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ABSTRACT

This paper introduces a speech corpus which is developed for Myanmar Au-
tomatic Speech Recognition (ASR) research. Automatic Speech Recognition
(ASR) research has been conducted by the researchers around the world to
improve their language technologies. Speech corpora are important in de-
veloping the ASR and the creation of the corpora is necessary especially
for low-resourced languages. Myanmar language can be regarded as a low-
resourced language because of lack of pre-created resources for speech pro-
cessing research. In this work, a speech corpus named UCSY-SC1 (University
of Computer Studies Yangon - Speech Corpus1) is created for Myanmar ASR
research. The corpus consists of two types of domain: news and daily con-
versations. The total size of the speech corpus is over 42 hrs. There are 25
hrs of web news and 17 hrs of conversational recorded data. The corpus was
collected from 177 females and 84 males for the news data and 42 females
and 4 males for conversational domain. This corpus was used as training data
for developing Myanmar ASR. Three different types of acoustic models such
as Gaussian Mixture Model (GMM) - Hidden Markov Model (HMM), Deep
Neural Network (DNN), and Convolutional Neural Network (CNN) models
were built and compared their results. Experiments were conducted on dif-
ferent data sizes and evaluation is done by two test sets: TestSet1, web news
and TestSet2, recorded conversational data. It showed that the performance
of Myanmar ASRs using this corpus gave satisfiable results on both test sets.
The Myanmar ASR using this corpus leading to word error rates of 15.61%
on TestSet1 and 24.43% on TestSet2.

Copyright © 201x Insitute of Advanced Engineeering and Science.
All rights reserved.

Corresponding Author:
Aye Nyein Mon
Natural Language Processing Lab,
University of Computer Studies, Yangon, Myanmar.
Email: ayenyeinmon@ucsy.edu.mm

1. INTRODUCTION
Speech is the most natural form of communication among humans. Numerous spoken lan-

guages are employed throughout the world. As communication among human beings is mostly done
vocally, it is natural for people to expect speech interfaces with the computer. Automatic speech
recognition (ASR) means the conversion of spoken words into computer text. A lot of automatic
speech recognition research is currently being conducted by the researchers around the world for their
languages [1] [2]. Current ASR system use statistical models constructed on speech data. Therefore,
speech corpus is important for statistical model based automatic speech recognition and it affects
the performance of a speech recognizer. For well-resourced languages, speech researchers have used
publicly available resources from online. However, for low-resourced languages, they have to build
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the corpora by themselves for developing the ASR systems [3] [4]. They used online resources such as
broadcast news, daily conversational data, etc., or the data are recorded by themselves for developing
the ASR.

Myanmar language can be considered as a low-resourced language regarding the linguistic
resources available for NLP. Lack of proper data is the main problem when it comes to speech recog-
nition research in the Myanmar Language. Therefore, speech corpus is needed to build for developing
Myanmar ASR. This gives impetus to build the speech corpus for Myanmar language. There was our
work done in developing a speech corpus for Myanmar language [5]. In the work, speech data was
collected only from specific domain, web news. The total length of the speech corpus is 20 hrs. It
involves 126 females and 52 males, totalling 178 speakers. There are 7,332 utterances in the corpus,
which are collected from local and foreign news. The corpus was used in developing Myanmar contin-
uous speech recognition. It was evaluated on two test sets: web data and news recorded by 10 natives.
It yielded 24.73% WER on TestSet1 and 22.59% WER on TestSet2.

In this task, the domain of the speech corpus is extended. The speech corpus is named as
"UCSY-SC1" and it is constructed by using two types of domain: web news and daily conversations.
The web news data size is increased to 25 hrs.The web news is the already recorded data collected
from the web. Its sentences are longer than the conversation sentences. This corpus consists of daily
conversational data. The shorter daily conversation sentences are obtained from ASEAN language
speech translation thru' U-Star1 and the web. They are recorded by ourselves using the recording
device. They are very short sentences. There are 17 hrs of conversational data. Thus, the total speech
corpus size is over 42 hrs. This corpus is used as training data and the experimental results of GMM,
DNN and CNN with sequence discriminative training approaches are presented. This is a milestone
for Myanmar ASR development.

This paper is organized as follows. The introduction to Myanmar language is presented in
Section 2. A speech corpus developed for Myanmar language is explained in Section 3. Evaluation on
the corpus is done in Section 4. Conclusion and future work are summarized in Section 5.

2. NATURE OF MYANMAR LANGUAGE
Myanmar Language (formerly known as Burmese) is the official language of Myanmar. The

Myanmar script derives from Brahmi script of South India. Myanmar text is a string of characters
without any word boundary markup. There are no spaces between words in Myanmar language.
Myanmar language has 33 basic consonants, 12 vowels, and 4 medials. Phonology is a system of
the combination of vowels and consonants. Myanmar phonology is structured by just one vowel, or
one vowel and consonant, consonant combination symbols. The vowels have their own sounds in
Myanmar language. Therefore, just only one vowel can produce clear sound such as အ /a/̰၊ အာ /à/၊ အား
/á/. Myanmar consonants have no clear own sound and if it is combined with a vowel, it can produce
the clear sound. Example is 'က' /k/ + 'အား' /á/ = 'ကား' /ká/. The 12 basic vowels are အ /a/̰, အာ /à/, အိ
/ḭ/, အီ /ì/, အ /ṵ/, အ /ù/, ေအ /èi/, အဲ /ɛ́/ ေအာ /ɔ/́, ေအာ် /ɔ/̀, အံ /àɴ/, အိ /ò/. Myanmar syllables are basically
formed by the consonant and vowel combination [6]. As an example, consider the combination of 'အ '
/ù/ vowel and 'က' /k/ consonant makes one syllable 'က ' /kù/ as 'က' /k/ + 'အ ' /ù/ = 'က ' /kù/.

3. UCSY-SC1 SPEECH CORPUS BUILDING
Building a speech corpus is the first step for developing any automatic speech recognition

(ASR) system, especially for low-resourced languages, and it is crucial for the statistical ASR system.
Moreover, the accuracy of a speech recognizer depends on the speech corpora. Speech corpora for
well-resourced languages such as English are publicly available for ASR research. However, being a
low-resourced language, Myanmar language has no existing speech corpora. A speech corpus can be
built mainly in two methods. The first method is to gather the speech that has already been recorded
and manually transcribe it into text. The second method is to create the text corpus first and record
the speech by reading the collected text [7].

1http://www.ustar-consortium.com/qws/slot/u50227/index.html
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3.1. Collecting the Data from the Web News
The first approach is used to collect the web news data. Today, the internet has various

resource types, for example, social media, blogs, twitter, and new portals, which offer a lot of speech
data and which can be freely downloaded. Moreover, it has been proved that the corpora created on
internet resources yielded promising results [8] [9]. Therefore, speech data was collected first from the
web news. The duration of the web data collecting process lasted one year and it involved two persons
including the author.

3.1.1. Speech Corpus Preparation
The web news is downloaded from the sites of Myanmar Radio and Television (MRTV),Voice

of America (VOA), facebook pages of Eleven broadcasting, 7days TV, ForInfo news, GoodMorn-
ingMyanmar, British Broadcasting Corporation (BBC) Burmese news and breakfast news. Both local
and foreign news are contained in the corpus. The web news videos are converted to wave file format.
After that, the audio files are segmented with Praat2. All the audio files are formatted with sample
frequency 16,000 Hz and mono channel. The length of each audio file is between 2 seconds and 30
seconds.

3.1.2. Speaker Information
The news presenters are professional, well-experienced and well-trained. Therefore, they have

clear voice in news broadcasting. Female news presenters are dominant in the web news. Hence, in
this corpus, fewer male speakers are involved than females. The ages of the speakers are under 35.

3.1.3. Text Corpus Preparation
Most of the broadcast news items from the web have transcriptions. However, the transcrip-

tions are manually done if they are not available and Myanmar3 Unicode is used for that purpose.
Word segmentation is done by hand as Myanmar language has no word boundary. This is performed
based on Myanmar-English dictionary [10] and this dictionary is also applied to check the spelling of
the words. The average lengths of the utterances in this corpus are 33 in words and 54 in syllables.
Web news data has 8,973 unique sentences and 11,040 unique words. The example news sentences
from the corpus are shown in Figure 1. The format of each sentence is the utterance-id followed by
the transcription of each sentence.

Figure 1. Example sentences of the corpus on news

3.2. Recording Daily Conversations
The second approach (designing the text corpus first and recording the speech by reading the

collected text) was used for collecting the conversational data. It took 3 months for data recording
and 11 people were involved in the speech and text segmentation.

3.2.1. Text Corpus Preparation
The daily English conversations from ASEAN language speech translation thru' U-Star are

translated into Myanmar for text corpus building. The conversational data contains 2,156 unique
sentences and 1,740 unique words. There are 2,000 sentences in the ASEAN language speech transla-
tion and they are the conversations in hotels, restaurants, streets, telephones, etc. The rest 156 daily
conversational sentences are collected from the web. The spelling of the text is manually checked and
the words are segmented as the news data. The sentences contained in the corpus are shorter than
those of the news domain. The average lengths of the conversational sentences are 11 in words and
15 in syllables. The example sentences for the daily conversational domain are shown in Figure 2.

2http://www.fon.hum.uva.nl/praat/
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The format of each sentence is similar to that of the news domain (utterance id followed by each
utterance).

Figure 2. Example sentences of the conversational data

3.2.2. Speaker Information
The sentences are recorded by 4 male speakers and 42 female speakers, who are the faculty

members and students of the University of Computer Studies, Yangon, Myanmar. Since the number
of females exceeds that of males in our university, many female speakers are represented in the corpus.
The ages of the speakers are between 19 and 40.

3.2.3. Speech Recording and Segmentation
The recording work was done in a laboratory of our university. It is a very quiet place

with no external effects from the room like echo and background noises. It is also a healthy place
to work in because people can breathe well and feel relaxed. Tascam DR-100MKIII3 was used for
speech recording. It is intended to be used for audio designers and engineers and it has an easy-to-
use interface with robust reliability. The audio files are formatted with sample frequency 16,000 Hz
and mono channel with 16 bits encoding. The recorded files are segmented with the audacity tool4.
Moreover, the silent portion of each utterance is discarded. In a speech corpus, audio and text data
should be aligned. So each recorded sentence is listened to and checked with their corresponding text
transcription and made necessary corrections. If the speakers do not have clear voices, the recordings
are done repeatedly until they are satisfactory and smooth. All speakers read at normal pace.

3.2.4. Normalization to Transcription
Some of the transcriptions of broadcast news and daily conversions obtained from online con-

sists of non-standard words. They are numbers, dates, abbreviations acronyms, symbols, and English
names such as names of organization, things, persons, animals, social media, etc. The pronunciations
of these words cannot be found in the dictionary. Therefore, it is necessary to do text normalization
and transliteration into Myanmar language. In this work, those words are manually transcribed into
Myanmar words as the transcribers listen to their corresponding audios. Table 1 shows the example
words that need to be normalized.

Table 1. Example of text normalization
Description Example Normalization
Date ၂၀၁၆-၂၀၁၇ ှစ် ေထာင့် ဆယ့် ေြခာက် ှစ် ေထာင့် ဆယ့် ခ နစ်

(2016-2017)
Time ၃ နာရီ ၅၅ မိနစ် သံ း နာရီ ငါး ဆယ့် ငါး မိနစ်

(3 Hours 55 Minutes)
Number ၁၁၄ ဦး တစ် ရာ တစ် ဆယ့် ေလး ဦး

(114 persons)
Digit 09-448045577 သည ကိ း ေလး ေလး ှစ် သ ည ေလး ငါး ငါး ခ နစ် ခ နစ်
Acronyms FDA အက်ဖ် ဒီ ေအ
Person Name Mr. Filippno Grandi မစတာ ဖီလစ်ိ ဂရမ်းဒီ

3https://tascam.com/us/product/dr-100mkiii/top
4https://www.audacityteam.org/
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3.3. Phone Coverage in the Speech Corpus
Phone coverage is vital for improving the ASR accuracy. Myanmar-English dictionary devel-

oped by Myanmar Language Commission (MLC) [10] is used as the baseline and this dictionary is
extended with the vocabularies of the speech corpus. There are 38,376 words in the lexicon. In the
training set, there are 67 phonemes and it covers 94.37% of phonemes. Table 2 describes an example
of Myanmar lexicon.

Table 2. Example of Myanmar lexicon
Myanmar Word Phoneme
အ (Dump) /a/̰
အားကစား (Sport) /á ɡəzá/
အာကာသ (Space) /à kà θa/̰

The distributions of phonemes for both consonant and vowel phonemes occurring in the speech
corpus are analyzed. The frequency data on consonant distribution of the corpus are given in Figure 3.

The phoneme /j/ has the most occurrences in the corpus. This is because the phoneme
represents some medials such as '◌ျ'/ya̰ pη ̰/̃, 'ြ◌'/ya̰ yiʔ/ and the consonants 'ရ' and 'ယ' are defined as
/j/ phoneme. The second most frequent occurrence is the phoneme /d/ because the consonants 'ဒ'

and 'ဓ' are represented by the same phoneme /d/. The Myanmar word 'တိ' /trḭ/ rarely appears in
Myanmar language. Therefore, the pronunciation phoneme of the word, /tr/ phoneme, is found only
1 time in the texts. A few nasal phonemes, /ng/ and /nj/, are found.

Figure 3. Consonant phonemes distribution of UCSY-SC1 corpus

The frequency of the vowel distribution of the corpus is shown in Figure 4. All vowel phonemes
appear in the corpus. The most frequent phoneme is the phoneme /a/ with tone1 and most of the
pronunciation of the words is formed with the vowel phoneme. For example, the words 'ေကာင်း'/káʊɴ/
is composed of the phonemes of /k/ + /a/+/un:/ and 'ကိ င်း'/káɪɴ/ is formed by the combination of
the phonemes /k/+/a/+/in:/.

The second most frequent phoneme is the /a-/ with neural tone. In Myanmar language, the
basic vowels (/i/ /ì/, /ei/ /èi/, /e/ /è/, /a/ /à/, /o/ /ɔ/̀, /ou/ /ò/, /u/ /ù/) have their own properties.
While these vowels are influenced by the contextual sounds, they change to neutralized vowels when
their own properties decrease. Therefore, most of the Myanmar words are found with neutral tone in
the corpus.

For example,
/ná/ + /jwɛʔ/ ==> /nə/ + /jwɛʔ/
Most of the nasalized vowels such as /ai'/ /aiʔ/, /an./ /aɴ̰/, /ei'/ /eɪʔ/, /in./ /ɪɴ̰/, /u'/ʊ/ and

/un./ /ṵ̃/ are the least frequent phonemes in the corpus.

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3194 -- 3202
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Figure 4. Vowel phonemes distribution of UCSY-SC1 corpus

3.4. Statistics of the Corpus
The speech corpus consists of two types of domain: web news and conversational data. The

detailed statistics of the corpus is shown in Table 3. The corpus consists of 306,088 words. 11,696
words are unique and nearly 37% occurs only once. About 5% of unique words appear between 100
and 1,000 times. Only nearly 1% is found more than 1,000 times in the unique words.

Table 3. UCSY-SC1 corpus statistics
Data Size Speakers Utterance UniqueWordFemale Male Total
Web News 25 Hrs 20 Mins 177 84 261 9,066 9,956
Daily Conversations 17 Hrs 19 Mins 42 4 46 22,048 1,740
Total 42 Hrs 39 Mins 219 88 307 31,114 11,696

4. EVALUATION ON THE CORPUS
In this work, experiments are done to evaluate the quality of the speech corpus on Myanmar

ASR.

4.1. Experimental Setup
The details of the experimental setup for data sets, acoustic and language models are dealt

with in this section. The impact of training data sizes on the ASR performance is investigated in this
experiment. Four different data sizes -10 hrs, 20 hrs, 30 hrs, and 42 hrs - are used for incremental
training. The detailed statistics on the train and test sets are displayed at Table 4. TestSet1 is the
open test data, which is web news data. TestSet2 is also open test data and it is the conversational
data from natives recorded with voice recorders and microphones.

Table 4. Statistics on train and test sets

Data Size Speakers Utterance
Female Male Total

TrainSet

10 Hrs 5 Mins 79 23 102 3,530
20 Hrs 2 Mins 126 52 178 7,332
30 Hrs 3 Mins 174 86 260 15,556
42 Hrs 39 Mins 219 88 307 31,114

TestSet1 31 Mins 55 Sec 5 3 8 193
TestSet2 32 Mins 40 Sec 3 2 5 887
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4.2. GMM-based Acoustic Model
Kaldi speech recognition toolkit [11] is adopted to develop the experiments. For GMM-based

acoustic model training, the standard 13-dimensional Mel-Frequency Cesptral Coefficients (MFCC)
features and its first and second derivatives without energy features are applied. After that, cepstral
mean and variance normalized (CMVN) is performed on the features. Linear discriminant analysis
(LDA)is used to splice 9 frames together and project down to 40 dimensions. A maximum likelihood
linear transform (MLLT) is estimated on the LDA features. The feature-space Maximum Likelihood
Linear Regression (fMLLR) is used for speaker adaptive training (SAT). The baseline GMM model
has 2,052 context dependent (CD) triphone states and an average of 34 Gaussian components per
state.

4.3. CNN and DNN Acoustic Model
As input features, 40-dimensional log mel-filter bank features are applied for CNN and DNN

acoustic models. For DNN, 4 hidden layers with 300 units per hidden layers are used. For CNN, 256
and 128 feature maps in first and second convolutional layers are set respectively with 8 and 4 filter
sizes. The pooling size is set to 3 with pool step 1. The fully connected network has 2 hidden layers
with 300 units per hidden layers. Cross-entropy training is performed on CNN and DNN acoustic
models. Restricted Boltzmann machines (RBMs) are built on top of the CNN training. Additionally,
a 6-layer DNN with cross-entropy training is done and 6 iterations of state-level minimum Bayes risk
(sMBR) for discriminative training are performed [12]. The training procedure of the CNN (sMBR)
is depicted in Figure 5. A constant learning rate of 0.008 is used to train the neural networks. Next,
the learning rate is decreased by half through cross-validation error reduction. When the error rate
stops decreasing or starts increasing, the training procedure is stopped. Stochastic gradient descent
is applied with a mini-batch of 256 training examples for backpropagation. TESLA K80 GPU is used
for all the neural network training.

Figure 5. Training flow of CNN (sMBR)

4.4. Experimental Result
In this experiment, the ASR performance is evaluated on different corpus sizes. The three

different acoustic models such as GMM, DNN, and CNN models are developed and compared their
results. Convolutional Neural Network (CNN) has achieved a better performance than Deep Neural
Network (DNN) and Gaussian Mixture Model (GMM) in different large vocabulary continuous speech
recognition (LVCSR) tasks [13] [14] [15] because the fully connected nature of DNN can cause
overfitting and it decreases the ASR performance for low-resourced languages. CNN can model well
tone patterns because it has an ability to reduce the translational invariance and spectral correlations
in the input signal. Furthermore, as a sequence discriminative training can minimize the error on
the state labels in a sentence, the DNN with sequence training is done on top of the CNN training.
It is obvious in this work that CNN (sMBR) significantly outperforms the GMM and DNN acoustic
models for a low-resourced and tonal language, Myanmar language.

Figures 6 and 7 show word error rates (WERs) of TestSet1 and TestSet2 based on training
data sizes. According to the Figures 6, when the training data set size is increased from 10 hrs to
20 hrs, the WERs of TestSet1 decrease considerably because it is the same domain with the training
sets. However, the error rates of TestSet1 are not reduced notably even when the training data size is
increased from 30 hrs to 42 hrs because the augmented data is from the different domain. In Figure 7,
the word error rates of TestSet2 obviously decrease over the increasing training data size. This is
because the augmented data of the training sets of 30 hrs and 42 hrs are the same domain with the
TestSet2, which results in diminishing the word error rates of TestSet2. It can be clearly observed that
when the amount of training data is increased, WERs are decreased. The largest amount of training
data, 42-hr-data set, has the lowest WERs on both test sets. Thus, the training data size has a great
impact on the ASR performance.

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3194 -- 3202
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Figure 6. Word error rate on TestSet1 versus training data

Figure 7. Word error rate on TestSet2 versus training data

According to the evaluation results, the error rates of TestSet1 are lower than that of TestSet2.
This is because the news presenters have clear and sharp voices than the voices in the recorded
conversational data. Moreover, the total length of the web news data is longer than that of the
recorded conversational data. It is found that CNN outperformed DNN and GMM on both test sets.
As the result, using CNN (sMBR) leads to the lowest WERs of 15.61% on TestSet1 and 24.43% on
TestSet2.

5. CONCLUSION
This paper introduces a UCSY-SC1 corpus for Myanmar speech processing research. The

corpus consists of two domains: web news and daily conversational data recorded by ourselves. A
detailed description of the collection of text and speech corpus for each domain is presented. The total
duration of the UCSY-SC1 corpus is 42 hrs and 39 mins. The corpus consists of 261 speakers for the
web news and 46 speakers for conversational domain. Moreover, the phone coverage of the corpus is
analyzed. The speech corpus is used as training data for building Myanmar ASR. This is a milestone
for Myanmar ASR development. The effect of the training data sizes on recognition accuracy is also
analyzed by means of GMM, DNN, and CNN acoustic models. Two test sets, web news and recorded
conversational data, are used to evaluate the ASR accuracy. It is found that the accuracy on web
news data is better than that of the recorded conversational data. The CNN (sMBR)-based model

UCSY-SC1: A Myanmar Speech Corpus for Automatic Speech Recognition (Aye Nyein Mon)
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outperforms the GMM and DNN models. It leads to the lowest error rates of 15.61% WER on TestSet1
and 24.43% WER on TestSet2 by using this corpus.

As Myanmar is a low-resourced language, creating the speech corpora is essential and it is
believed that this corpus will be of some use for future Myanmar speech processing research. The
corpus will be further expanded by more speech data and Myanmar ASR will hopefully be developed
by means of the end-to-end learning approach.
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