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 An urban railway is a complex technical system that consumes large amounts 

of energy, but this means of transportation still has been obtained more and 

more popularity in densely populated cities because of its features of high-

capacity transportation capability, high speed, security, punctuality, lower 

emission, reduction of traffic congestion. The improved energy consumption 

and environment are two of the main objectives for future transportation. 

Electrified trains can meet these objectives by the recuperation and reuse of 

regenerative braking energy and by the energy - efficient operation. 

Two methods are to enhance energy efficiency: one is to improve technology 

(e.g., using energy storage system, reversible or active substations to 

recuperate regenerative braking energy, replacing traction electric motors  by 

energy-efficient traction system as permanent magnet electrical motors; 

train's mass reduction by lightweight material mass...); the other is to 

improve operational procedures (e.g. energy efficient driving including: eco-

driving; speed profile optimization; Driving Advice System (DAS); 

Automatic Train Operation (ATO); traffic management optimization...). 

Among a lot of above solutions for saving energy, which one is suitable for 

current conditions of metro lines in Vietnam. The paper proposes 

the optimization method based on Pontryagin's Maximum Principle (PMP) to 

find the optimal speed profile for electrified train of Cat Linh-Ha Dong metro 

line, Vietnam in an effort to minimize the train operation energy 

consumption.  
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1. INTRODUCTION  

Recent years, traffic jam and environmental pollution in metropolitan areas have raised concerns 

over nations worldwide. Under the circumstances, the urban railway transit seems to be an outstanding 

solution to reduce the adverse effects of urban mobility because of its large transport capacity, safety, 

reliability and significantly environmental pollution reduction [1]. In developing countries like Vietnam, 

dozens of metro lines are going to and getting be built in Hanoi, and Ho Chi Minh cities with a total rout 

length about 500km. However, metro systems consume huge amounts of energy, proposing saving energy 

has considerable impacts on the cost reduction for urban railway systems. 
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There are many ways to reduce the energy consumption in urban railway systems including: 

recuperating regenerative braking energy through timetable optimization to synchronize braking and 

accelerating phases of trains [2-11] or using energy storage systems and reversible, active substations to back 

energy to line utility [12-18]; reducing the losses in power supplies, traction drive system, converters, 

lines [19-21]; energy-efficient driving by optimizing the speed profile [22-31]. Among these solutions, 

optimizing the speed profile of each train has been done research extensively [32] because of being suitable 

for existing metro lines, saving significant energy with relatively low capital investment without improving 

or building new infrastructure. 

 All most of metro lines are getting under way in Vietnam not to be equiped regenerative braking 

energy recuperation devices, and the braking energy will dissipate on braking resistors to cause energy waste. 

However, using several solutions for saving energy such as: substituting diod recrifiers by resersable/active 

converters in traction substations or installing energy storage devices to recuperate the braking enregy are too 

expensive and squandered because meterial facilities of  the metro lines have just been invested in, 

so the equipment replacement is not suitable for Metro lines in Viet nam in the comming time. With reasons 

analysed above, so using the optimal control theory [33] comprising of  Pontryagin's Maximum Principle 

(PMP), Dymamic Programming (DP) [34], Mixed Integer Linear Programming (MILP) [35] finding 

the optimal speed profile applied to every train is the best solution to minimize the train operation energy 

consumption without any changes about infrustructure, equipment. The paper proposes one of these methods, 

namely; using Pontryagin's Maximum Principle for Cat Linh - Ha Dong metro line in Vietnam. Simulation 

results are presented and showed the effectiveness of optimal control method - PMP in   saving energy of 

train operation up to 10,8%. 

 

 

2. MODELLING MOTION OF TRAIN 

The train is regarded as a particle and kinematic equation can be represented by the following 

continuous - space model [5] 

 

0( ) ( ) ( ) ( )tr br grad

dx
v

dt
dv

mv F v F v W v F x
dx

 (1) 

 

where , , ,v t x m  represent respectively train speed ( / )m s , operation time ( )s , train position ( )m , full load 

translating mass of train ( )tone  and 0, , ,tr br gradF F W F  are traction, electrical braking, resistance, gradient 

resistance forces applied on the train. These forces are shown in Figure 1. 
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Figure 1. Torques and forces act on the rail wheel 
 

 

Base on curves of traction force trF , braking force brF given by manufacturers [36] , Using the 

identification method to find traction, braking characteristic curves in Figure 2, Figure 3, and the Least 

Square method to find equivalent polynomials.  
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Figure 2. Maximum traction characteristic curve  

per motor 

Figure 3. Maximum braking characteristic curve  

per motor 

 

 

The maximum traction and maximum braking forces corresponding to the speed v are  

 

35 22.5 10 0.007 0.66 28.35 (32 80)

13.2 (0 32)
tr

v
F

v v v v
 

 

(1) 

14.7 (0 65)

0.254 31.21 (65 75)

0.2027 27.36 (75 80)
br

v

F v v

v v

 (3) 

 

Figure 2 shows forces acting on the train in which the resistance force comprises of the air 

resistance, the friction resistance. The basic resistance 0w can be calculated by using Davis formula [37] 

 

20
0

W
w a bv cv

m
 (4) 

 

where , ,a b c  are coefficients of train’s resistance. 

 

The gradient force gradF  caused by slope of road: singradF mg  (5) 

 

 

where ,g  are the gravity acceleration and the rail track slope respectively. 

 

 

3. SPEED TRAJECTORY OPTIMALITY ANALYSIS BASED ON PMP AND ENERGY 

ASSUMPTION 

Depending on the long or short distance between stations, a train operates in three or four phases. 

Some studies showed optimal sequence modes of the train to save operation energy; with the short station, 

the train runs in three phases: accelerating, coasting, braking; with the long station; the train runs in 4 phases: 

Accelerating, cruising, coasting, braking phase [24], and shown Figure 4, Figure 5. Forces have acted on 

a train in operation modes are different; accelerating process acted by tractive force, and basic resistance 

force; cruising process acted by tractive force, and basic resistance force; coasting process has only basic 

resistance force, braking process with braking force, and basic resistance force. 
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Figure 4. Optimal sequence modes of the train 

movement with a short station 

Figure 5. Optimal sequence modes of the train 

movement with a long station 

 

  

3.1.  Problem formulation 

The motion of a train along a track can be described by the state equations [5] 

 

0

1

( ) ( ) ( ) ( )tr tr br br grad

dt

dx v
dv
v u f v u f v w v f x
dx

 (6) 

 

where   ,tr bru u  are defined traction and braking control variables of train, both of which are restrained by: 

[0,1]tru ; [0,1]bru ; [0,1]mbu ; , ,tr br gradf f f  are forces per unit mass; traction force applied at the 

wheels, braking force, mechanical force, gradient force acting on the train.  

Therefore, boundary conditions are given by: 

 

(0) 0, ( ) 0, (0) 0

0 ( ) ( ),0 ( ) ,0

v v X t

v x V x t X T x X
 (7) 

 

where ( )V x  is the maximum allowable speed, X is the terminal of the train operation; ),(0) (v Xv  are the 

speed at the beginning, at the end of the route; T is duration of the trip is also given by the timetable.    

The objective is to minimize the train's operation energy consumption as the train runs from location 

0x  to location x X  in time T  by controlling the traction force, while ignoring electric braking force 

since regenerative braking energy is not recovered.  The objective function is written as: 

 

0

( ) min

X

tr trJ u f v dx  (8) 

 

3.2.  Solution 

 By Pontryagin's Maximum Principle finding optimal solutions of an objective function is equivalent 

to maximizing its Hamiltonian equation. Based on (6), (8), a Hamilton function is formed as: 

 

0
1 2

( ) ( ) ( ) ( )1
( ) tr tr br br grad

tr tr

u f v u f v w v f x
H u f v p p

v v
 (9) 

where 
1 2
,p p  are adjoint variables. 
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Adjoint variable differential equations are reformed: 

 

1 0
dp H

dx t
 (10) 

 

2 2
1 02 2

2 0

1
( ) ( ) ( ) ( )tr

tr tr tr br br grad

tr br
tr br

dp f pH
u p u f v u f v w v f x

dx v v v v
p f f w
u u

v v v v

 

 

 

(11) 

Define 2pp
v

,   so 2p v p . Therefore 2 ( )dp d p v dv dp
p v

dx dx dx dx
 

 

(12) 

21 dpdp dv
p

dx v dx dx
 (13) 

 

Given  
0( ) ( ) - ( ) ( )tr tr br br gradu f v u f v w v f xdv

dx v
 

(14) 

 

Therefore, Hamiltonian function is rewritten 

 

1
0( 1) ( )tr tr br br grad

p
H p u f pu f p w f

v
 (15) 

 

Hamiltonian function is maximized by the following values of tru  and bru : 

 

1 1 0 0 1

(0,1) 1 (0,1) 0

0 1 1 0

tr br

tr br

tr br

u if p u if p

u if p and u if p

u if p u if p

 (16) 

 

From the above analysis, five optimal control laws are designed 

a. Full power (FP): 1, 0 tr bru u  when 1p   

b. Partial power (PP): [0,1]tru , 0bru  when 1p  

c. Coasting (C): 0, 0tr bru u when 0 1p   

d. Full braking (FB): 0, 1tr bru u  when 0p  

e. Partial braking (PB): 0tru , [0,1]bru  when 0p  

Substitute (11), 14 in (13), finding the differential equation for ( )p x  

 

1
0 3

(1 )
( ) ( ) ( )tr tr br br

ppdp p p
u f v u f v w v

dx v v v v
 (17) 

 

From (10), easily, 
1
p is chosen by 0. 

Full power mode: 1,  0,  1,br trp u u finding accelerating time at , accelerating distance ax  

Using (17). 

 

0

(1 )
( ) ( )tr

pdp p
f v w v

dx v v
 (18) 
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From (18) finding the differential equation to determine ,a ax t : 

 

0

0

( ) ( ) ( )

1

( ) ( ) ( )

tr tr grad

tr tr grad

dx v

dv u f v w v f x

dt

dv u f v w v f x

 (19) 

 

with initial conditions: 0 0,  0 0x t  

 

Coasting speed bv is calculated as following [38, 39]: 
( )

( )
h

b
h

v
v

v
 (20) 

 

where hv  - hold speed is chosen previously: 

 
2 2 2

0 0
( ) ( ) , ( ) ( ) 2v v w v v a bv cv v v w v v b cv  (21) 

 

From (6) finding the differential equation to determine ,  ccx t : 

 

0

0

( ) ( )

1

( ) ( )

grad

grad

dx v

dv w v f x

dt

dv w v f x

 (22) 

 

with ;  a ah ht v v t x v v x  

Full braking mode: 0,  1,  0tr bru u p , finding braking time bt , braking distance bx . 

 

Using (17):  
0

( ) ( )
br

dp p p
f v w v

dx v v
 (23) 

 

From (6) finding the differential equation: 

 

0

0

( ) ( ) ( )

1

( ) ( ) ( )

br br grad

br br grad

dx v

dv u f v w v f x

dt

dv u f v w v f x

 (24) 

 

with ,  b b b bt v v t x v v x . 

In the short journey including three phases: Accelerating coasting  braking in accordance with control 

laws: full power – coasting – full braking.  

 

 

4. SIMULATION RESULTS 

The simulation is based on the data of Cat Linh-Ha Dong metro line, Vietnam with simulation 

parameters of train demonstrated in Table 1, and David’s coefficients of train’s resistance in Table 2.  

There are 12 stations, 1 depot, 6 traction substations, and two-side power supply mode. In this paper, 

simulation results are performed for the first Cat Linh station to the 12th Yen Nghia station with 12.61 km in 

length [36].  
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Table 1. Simulation parameters of train 
Parameters of Metro Train Unit Value 

Train gand-up 2M2T  

Full load translating mass kg 246700 

Number of electrical traction unit  08 
Max speed km/h 80 

Base speed km/h 40 

Dwell time s 30 
Max acceleration/braking rates m/s2 0.94/1 

 

 

Table 2. David ’s coefficients of train’s resistance 
Parameters  Value 

a  21.19 10  

b  32.56 10  

c  41.54 10  

 

 

Because the distance among stations in Cat Linh - Ha Dong metro line is short (the shortest station 

is 902m, the longest one is 1480m), operation modes of electrified train are comprised of  

accelerating coasting braking. Regarding as track conditions, constraints, the speed from a station to 

another station is different, the slowest speed at 53km/h, the highest speed at 73km/h, but is always smaller 

than limit speed 80km/h, the optimal trip time is longer 2s indicated in Figure 6 and Figure 7, Table 3.  

Figure 7 also showed optimal switching points change, so do optimal accelerating, coasting, braking 

distances significantly. The key result lies in saving energy consumption in optimal speed trajectory up to 

10,8% (practical energy consumption is 176,24kWh, while optimal energy consumption attains 157,19kWh).  

 

 

 
 

Figure 6. A Comparison of Optimal speed profile and Original speed profile 

 

 

 
 

Figure 7. A Comparison of Optimal time profile and Original time profile 
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Table 3. Results of a comparison of energy consumption with / without energy optimal strategy 

Inter-station length Distance (m) 
Practical energy 

consumption (kWh) 

Actual trip 

time (s) 

Optimal energy 

consumption(kWh) 

Optimal trip 

time (s) 

Cat Linh-La Thanh 931 19.5 66 18.59 68 
La Thanh-Thai Ha 902 10.94 79 9.7 81 

Thai Ha-Lang 1076 10.5 95 9.8 97 

Lang-VNU 1248 9.9 124 9.5 126 
VNU- Ring Road 3 1010 17.4 77 15.4 78 

Ring Road 3-Thanh Xuan 1480 17.4 105 15 107 

Thanh Xuan-Ha Dong BS 1121 17.6 86 15.7 87 
Ha Dong BS-BV Ha Dong 1324 19.6 98 16.6 100 

BV Ha Dong-La Khe 1110 17.8 83 15.7 85 

La Khe-Van Khe 1428 18.2 103 15.7 105 
Van Khe-Yen Nghia 1032 17.4 72 15.5 74 

 

 

5. CONCLUSION  

After analyzing advantages and disadvantages of solutions for effective energy usage of electrified 

train operation, the paper focuses on applying Pontryagin's maximum principle to find the optimal speed 

profile able to saving energy up to 10,8% comparison with the original speed profile. The theoretical 

approach is verified by simulation results including 12 stations of metro line Cat Linh - Ha Dong, Vietnam 

with three operation phases: accelerating, coasting, braking. Undoubtedly, using PMP determining 

the optimal speed profile for metro Cat Linh - Ha Dong is going to set the first step for applying the optimal 

control theory to other metro lines being construction in Vietnam with target: saving energy. 
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