 0.9547 

Cougar_Body 0.9754 0.7513 0.9824 0.7693 

Cougar_Face 1 1 1 1 

Crab 0.9945 0.946 0.9965 0.962 

Crayfish 0.9797 0.799 0.9807 0.824 

Crocodile 0.9853 0.8523 0.9913 0.8763 

Crocodile_Head 0.9838 0.8373 0.9908 0.8653 

Cup 1 1 1 1 

Dalmatian 0.9924 0.9367 1 1 

Dollar_Bill 0.9931 0.9367 0.9961 0.9567 

Dolphin 0.9877 0.8737 0.9897 0.8847 

Average 0.995 0.9202 0.998 0.9482 

 

 

In this research, according to the experiment, it is witnessed that a number of the retrieved images 

are discrete from their query images. This is anticipated since image texture computes roughness or 

smoothness of the image in contradiction of physical appearance, defining features or traits, which is the first 

thing someone realizes when he looks at the image, (which could be shape, object or color). 

Beginning with outcomes of the models CNN-SLT and CNN are illustrated in Tables 3, 4 and 5. 

Figures 13 show comparison of precision values and the precision correspondingly; for the CNN-SLT and 

CNN models that use boxplot diagram for the three datasets applied in this research. 
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(a) 

 
 

(b) 

 

Figure 13. Comparison of the values for the CNN and CNN-SLT models using boxplot diagram for the three 

datasets used in this research: (a) Precision, and (b) Accuracy 

 

 
Generally, Figure 13 and Tables 3, 4 and 5 clearly illustrate that the accuracy attained by the  

CNN-SLT is far better as compared to the CNN, as high accuracy is maintained whereby; the Caltech dataset 

scored impeccable outcomes in both precision and accuracy. The substantial enhancement of the precision is 

primarily attributed to the fine texture features revealed by the Slantlet convert joined with CNN deep 

learning technique. 

Figure 13 described the Boxplot chart results after comparing the Precision and Accuracy values of 

the CNN and CNN-SLT Models using the Three Datasets Used in this Research. The CNN algorithm showed 

a higher variance, compared to the CNN-SLT for the three datasets. This diversity in all Precision and 

Accuracy values was especially seen in the WANG V1 data that displayed a variance of 7.5×10-3. 

Furthermore, the CNN-SLT algorithm showed a high Precision value of 0.99. The results showed a small 

p-value of 8.2×10-2, which highlighted a significant difference between both models. 

Associated to the preceding study several authors for instance, Wang and Elhami design system 

according to special domain and feature extraction, as well as combining it with frequency domain methods 

to enrich the results of retrieval of image and attain high average of precision. In our recommended system 

however, that based on deep learning CNN, joined with Slantlet transfer to enrich the extracted feature from 

color channel attained highest precision. The precision of the proposed system as well as other system is 

illustrated in Table 6 below. 

 

  

Table 6. The proposed method versus the State-of-the-Art techniques in terms of precision 
Dataset Name CNN-SLT CNN Shrivastava & Tyagi [30] ElAlami  [28] Lin  [29] Wang  [25] Bosch [31] 

WANG V1.0 0.84833 0.82133 n/a 0.739 0.727 0.59 n/a 

WANG V2.0 0.8733 0.8413 0.769 n/a n/a n/a n/a 

Caltech 1 0.9482 0.9202 n/a n/a n/a n/a 0.627 

 

 

The outcomes of the benchmark, given in Table 6 above, have evidently illustrated that the 

recommended technique outdid the others with precision gaps fluctuating between 25.83% and10.93 percent 

for Wang V1.0 dataset. For Wang V2.0 however, the recommended technique has up surged by 10.43 

percent. On the other hand, for Caltech 101 dataset the recommended technique has substantial outperformed 

Bosch work with larger percentage, 32.12 percent. This impressive performance clearly revealed that the 

CNN-SLT method operated well for all the three datasets, whereby the CNN (preceding phase) and the 

CNN-SLT (subsequent phase) worked together amicably. 

 

 

5. CONCLUSION 

This part resolves the accomplishments of the recommended research technique in accomplishing 

the objectives and handling the research gaps. We assessed deep learning convolutional networks for image 

retrieval in this work. For the retrieval accuracy, it was established that the representation multi image 

presentation is not rewarding. The precision’s substantial improvement is primarily accredited to the fine 
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texture characteristics unveiled by the Slantlet transform joined with CNN deep learning technique. There are 

still lots of complicated matters that have not been resolved, for instance, low precision and false positive 

(false matching). Against the backdrop therefore, this study has recommended a CNN methodology. 

In enhancing the CNN model, the former applied Slantlet transform-based characteristics. The two worked 

together amicably in order to achieve high accuracy and high precision.  In addition, this study’s findings 

showed that texture characteristics are trustworthy and proficient in production of outstanding outcomes and 

not vulnerable to low resolution as illustrated in the outcomes of Wang V2.0 dataset. It as well verified that 

spatial-based texture only could not attain the desired accuracy. This study has therefore demonstrated that 

the perfect mate is the SLT-based texture feature.  
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