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 This paper proposes an improved Convolutional Neural Network (CNN) 

algorithm approach for license plate recognition system. The main 

contribution of this work is on the methodology to determine the best model 

for four-layered CNN architecture that has been used as the recognition 

method. This is achieved by validating the best parameters of the enhanced 

Stochastic Diagonal Levenberg Marquardt (SDLM) learning algorithm and 

network size of CNN. Several preprocessing algorithms such as Sobel 

operator edge detection, morphological operation and connected component 

analysis have been used to localize the license plate, isolate and segment the 

characters respectively before feeding the input to CNN. It is found that the 

proposed model is superior when subjected to multi-scaling and variations of 

input patterns. As a result, the license plate preprocessing stage achieved 

74.7% accuracy and CNN recognition stage achieved 94.6% accuracy. 
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1. INTRODUCTION  

License plate recognition (LPR) system [1]-[3] has been extensively utilized as a part of real life 

applications such as criminal pursuit, automatic toll collection [4] and enhancing of Automated Enforcement 

System (AES) performance which aims to control traffic efficiency. In terms of security, LPR has been used 

in traffic management to detect the owner of the car who has breached the traffic laws and to find stolen 

vehicles. LPR system is also used for access control to enter a building. The Automatic LPR system was 

introduced in 1979 at the Police Scientific Development Branch in United Kingdom for security purposes. 

Image processing is the main technique to be used in LPR recognition system. Developing the LPR 

system using image processing is challenging due to limited ability to deal with multi-scaling since the LPR 

image can appear to be dirty, motion blur, poor resolution, poor lighting, low contrast and etc. The license 

plate can also appear to be dirty and motion blur. There are five primary stages to identify a license plate. 

Initially, localization technique is used to find and isolate the license plate on the input image. This is 

followed by plate orientation to compensate the skew condition of the plate and resizing to adjust the 

dimensions to the required size respectively. Then, image normalization will be performed to adjust the 

brightness and contrast of the image. The character segmentation intends to segregate individual character 

from the license plate.  

The recognition part of the LPR system has almost a routine algorithm. It involves adaptive 

thresholding, component labeling, feature extraction and classification. Among the five major parts, the 

character recognition process is the most challenging part. This is because, the recognition of the characters is 

highly dependent on the type of algorithms applied in the first four major parts. In fact, the segmented 
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characters can appear in various looks. Therefore, a robust character recognition method is required and CNN 

has possibility solve to the mentioned challenges.  

CNN is well-known as a scale and rotation invariant in pattern recognition tasks. CNN accepts raw 

images that have been preprocessed with the minimal preprocessing algorithm and train the input samples in 

supervised mode. It combines compression (dimensionality reduction), feature extraction and classification 

processes in a single architecture. Until now, CNN has been applied to various applications such as face 

detection [5]-[10], face recognition [11]-[15], gender recognition [16]-[19], object classification and 

recognition [20]-[22], character recognition [23]-[25], texture recognition [26], finger-vein [27], etc. Despite 

the listed advantages, CNN has limitations in terms of cost and speed. This is due to the compute intensive 

image processing algorithm being incorporated in the design such as convolution and subsampling. The 

convolution process takes almost 90% of the processing time [28]. Therefore, in order to overcome the 

limitation, designing a small CNN size could aid in reducing the processing time. 

The LPR using CNN has been reported in [29]. However, the characters are manually segmented 

while the real problem of LPR started from the preprocessing stage. In [30], they implemented LeNet-5 

architecture with 7 layers by inserting the whole license plate as input and reported 98.25% accuracy. This 

work classifies between the license plate and non-license plate and not recognizing the characters. They used 

2400 license plates and 4000 non-license plate dataset and divided into train and test dataset. Besides, the 

accuracy rate on license plate detection is incomparable with this work have shown that system performed at 

the other researches improved on the preprocessing part to improve the result obtained on recognition. 

In [31], they proposed two local binary methods, which are local Otsu and an improved Bernsen 

algorithm. Connected Component Analysis (CCA) is used for binary images searching in an  

eight-connectivity situation. Besides, according to [32], the labelling algorithm uses a ‘4-connectivity’ 

method to mark the group of connected pixels and labels them using different numbers. For the recognition 

part [33], used template matching and achieved the accuracy of 87%. Based on [34], the character region is 

calculated by using variance projection algorithm. This is used to enhance its noise immunity and improve 

the segmentation accuracy. An iterative mean filter is used to smooth the original vertical variance projection 

graph in order to find the corresponding peak to determine the number of character in the license plate. The 

accuracy achieved unsatisfied. 

 

 

2. METHODOLOGY 

2.1.  Database collection 

In fact, the license plate dataset are difficult to obtain since their privacy concern. Therefore the 

images of vehicle license plate are randomly captured around Malacca area as datasets. The images are set up 

as RGB, 256 bit with 1280x800 resolution. The dataset taken exceed 1000 of RGB images. 700 of 1000 are 

used as training and the remaining as testing dataset. 

 

2.2.  LPR system flowchart 

According to Figure 1, it is illustrated the flow chart of overall LPR system phases. The detail 

algorithm of enhanced SDLM can be referred in [35]. MATLAB and C language has been used as the 

platform. The overall system consists of three main phases: Preprocessing, Segmentation and Character 

Recognition. The uniqueness of this approach compared to other existing works on Malaysian’s license plate 

is the implementation of CNN at the recognition part. The whole methodology will be explained in next 

sections. 
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Figure 1. Flow chart of LPR system 

 

 

2.3.  Preprocessing 
Preprocessing is the initial stage of image processing tasks to enhance the quality of the image. In 

this stage, noises are reduced and unwanted features are eliminated to ease the burden of the CNN at the 

recognition stage. The preprocessing steps involve for LPR includes the following sequence. 

 

2.3.1.  License plate localization 
The captured images are in RGB format. The images are converted to grayscale to ease the 

computational process (Figure 2). After that, the grayscale images are processed by Sobel operator edge 

detection. A threshold of the edge detection is set in order to decrease the sensitivity. By doing this, the edges 

that are not significant will be ignored. Two histogram graphs are produced based on the edge detection 

process. The histogram graph represents the column-wise and row-wise histogram of the image as shown in 

Figure 3. 

 

 

 
 

Figure 2. Conversion from RGB into 

grayscale image  
Figure 3. License plate localization using Sobel operator edge 

detection (a) Histogram of column-wise 

(b) Histogram of row-wise 
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In the column-wise graph, the histogram calculates the number of pixels at the column part of the 

diagram. In this histogram, the license plate and character edges are traced. A threshold is set to ignore 

those that are not license plate candidates. In the row-wise graph, the higher the number of edges in 

horizontal of the image will create high peaks. With the mean threshold of edges, the location of the license 

plate can be determined. The final outcome of the license plate localization as shown in Figure 4. 

 

2.3.2.  Character isolation 

When the location of the license plate is determined, the height and width are calculated and cropped 

out. The license plate image is cropped directly from the original input image which is in RGB format. After 

that, the license plate is converted into the grayscale format and finally to binary format for morphological 

operation. Morphology operation can be used to remove the unwanted noise and isolate the characters from 

the license plate. In the next step, a rectangle structuring element is created. The dilation and erosion 

processes are used to separate the foreground and background pixel of the license plate image. The dilation 

process enlarges the foreground pixel while the erosion shrinks the foreground pixel. By applying subtraction 

of these two output processes, the edge of the foreground pixel can be obtained. Furthermore, through 

convolution and contrast color adjusting, the foreground object will be more significant. Finally, the 

character of the license plate character and background area can be differentiated and filtered out. The final 

outcome in process character isolation is shown in Figure 5. 

 

 

  
 

Figure 4. Output of license plate localization 

 

Figure 5. License plate isolation using 

Morphological operation 

 

 

2.3.3.  Character segmentation 

After implementing the previous step, the remaining items in the image are only characters. By this, 

Connected Component Analysis is used to segment the characters using connected pixel in the image. Each 

of the characters segmented into an individual image for recognition. The output of the character 

segmentation process is shown in Figure 6. 

 

2.3.4.  Character resize and padding 
The segmented characters are being resized into 18×8 pixel size to reduce the complexity of the 

image. Besides that, the image is further padding by 2 pixels on the surrounding of the image to become 

22×12 pixel image. Padding is carried out to ensure that all the features are available during the recognition 

process. The image after padding is shown in Figure 7. 

 

 

  
 

Figure 6. Each of the character is segmented 

into one image 

Figure 7. Characters image is resized and 

padded into 22×12 pixel image 

 

 

2.3.5.  Normalization 

In CNN recognition system, the image is trained using numeric data of the image. The accepted 

range of the numeric data is from -1 to 1. The min-max normalization is applied to the input images to 

rescale within the mentioned range. The equation of the min-max normalization is shown below: 

 

2.4.  Character recognition  

Character recognition is the second stage after preprocessing. In this stage, all the characters are in 

numeric data form and can be the input for CNN system. 

The final output of the preprocessing stage is a set of 22×12 pixels of the image to feed the CNN 

architecture. The CNN model used in this work is a four-layered architecture. The first and second layer 
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applied to the fusion method proposed by Mamalet and Garcia. In order to find the best architecture model 

and the best parameters, 10-fold cross-validation technique has been used. 

A total of 80% from the overall sample have been used for 10-fold cross-validation technique. The 

initial weight used for training and validation are the same for all experiment to ensure a fair evaluation. 

There are few parameters tested using 10-fold cross validation. The parameters include the number of 

feature map at each layer, the pattern of connection of the first layer and second layer,  type of weight, value 

of the regulated parameter and the 𝛾-constant (Figure 8). 

 

 

 
 

Figure 8. Mean square error versus feature map graph 

 

 

2.5.  LPR system developed in MATLAB GUI 
In order to create a user friendly LPR system, the program is developed in MATLAB software and 

using a MATLAB Graphical User Interface (GUI) for the system representation. As shown in Figure 9, the 

GUI is a platform to provide a user friendly interface and improve the sustainability of this system. 

 

 

 
 

Figure 9. LPR system GUI 

 
 

3. RESULTS AND DISCUSSION 

3.1.  CNN architecture analysis 

3.1.1.  Feature map 
From the Figure 10, there are 12 feature map configurations are being tested through 10-fold  

cross-validation. The 12 configurations include 3-14-60, 4-14-60, 4-15-60, 5-11-60, 5-12-30, 5-12-40,  

5-12-50, 5-12-60, 5-13-60, 5-14-60, 5-15-60 and 6-14-60. Equation (1) and Equation (2) indicates the sizes of 

the output map (Mx, My), in x and y direction and the convolution/subsampling process respectively. 
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where   yx kvkuNvuK  0;0|, 2 , , kx and ky are the width and the height of the convolution 

kernels wji
(l) of layer (l) and bj

(l) is the bias of feature map n in layer(l), c and r refers to the current pixel and p 

refers to the particular training sample. The set Mj
(l-1) contains the feature maps in the preceding layer(l-1) 

that are connected to feature map n in layer (l). The notation f is the activation function of layer(l). The 

variable u and v describes the horizontal and vertical step size of the convolution kernel in layer(l). 

 

 

 
 

Figure 10. Final architecture of CNN model 

 

 

The initial feature map in C1, C2 and C3 layers is 5, 14 and 60 features maps. Meanwhile the 

output layer contains 33 neurons since there are a total of 33 character classes for Malaysian license plate. 

But the number of feature maps at C1, C2 and C3 layer can vary to suit to the complexity of the input 

image. Figure 10 is the final result after testing each feature map configuration.  

 

3.1.2.  Connection pattern 

There are 6 types of pattern connection between C1 and C2 layer as shown in Table 1. The 

selection of connection in every layer is evaluated by the lowest validation error in these 6 types of 

connection. Each type of connection is be tested from the first column to the last column in a sequential 

manner. The lowest validation error among six types of connection will be chosen. Throughout the 10-fold 

cross-validation, the best connection pattern is as shown in Table 2. 

 

 

Table 1. Connection between C1 and C2 layers 
 

Layer Connection 

1st layer 0 0 × × × 

2nd layer × 0 × 0 × 

3rd layer 0 × × × × 

4th layer × 0 × 0 × 

5th layer × × × × 0 

6th layer 0 × × × × 

7th layer 0 0 × × × 

8th layer 0 0 × × × 

9th layer 0 × × × × 

10th layer 0 0 × × × 

11th layer 0 × × × × 

12th layer × × × × × 

Table 2. Six Type of Connection 
 

Type of connection Pattern 

Connection 1 × × × 0 0 

Connection 2 0 × × × 0 

Connection 3 0 0 × × × 

Connection 4 × 0 × 0 × 

Connection 5 × × × × 0 

Connection 6 0 × × × × 
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3.1.3.  Type of weight selection 

The weight initialization is carried out by using 10-fold cross-validation. There are 4 types of weight 

being tested namely Gaussian, Nguyen, Fan-in and uniform. From Table 3, the Gaussian weight produces the 

best accuracy which is 81.48% for recognition. Therefore, Gaussian weight has been used for the rest of the 

testing. 

 

 

Table 3. Type of weight versus accuracy 
Types of weight Accuracy (%) 

Gaussian 81.48 

Nguyen 48.00 
Fan-in 0.00 

Uniform 59.00 

 

 

The learning algorithm used in training the CNN is an enhanced version of Stochastic Diagonal 

Levenberg Marquadt (SDLM) [35] algorithm. This learning algorithm is better than standard 

backpropagation in which it avoids the gradient from getting trap into the local minima. As a result when 

SDLM algorithm is used, a smoother error gradient is achieved. In the mentioned algorithm, there are two 

parameters need to be tuned namely regularization, parameter μ and the 𝛾 parameter. 

 

3.1.4.  Regularization parameter 

The regularization parameter is the parameter of the learning algorithm which is SDLM. This 

parameter can vary from 0.04 until 0.09. The outcome of each value of the regularization parameter is shown 

in Figure 11. 

From Figure 11, the regularization parameter = 0.04 has produce the lowest mean square error 

(MSE) in comparison to others. Therefore, 0.04 is the best value to be used for license plate recognition. 

According to the graph, the feature map 5-12-60 performance is higher than other configuration which also 

including the initial feature 5-14-60. Through this experiment, a best feature map configuration is obtained 

which is 5-12-60. 

 

 

 
 

Figure 11. Mean square error versus regulation parameter graph 

 

 

3.1.5.  y–constant 

𝛾-constant is also the parameter from SDLM learning algorithm. The value of the 𝛾-constant can 

either be 0.1, 0.01 or 0.001. The result of the performance is obtained by the accuracy of recognition during 

validation by using 10-fold cross-validation experiment. The Table 4 showed that the 𝛾-constant 0.01 having 

the highest accuracy of recognition which is 81.48%. So that, 𝛾-constant = 0.01 is used in the CNN 

recognition system. 

This result can be further improved if the problem at the preprocessing part has solved. Table 5 

shows the accuracy of preprocessing and CNN recognition. 
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Table 4. 𝛾-constant versus Accuracy 
Value Accuracy (%) 

0.1 70.37 

0.01 81.48 

0.001 77.78 
 

Table 5. Accuracy of LPR System 
Process Accuracy (%) 

Preprocessing 74.7% out of 300 samples 

CNN recognition 94.6% out of 528 samples 
 

  

 

3.1.6.  Performance of the designed LPR system 
In this paper, two types of accuracies are taken at different stages. The first accuracy is taken at the 

preprocessing part the system and the second one is taken at the classification stage. The classification result 

is taken according to the number of characters successfully recognized. 

Table 5 describes that the preprocessing part achieves 74.7% out of 300 samples tested which does 

not achieve the expectation level. The preprocessing algorithm needs to be further improved in order to 

effectively filter out noises such as environment factor (illumination) to achieve higher accuracy. The 

preprocessing process is prominent because whenever the LPR system failed to preprocess the input image 

correctly, the accuracy will be affected at the classification stage. 

CNN able to achieve 94.6% out of 528 samples tested. This CNN recognition designed model has 

achieved the expectation level that can practically use in future. The CNN recognition can be considered as a 

robust recognition technique to be used in license plate character recognition. 

 

 

4. CONCLUSION 

A LPR system using the CNN recognition method is successfully developed. The preprocessing 

stage of LPR system that is developed in MATLAB software has successfully merged with the CNN 

recognition system in C language. This system needs improvement at the preprocessing stage to achieve a 

better accuracy level. For future recommendation, this proposed work can be used to enhance the AES in 

Malaysia. Currently the AES is used to capture the vehicle that exceeds the speed limit only. The analysis of 

the captured images is done by human.  
 

 

ACKNOWLEDGEMENT 
Authors would like to thank Universiti Teknikal Malaysia Melaka (UTeM) for supporting this 

research under PJP/2018/FKEKK(9D)/S01622. 
 

 

REFERENCES 
[1] N. A. Bakar, et al., “Malaysian Vehicle License Plate Recognition Using Double Edge Detection,” 2012 IEEE 

International Conference on Control System, Computing and Engineering, Penang, pp. 422-426, 2012. 

[2] M. F. Zakaria and S. A. Suandi, “Malaysian Car Number Plate Detection System Based on Template Matching and 

Colour Information,” International Journal on Computer Science and Engineering, vol/issue: 2(4), pp. 1159–1164, 

2010. 

[3] W. W. Keong and V. Iranmanesh, “Malaysian Automatic Number Plate Recognition System using Pearson 

Correlation,” 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Batu Feringghi, 

pp. 40–45, 2016. 

[4] S. R. Soomro, et al., “Vehicle Number Recognition System for Automatic Toll Tax Collection,” 2012 Int. Conf. 

Robot. Artif. Intell. (ICRAI 2012), pp. 125–129, 2012. 

[5] F. H. C. Tivive and A. Bouzerdoum, “A Face Detection System Using Shunting Inhibitory Convolutional Neural 

Networks,” Neural Networks, 2004. Proceedings. 2004 IEEE Int. Jt. Conf., vol. 4, pp. 2571–2575, 2004. 

[6] C. Garcia and M. Delakis, “Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detection,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol/issue: 26(11), pp. 1408–1423, 2004. 

[7] M. Delakis and C. Garcia, “Training Convolutional Filters for Robust Face Detection,” Neural Networks Signal 

Process. - Proc. IEEE Work., vol. 2003, pp. 739–748, 2003. 

[8] N. Farrugia, et. al., “Fast and Robust Face Detection on a Parallel Optimized Architecture Implemented on FPGA,” 

IEEE Trans. Circuits Syst. Video Technol., vol/issue: 19(4), pp. 597–602, 2009. 

[9] C. Poulet, et al., “CNP: An FGPA-based Processor for Convolutional Networks,” FPL 09 19th Int. Conf. F. 

Program. Log. Appl., vol/issue: 1(1), pp. 32–37, 2009. 

[10] N. Farrugia, et al., “Design of a Real-Time Face Detection Parallel Architecture Using High-Level Synthesis,” 

EURASIP J. Embed. Syst., vol. 2008, pp. 1-9, 2008. 

[11] P. Buyssens and M. Revenu, “Learning sparse face features: Application to Face Verification,” Proc. - Int. Conf. 

Pattern Recognit., pp. 670–673, 2010. 

[12] S. Chopra, et al., “Learning a Similiarty Metric Discriminatively, With Application to Face Verification,” Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit., pp. 349–356, 2005. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 :  2196 - 2204 

2204 

[13] H. Ghiassirad and M. Teshnehlab, “Similarity Measurement in Convolutional Space,” IS’2012 - 2012 6th IEEE Int. 

Conf. Intell. Syst. Proc., pp. 250–255, 2012. 

[14] Y. N. Chen, et al., “The Application of a Convolution Neural Network on Face and License Plate Detection,” Proc. 

- Int. Conf. Pattern Recognit., vol. 3, pp. 552–555, 2006. 

[15] G. B. Huang, et al., “Learning Hierarchical Representations for Face Verification with Convolutional Deep Belief 

Networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2518–2525, 2012. 

[16] S. S. Liew, et al., “Gender Classification: A Convolutional Neural Network Approach,” pp. 1248–1264, 2016. 

[17] F. Hing, et al., “A Gender Recognition System using Shunting Inhibitory Convolutional Neural Networks,” Int. Jt. 

Conf. Neural Networks (IJCNN ’06), pp. 5336–5341, 2006. 

[18] F. H. C. Tivive and A. Bouzerdoum, “A Shunting Inhibitory Convolutional Neural Network for Gender 

Classification,” Proc. - Int. Conf. Pattern Recognit., vol. 4, pp. 421–424, 2006. 

[19] S. F. Abdullah, et al., “Multilayer Perceptron Neural Network in Classifying Gender using Fingerprint Global 

Level Features,” vol/issue: 9(9), 2016. 

[20] C. H. Teo, et al., “A Novel Approach to Improve the Training Time of Convolutional Networks for Object 

Recognition.” Retrive from http://users.cecs.anu.edu.au/~chteo/pub/TeoTayLai05.pdf 

[21] F. J. Huang and Y. LeCun, “Large-scale Learning with SVM and Convolutional Nets for Generic Object 

Categorization,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 284–291, 2006. 

[22] M. M. Piramli, et al., “Rice Grain Grading Classification Based On Perimeter Using Moore-Neighbor Tracing 

Method,” vol/issue: 8(2), pp. 23–27, 1843. 

[23] S. S. Ahranjany, et al., “A Very High Accuracy Handwritten Character Recognition System for Farsi/Arabic Digits 

Using Convolutional Neural Networks,” Proc. 2010 IEEE 5th Int. Conf. Bio-Inspired Comput. Theor. Appl. BIC-

TA 2010, pp. 1585–1592, 2010. 

[24] S. Arora, et al., “Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition,” 

International Journal of Computer Science Issues, vol/issue: 7(3), pp. 1–10, 2010. 

[25] H. Swethalakshmi, et al., “Online Handwritten Character Recognition of Devanagari and Telugu Characters using 

Support Vector Machines,” Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, 

La Baule (France), Suvisoft, pp. 1–6, 2006. 

[26] F. H. C. Tivive and  A. Bouzerdoum, “Texture Classification using Convolutional Neural Networks,” TENCON 

2006 - 2006 IEEE Reg. 10 Conf., Hong Kong, pp. 14–17, 2006. 

[27] A. R. Syafeeza, et al., “A Review of Finger-Vein Biometrics Identification Approaches,” Indian Journal of Science 

and Technology, vol/issue: 9(32), 2016. 

[28] D. R. Tobergte and S. Curtis, “A Unified Architecture for the Detection and Classification of License Plates,” J. 

Chem. Inf. Model., vol/issue: 53(9), pp. 1689–1699, 2013. 

[29] S. A. Radzi and M. Khalil-hani, “Character Recognition of License Plate Number Using Convolutional Neural 

Network,” VIC'11 Proceedings of the Second international conference on Visual informatics: sustaining research 

and innovations, Selangor, Malaysia, pp. 45–55, 2011. 

[30] Z. Zhao, et al., “Chinese License Plate Recognition Using a Convolutional Neural Network,” 2008 IEEE Pacific-

Asia Work. Comput. Intell. Ind. Appl., pp. 27–30, 2008. 

[31] Y. Wen, et al., “An Algorithm for License Plate Recognition Applied to Intelligent Transportation System,” IEEE 

Trans. Intell. Transp. Syst., vol/issue: 12(3), pp. 830–845, 2011. 

[32] X. Zhai, et al., “License Plate Localisation based on Morphological Operations,” 11th Int. Conf. Control. Autom. 

Robot. Vision, ICARCV 2010, pp. 1128–1132, 2010. 

[33] S. Chakraborty, “An Improved Template Matching Algorithm for Car License Plate Recognition,” International 

Journal of Computer Applications, vol/issue: 118(25), pp. 16–22, 2015. 

[34] Y. Ma, et al., “A new algorithm for characters segmentation of license plate based on variance projection and mean 

filter,” Proc. 2011 IEEE 5th Int. Conf. Cybern. Intell. Syst. CIS 2011, pp. 132–135, 2011. 

[35] A. R. Syafeeza, et al., “Convolutional Neural Networks with Fused Layers Applied to Face Recognition,” 

International Journal of Computational Intelligence and Applications, vol/issue: 14(3), 2015. 

 

 

BIOGRAPHIES OF AUTHORS 
 

 

Muhamad Marzuki Piramli was born in Malaysia in year 1992. He was completed bachelor degree 

in Computer Science (Artificial Intelligent) in year 2015 from Technical University of Malaysia 

Malacca (UTeM). Present he is pursuing MSc. in Electronic and Computer Engineering at Technical 

University of Malaysia Malacca (UTeM). His Research includes Deep Learning, Pattern Recognition, 

Machine Learning and Artificial Intelligent. 

  

 

Dr. Syafeeza Ahmad Radzi was born in Malaysia in year 1981. She was awarded degree and M. Eng. 

in Electrical and Electronics Engineering in Technology University of Malaysia (UTM) Johor Bahru, 

Malaysia. She completed Ph. D degree in Electrical Engineering from Technology University of 

Malaysia (UTM) in year 2014. Currently, she is working as Senior Lecturer in the Department of 

Computer Engineering at Technical University of Malaysia Malacca (UTeM). Her research area in 

Embedded System, Pattern Recognition, Machine Learning, Image Processing. 

 


