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 Due to the increase in the number of users on the internet and the number of 

applications that is available in the cloud makes Data Center Networking 

(DCN) has the backbone for computing. These data centre requires high 

operational cost and also experience the link failures and congestions often. 

Hence the solution is to use Software Defined Networking (SDN) based load 

balancer which improves the efficiency of the network by distributing the 

traffic across multiple paths to optimize the efficiency of the network. 

Traditional load balancers are very expensive and inflexible. These SDN load 

balancers do not require costly hardware and can be programmed, which it 

makes it easier to implement user-defined algorithms and load balancing 

strategies. In this paper, we have proposed an efficient load balancing 

technique by considering different parameters to maintain the load efficiently 

using Open FlowSwitches connected to ONOS controller. 
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1. INTRODUCTION 

With increasingly transmitted data in data center networks, the traffic exchanged between data 

center network switches grew rapidly, which could lead to congestion and lead to a long delay and low 

performance in data center networks. This problem of congestion needs to be addressed urgently using an 

efficient path optimization algorithm to improve the performance of the data center networks. 

Load balancing is widely implemented to distribute load on different resources, it is used to optimise 

the network and prevent congestion. Load balancing is one of the crucial issues, which divides the workload 

dynamically among the servers by improving the performance of the system [1]. There are two types of 

network load balancing techniques namely server and link. The server load balancer sends the load to the 

other servers which are just replica of main server.This approach is very costly and it has scalability issues 

too. Another approach is link load balancing in this we join multiple physical links with virtual links for 

transmitting the data.MPLS Traffic Engineering is an another approach of link load balancing, but it is very 

complex because every host and switch in the tunnel is configured first and every device directs the workload 

to the path .MPLS TE is not usually deployed because of it’s complexity.Above mentioned models are useful 

but they are not proper solution for every problem. 

A path connecting the source and the destination node includes numeruos switches and links to 

connect those nodes. The traditional path load balancing protocol transfers data by path first, sometimes this 

create congestion on single node.Path load balancing can be great overcome of this problem in which we can 

use SDN and distribute the workload by using different parameters.  

SDN [2] is an approach to provide network management and to increase the efficiency of network 

through programs.SDN has logically centralized the intelligence in the network [3] by disconnecting the 

further process of packets, that intelligence is the algorithms used in the controller which controls the routing 

process of packets. 
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OpenFlow [4] is the main technology that is used in SDN, it is used to provide communication 

between SDN controller and and other forwarding layer, it maintains the flow of network traffic. SDN 

controller optimise the flow of network traffic by making decisions on the path links. Different SDN 

controllers such as ONOS, POX [5], RYU, NOX [6], Floodlight [7] etc.We are using ONOS [8] controller in 

our experiment. 

Mininet [9] is used for creating virtual topology network and transfer packets to different 

switches,onos controller is used to control the network and to show the gui of the topology and how the 

packets transfers from one host to another. In order to solve the congestion problem on a data center network, 

network administrators can therefore install efficient path optimization algorithms with OpenFlow protocol to 

control paths of new flows and change paths of streams during their transmissions. SDN-based path 

optimization algorithms are able to route flows from a data center network according to the link load, because 

the centralized SDN controller is able to obtain load statistics for each data center switch. 

SDN is the best approach for path load balancing, this paper presents an effective technique for path 

load balancing,in this experiment we uses controller to control the network by using different parameters. 

Then the controller transmits the decision made by controller to the forward switches.Experimental results 

shown that this technique has increased the efficiency of the network load balancing. 

 

 

2. RELATED WORK 

In SDN, there has been many studies done in path load balancing. For example, Plug-n-serve [10] 

system, it minimizes the response time taken by the client to server. When a request comes, the decisions are 

made by controller and create forwarding rules that handle the request of a client from a server. Plug-n-serve 

system has two main advantages flexibility and reduced response time but it has the biggest disadvantage of 

scalability, it has scalability issues. The more scalable solution has been provided by Wang et. al [10].  

This algorithm computes the rules of wildcard for reducing the dataload on SDN controller. It has two 

algorithms “partitioning algorithm” and “transitioning algorithm”, partitioning algorithm is used to determine 

the wildcard rules and “transitioning algorithm” is used to change the rules of wildcard with respect to 

change of the policy of load balancing. These algorithms are for single network when the network gets 

distributed, we have to use distributed SDN approach which has given by Koener and Kao [11]. 

They developed a load balancing technique to handle multiple services by using multiple working OpenFlow. 

For example, one flow is handling internet browsing and another flow is handling e-mail transferring.  

This method has increased the efficiency of the network load balancing by distributing the workload to 

multiple OpenFlows. Hardeep Uppal and Dane Brandon [12] have developed an OpenFlow technology-based 

load balancer architecture that reduces costs and gives flexibility. It contains three random load balance 

policies to randomly select the registered servers, a round robin load balance policy to rotate the registered 

servers for the purposes of serving the load-based load balance algorithm, to select the server with the lowest 

possible load. This method can have scalability issues due to constant change and increased services.  

Chou et. al [13]. developed a genetic algorithm load balancing system which pre-decide the rules to transmit 

the data to the switches in advance. 

In the context of inter-DC WAN, B4 and SWAN [14, 15] are using SDN. By coordinating the 

sending rate of services and centrally configuring the network data plane, these enable effective interDC 

wANs to be transmitted using a max-min-method. Although B4 develops custom switches and processes to 

integrate current routing protocols within the SDN environment. Long et al. [16] propose a loadbalance 

routing algorithm for OpenFlow-enabled datacenter networks (LABERIO) to solve the static routing path 

problem. The centralized controller will be notified and help schedule the greatest flow in the busiest hop 

with the maximum remainder capacity strategy if the link load detector exceeds the LABERIO trigger 

threshold. However, all the schemes we have described above rely on traffic demand information, but for 

many networks traffic demand can not be known in advance. All the approaches we discussed earlier is rely 

on demand of traffic but it is not sufficient to get information about network in before. In this research we 

don’t use traffic demand instead of that we use different parameters to know the network in advance 

 

 

3. PATH BASED LOAD BALANCING ALGORITHM 

To improve the cluster performance, the load balancing algorithm which will run on load balancer 

plays a significant role. Distributed System is important to distributing the work load on the servers [17]. 

Load Balancer places a vital role in fulfilling the request of the clients through servers and for this work load 

balancer routes requests to those servers, which has the capability of doing its job in an effective way that is 

maximization of speed, maximum utilization of capacity and can fulfill the client’s requests [18].  

Our solution follows the layer architecture of SDN, in which there are two planes, control plane and data 
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plane, Figure 1 is showing the architecture of SDN. The paths which transfer workload from source to 

destination should be optimal, this is done by ONOS controller. The controller makes decision on the basis 

on path evaluator which selects the path which are optimal for path load balancing. It contains data collector 

method and path evaluator method. 

 

 

 
 

Figure 1. SDN Load balancing architecture 

 

 

3.1.  Data collector method 

  Topology link collector 

Topology link collector gets the information between the links of the topology, it is done by 

transmitting LLDP data packets to every node. 

  Traffic data collector 

Since we are using different parameters for making decisions for path load balancing, we need to 

collect the data about those parameters. We are using byte count, packet count forwarding rate and duration 

of transmitting between source node and destination node. 

  Path evaluator method 

This method contains Top-K path algorithm and evaluator method. 

  K Path algorithm 

There are many paths in the network for transmitting packets from source to destination.  

Those paths are used to put in the Algorithm 2, that has been provided below. This is done in two different 

variants one is start and another is interval. In the start variant, we use the Flyod’s algorithm [19] to find the 

top-k paths. In the interval variant, we use the data collected by traffic data collector to get optimal path for 

transmitting the data. Algorithm 1 shows the k path algorithm. 

 
Algorithm 1: K path collector 

 

Start mode: Getting K paths  

We assume that E be the source and G be the destination node, in between these nodes we have to find k 

paths. 

M[r] is the array in which the paths will be stored and the first path is M[0] 

1.M[0] represents path in nodes E to G  

2.For n in {1,2,…,N-1}  

3.  For a in {0,1,2,…,length(M[n-1])-2}  

4.     nodeP = P[n-1].node(a)  

5.              For b in {0,1,2,…,n-1} 

6.                  nodeQ = P[b].node(i)  

7.                      If nodeP = nodeQ  

8.   The distance between nodeP to M[b].node(a+1) = infinite  

9.                      EndIF  

10.         EndFor  

11.     E[a] represents the path in nodes nodeP and G  
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12.     R[a] will be found in M[k-1] from E to nodeP  

13. Q[a] = R[a] + E[a]  

14. EndFor  

15. The minimum path in Q[a] is M[r] 

16. Again store the initial value of distance between nodeP to nodeQ 

17. EndFor 

 

3.2.  Interval mode 

Take k paths from the above algorithm and use them in algorithm 2 and after every 5 minutes take 

another new k paths.  

 Evaluator Algorithm 

The evaluator algorithm is used to evaluate the k path which has been found by Algorithm 1.  

The parameters of evaluation are byte rate, packet count, port forward rate and duration between transmission 

of packet from one host terminal to another. Algorithm 2 shows the algorithm for evaluation of top-k path. 

 

 

Algorithm 2: Evaluation of Paths  

Input: The output paths found in algorithm 1 is K  

Output: the best optimized path is OPTIMAL_PATH 

 

1.  Define function factor F (byte_count, packet_count, Flow_rate, duration) and define the rank function  

      R[N] for path. 

2.   For i in {0, 1, 2, ..., K-1}  

3.   byte_count[i] = Byte count in K[i] 

4.   packet_count[i] = Packet count in K[i]  

5.   Flow_rate[i] = Flow rate in K[i]  

6.   Duration[i] = Duration in K[i] 

7.   EndFor  

8.   For each j in {0, 1, 2, ..., K-1}  

9.   byte_count[j] = 1.0 / log(byte_count[j] + 0.1) 

10. packet_count[j] = 1.0 / log(packet_count[j] + 0.1)  

11. Flow_rate[j] = 1.0 / (1 + exp (Flow_rate[j]/100.0))  

12. Duration[j] = 1/Duration[j] 

13. EndFor  

14. Define weight matrix W (byte_count_weight, packet_count_weight, Flow_rate_weight, duration_weight)  

15. For k in {0, 1, 2, ..., K-1}  

16. t_byte_count[k]= byte_count_weight + byte_count[k]  

17. t_packet_count[k]= 

      packet_count_weight+packet_count[k]  

18. t_Flow_rate[k] = Flow_rate_weight and Flow_rate[k] 

19. t_Duration[k] = duration_weight + Duration[k] 

20. value_score[k] = t_Duration[k] + t_bytes[k] + t_packet_count[k] +   t_Flow_rate[k]   

21. EndFor  

22. Whichever path gets the maximum value_score is the OPTIMAL_PATH 

 

 

4. SIMULATION AND ANALYSIS 

We have used Mininet [20, 21, 22] and the ONOS platform [23, 24] to simulate the network 

topology mentioned in the proposed technique. ONOS is a platform, which capitalizes on the resources of 

JAVA for the rapid configuration and prototyping of network controllers. Mininet assists users in quick 

formation of virtual networks, Connect connectors, switches, and local networks to a single server. Providing 

a lightweight evaluation platform for configuring OpenFlow applications, mininet is running on Virtual Box 

in which the host is linux. The performance of Mininet is depended on the capability and configuration of the 

version of linux. The specification of the host is listed down in Table 1. 
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Table 1. Specification of host 

Parametets Values 

Physical Machine Intel Core i7-2100 

3.1GHz  processor 

8GB memory 

Operating System x86_64-with-Ubunu14.10 

Virtual Machine Virtual Box 

 

 

In order to create useful results, we have tried to test the technique and the network for a proven and 

robust overall efficiency. For network verification capability and ability, the simulation environment has 

been designed with 6 OpenFlow switches topology and 8 host users. As shown in the Figure 2, the switch 

indicates an OpenFlow switch; it's switch ID. The host is a connected host simultaneously and its host ID is. 

In the meantime, the solution proposed to balance the load is also analyzed to solve the ways of 

understanding the differences.  
 

 

 
 

Figure 2. Topology of simulation 
 

 

4.1.  Effectiveness 

To deduce the value of the evaluation module the efficiency test has been carried out under dynamic 

changes. The Host1 and Host8 are selected to be the entity under observation. Firstly, we iteratively figure 

out the selection of three iterative paths. Screening the dynamic status of the network, based on requirements, 

the three paths are then evaluated using the fuzzy evaluation model. Initially, the value to evaluate a path is 

found. To know the workload in Switch6 and Switch4 a packet will be sent by Host7. To get the resources of 

bandwidth in between Switch1 and Switch4, Host6 sends a packet to Host2. When the link status changes the 

evaluation value of three paths changes too. For first path, its one link and 2 switches are impacted and they 

have no obstacle on the, so its value of evaluation decreased maximum. For third path, Switch4 is implicated 

and caused obstruction, so the value of evaluation decreased but a less than the others. The results have been 

shown in Figure 3. Later on, we will get the optimal path to transmit the load for acquiring the load balancing 

in the network. Demonstrating effectiveness, the presented technique also promises to dynamically alter 

paths with the adequate traffic status the links and nodes. 
 
 

 
 

Figure 3. The evaluation of paths 
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4.2.  Analysis of efficiency  

To understand the proposed efficiency level, the k-paths algorithm is considered and further analysis 

is done. Host2 and Host9 are selected as the subject of observation in the 9 openFlow open network topology 

and 10 host terminals, that is represented in Figure 4. As experimental result the RTT has been tested, this 

has shown in Figure 5. It shows that RTT fluctuates violently, while the path becomes more filled with the 

path algorithm. However, RTT does not fluctuate with our solution, because the traffic is transmitted to the 

optimal route in time. The results ensure the proposed algorithm of load-balancing to be optimized enough to 

guarantee sanity in packet transmission and also dynamic management of the paths. 

 

 

 
 

Figure 4. Topology for comparison 

 

 

 
 

Figure 5. RTT of the proposed solutions 

 

 

5. CONCLUSION 

With an aim to innovatively propose an SDN-based path load-balancing technique, this paper 

presents how it improves the current rates of efficiency, reliability and utilization. The fuzzy synthetic 

evaluation model helps in the dynamic and optimized selection of a path, as a reflex to the variation in 

the network traffic. The implementation of the solution is supported using the ONOS platform, whereas the 

verification and proof of the results obtained is backed by Mininet. The graphical representations conclude 

that this technique can dynamically not only avoid failures and faults in the path but also adjust the 

transmitting path. The result seems more accurate with the overall performance of the network 

being increased. 
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