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 This paper proposes evaluation and classification classifier for static security 
evaluation (SSE) and classifica-tion. Data are generated on (30, 57, 118 and 
300) bus IEEE test systems used to design the classifiers. The 
implementation decision tree methods on several IEEE test systems involved 
appropriateness SSE and classi-fication by using four algorithms of DT’s. 
Empirically, with the present of FSA, the implementation results indicate that 
these classifiers have the capability for system security evaluation and 
classification. Lastly, FSA is efficient and effective approach for real-time 
evaluation and classification classifier design. 
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1. INTRODUCTION 

The electric market competition forces generating entities and system operators to operate the 
system within their security level. Load and operating constrains are two sets of power system operation con-
strains [1]. The load constraint is an equation constraint which sets the total generation equal to total load 
plus total power losses. The operating constraints are upper and/or lower limits of system's variables. Long 
term planning or even in operational, making security decisions and a conceptual basis provide by system 
operating states. 

Under contingent condition, security can be defined as the ability of the power system to remain in a 
se-cure state [2]. Security assessment involves estimation of the relative security level of the current operat-
ing condition of the system using available data measurements. The task of security assessment is per-formed 
in three modes - static, transient and dynamic [3]. More specifically the static security is the steady state 
system behaviour under a specified contingency, whereas the transient security is dealing with evaluating 
rotor angle oscillations under a transient disturbance. Dynamic security deals with the long term behaviour 
from the instant of the system transiently secure to the instant of the system will reaches steady state.  

All the three modes need to be sequentially performed on-line. In case of insecurity in any mode of 
as-sessment, an alarm is signalled for the operator to take an appropriate remedial action. Through simula-
tion, Static Security Evaluation (SSE) assists operators to detect following a given list of contingencies such 
as a voltage out-of-limit or potential a system branch overloaded. Due to the large system size and 
deregulated power system, a steady-state security analysis becomes an impossible task due to the associated 
computation burden.  

In SSE, the contingencies severity is judged on scale performance index (PI) basis. In [1-3], 
numerous PI based methods have been reported. Artificial intelligence (AI) can be divided into two types of 
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tech-niques, clustering techniques and classification techniques, and its powerful of reducing the data com-
plexity, made it to use in various areas like medical and engineering [4, 5].  
 
1.1. Static Security Evaluation Indices Selection 

Power system networks are required to operate with security limits. Security is defined as promising 
the continuous operation of a power system capability under normal operation even next some important 
contingency [6].  

In the literature, several keys have been suggested as standards for static security classification and 
eval-uation [2, 7-10] include lines overloaded or \ and bus voltages collapse which let the system deviate 
from normal operating state limits. However, violations are not in the same level of the same significance.  

In the assessment process of static security, it is evaluated for several feasible contingencies via 
solving power flow nonlinear equations. These contingencies possibly will contain outage of a generating 
unit or N-1 transmission line or a transformer. 

For numerous disturbances, the load flow is simulated and the security limitations are gauged. The 
oper-ating state of power system is categorized as static secure (SS-Binary 1) if two the limitations in equa-
tions (1), and (2) are fulfilled. In case of one limitation is identified subsequent a contingency, the state of the 
system is categorized as static insecure (SI-Binary 0). 

Therefore, it is compulsory to develop an efficient methods to deal about the complexity of data 
[10]. The traditional element accounts for coaching the device understanding methods for classification of 
static security evaluation contents. 

 
 

2. ARTIFICIAL INTELLIGENCE TECHNIQUES  
Generally, most of the artificial intelligence techniques approaches assess information through the 

data-base. Nowadays, database becomes larger in size, and as result, it is very difficult to interpret complex 
data. Therefore, it is compulsory to develop efficient methods to deal about the complexity of data [10]. 
Multi-layer feed forward artificial neural network (MLFFN) and radial basis function network (RBFN) are 
proposed to implement the online module for power system static security assessment [11]. The security 
classification, contingency selection and ranking are done based on the composite security index which is 
capable of accurately differentiating the secure and non-secure cases. For each contingency case as well as 
for base case condition, the composite security index is computed using the full Newton Raphson load flow 
analysis. The proposed artificial neural network (ANN) models take loading condition and the probable 
contingencies as the input and assess the system security by screening the credible contingencies and ranking 
them in the order of severity based on composite security index. 

The traditional element accounts for coaching the device understanding methods for classification of 
static security evaluation contents. Figure 1 presents the methodology for static security evaluation content 
classification approach based upon the artificial intelligence techniques.  

The methodology is attained through four phases: data set collection, data set preprocessing, training 
phase, and classifier evaluation with testing data. Consequently, the static security evaluation can be 
managed based on the trained machine learning classifier. 
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Figure 1. Artificial Intelligence Techniques procedure for static security evaluation and classification  
 
 
2.1. Raw Dataset Collection  

NRLF analysis is used before implementation of decision tree to solve algebraic equation which is 
non-linear to the system used, and collected data of all line flow and voltages of all buses. These data collect-
ed will use as input vector for training and testing the algorithms. Thus, test dataset; which is dissimilar cases 
from the training dataset should keep getting an acceptable accuracy results. NRLF were developed via 
matpower 3.0b4 program [12] and used through this study as a matrix form. In this program, the results can 
be shown by using the command runpf ('case Z'), where Z is the buses number. The list of attributes 
(features) used for the pattern vector for static security evaluation is as follows below. 

 
XSSE = {| V|i , θi , SGi , SLi , Sij }       (1) 
 
The contingencies can include interruption on a transformer or the transmission line or maybe a 

genera-tor. Performing load flow will check all the bus voltages and line thermal power limits; (1) voltage at 
all buses must be within their range (0.94-1.06) p.u. [13, 14], and (2) all lines are not exceeding their power 
range as well (S< Smax.).  
 
2.2. Training Dataset Preparation  

To be able to put together working out information arranged, the specified options that come with 
the actual system tend to be obtained from the actual ready track documents. The key functions of the power 
system network are extracted in order to prepare the training data set. These functions tend to be transformed 
into the actual input/output dataset or even coaching designs needed in the coaching stage.  

When the instruction dataset is ready while described previously, the actual dataset will be stabilized 
ap-propriately in variety [0, 1] by applying equation (2).  
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where v is the attribute V original value, v  is the attribute V normalized value, and minV

and maxV

are the minimum and maximum attribute V values. 
 
2.3. C4.5 Classifier Training  

C4.5 decision tree is one of the most broadly used and real-world approaches. In C4.5, the learned 
classifier is represented by a DT as sets of if-then rules to human readability improvement. Therefore, the 
decision tree is simple to be understood and interpreted. Besides, it can handle nominal and categorical data 
and perform well with large data set in a short time [15]. In C4.5 training, the decision tree is built in a top - 
down recursive way. Learning works of C4.5 as follows: 

Primarily, all training patterns fixed at root. These patterns are divided based on features selected 
based on an impurity function in recursive routine. Dividing continues till all training patterns for a certain 
node belong to the similar class. The parameters and their settings values were used in WEKA as shown in 
Table 1. 

 
 

Table 1. Parameters settings for C4.5 training  
Parameter Description Value 

ConfidenceFactor The confidence factor used for pruning (smaller values incur more pruning). 0.25 
minNumObj The minimum number of instances per leaf. 2 

Unpruned Whether pruning is performed or not False 

 
 
2.4. Performance Evaluation 

The correct classification rate (CCR) can be defined as one a key gauge employed for analyzing one 
particular or even classifier. Nevertheless, CCR only can be inadequate regarding gauging a functionality of 
the classifier for a static security index data set. And so, the true negative rate (TNR) and true positive rate 
(TPR) were used to evaluate the classifier performance. Moreover, geometric mean (GM) was addi-tionally 
utilized in this research to assess the actual overall performance regarding device studying tech-niques, as 
shown in Table 2. 

 
 

Table 2. The procedures employed for assessing the efficiency of machine learning techniques 
Measures name Formula 

Correct classification rate (CCR) 
 (%) 

True positive rate (TPR) 
                   (%) 

True negative rate (TNR) 
                   (%) 

Geometric mean (GM)                    (%) 

 
 

where: 
TP (true positive): the number positive samples classified correctly, FP (false positive): the number 

nega-tive samples classified incorrectly, TN (true negative): the number negative samples classified correctly 
and FN (false negative): the number positive samples classified incorrectly 

After we initialize a pattern vector (XSSE) from data collection and data pre-processing, we initialize 
fea-ture vector (ZSSE) from cross validation and number of instances. Data samples generated are randomly 
split in training and testing process in approximately proportion of 75% and 25% respectively. A training 
pattern (ZSSE vector) takes the format <x1 , x2 , x3 , x4 ,………, xn> 

where  x1 , x2 , x3 , x4 ,………, xn  denote the input vector  and   denotes the security status output 
vector (target). This training pattern called instances (row) while the inputs are featured or attrib-utes 
(column). The power system condition is, in fact, known as ‘Static Secure’ (SS-Binary one) when-ever all the 
limitations mentioned in 3.1 are often satisfied for almost any provided backup. When somebody issues 
break 'is identified performing a problem, the device situation is going to be known as ‘Static Insecure’ (SI-
Binary zero).  
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Engineering common sense occasionally may decide on the actual enter attributes. However, this 
kind of choices is going to be very subjective using the chance of essential factors obtaining turned down. A 
typ-ical approach to feature selection will be a consecutive feature choice, composed of two elements - a tar-
get function known as criterion and also a consecutive investigation formula. The real feature factors chosen 
through SFS technique can serve as an input data source regarding creating the actual classifier formula. The 
SFS technique utilized in the current function begins with an empty group of features and also encourages 
prospective client function subsets with the help of one attribute every time. For each prospective client 
perform component, SFS operates the actual 10-fold combine authorization through frequently contacting the 
actual qualifying criterion operate. 
 
 
3. RESULTS AND DISCUSSION 

Within this research, C4.5 models were properly trained by using a WEKA tool. WEKA is truly a 
work-bench designed to help the use of machine learning approaches to various actual difficulties. WEKA is 
truthfully a totally released and also free code developed in Java. In WEKA, the machine learning algo-
rithms tend to be realists organized into programs, to allow them to become efficiently brought in and besides 
applied in Java's code. Right after the training, the properly trained designs had been stored just as the 
documents being applied in enhancing the static security stage during the test stage. About applying WEKA 
classifiers in Java's code, WEKA guide are available in [16]. 

In the steady-state, the SSE limitations are the bus voltage magnitude (Vk ) and the line thermal 
power (S) and can be written as: 1.09 >Vk> 0.91    and  S < Smax. 

The outcomes of information building and show choice stages of static security evaluation are 
shown in Table 3. The data samples in m-dimensional feature space are randomly split into training and test 
sets. 

 
 

Table 3. Data generation and feature selection of different IEEE test systems 
System 

size 
Operating 
scenarios 

Static Secure 
(SS) 

Static Insecure 
(SI) 

No. of pattern 
variables (XSSE) 

No. of features 
selected (ZSSE) 

Dimensionality 
reduction 

30 Bus 860 595 265 170 25 14.70% 

57 Bus 950 630 320 185 27 14.59% 

118 Bus 1100 750 350 210 29 13% 

300 Bus 1330 760 570 220 26 11.81% 

 
 
From this table, 30, 57, 118 and 300 IEEE bus systems are used in this paper, the operation 

scenarios are 860, 950, 1100 and 1330 respectively. All these scenarios are classified either static secure (SS) 
or static insecure (SI). The impact of the feature selection approach used in this research work is mentioned 
in the table as dimensionality reduction which is designating by bold values. 

In order to evaluate the performance of a static security evaluation approach, it is very important to 
measure its performance. Therefore, some common performance measures are used to evaluate the 
performance of a particular security status index compared with other approaches.  

Four different algorithms of DT’s with same train datasets and test datasets are used in a 
comparison. This comparison was in terms of CCR, TNR, TPR, GM and computation time and presented in 
table 4. For extra knowledge regarding the artificial intelligence techniques algorithms used in this study is 
presented in [17]. 

Table 4 shows the comparison between the performance's measures of proposed C4.5 and other four 
various DT’s techniques for the two network data sets (57 and 118 IEEE test systems) in both training and 
testing data sets. In Table 4, the best and the worst values of the measures are highlighted in bold font and 
underline font, respectively. In training phase (57 bus system), BF Tree, Stump Tree, J 48 Tree and J 48 graft 
attained around 94.70%, 95.4%, 93.70%, 94.60% of CCR respectively, while C4.5 Tree attained of CCR 
around 98.64%. In testing phase, BF Tree, Stump Tree, J 48 Tree and J 48 graft attained around 93.50%, 
91.2%, 92.50%, 93.40% of CCR respectively, while C4.5 Tree attained around 97.44% of CCR. 

In training phase (118 bus system), BF Tree, Stump Tree, J 48 Tree and J 48 graft attained around 
94.50%, 95.2%, 93.50%, 94.20% of CCR respectively, while C4.5 Tree attained around 98.44% of CCR. In 
testing phase, BF Tree, Stump Tree, J 48 Tree and J 48 graft attained around 93.80%, 91.5%, 92.80%, 
93.70% of CCR respectively, while C4.5 Tree attained around 97.74% of CCR. 
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Table 4. Performance of C4.5 classifier for static security evaluation 
 Proposed Classifier Decision Tree classifiers (DTC’s) 
 C4.5 Tree BF Tree Stump Tree J 48 Tree J 48 graft 
IEEE 57 bus Total samples, 950 

Train set  Samples 630 

CCR (%) 98.64 94.70 95.4 93.70 94.60 

TPR (%) 96.30 93.90 95.1 93.20 94.00 

TNR (%) 97.21 94.30 95.00 93.30 94.20 

GM (%) 96.75 94.09 95.049 93.25 94.10 

Time(s) 0.0001 0.001 0.02 0.01 0.03 

Test set  Samples 320 

CCR (%) 97.44 93.50 91.2 92.50 93.40 

TPR (%) 95.90 93.60 95.5 93.70 94.90 

TNR (%) 97.21 94.15 95.70 93.30 94.20 

GM (%) 96.55 93.87 95.59 93.49 94.55 

Time(s) 0.0001 0.003 0.04 0.02 0.05 

IEEE 118 bus Total samples, 1100 

Train set  Samples 750 

CCR (%) 98.44 94.50 95.20 93.50 94.20 

TPR (%) 96.80 94.30 95.2 93.70 94.80 

TNR (%) 97.5 95.00 94.90 93.10 94.10 

GM (%) 97.14 94.65 95.049 93.39 94.45 

Time(s) 0.0001 0.001 0.052 0.01 0.05 

Test set  Samples 350 

CCR (%) 97.74 93.80 91.50 92.80 93.70 

TPR (%) 97.10 93.75 94.7 94.10 94.10 

TNR (%) 96.90 94.30 94.90 93.20 94.30 

GM (%) 96.99 94.02 94.79 93.64 94.19 

Time(s) 0.001 0.002 0.055 0.015 0.08 

 
 
Bold value validates that C4.5 provides great correct classification rate and minimum computation 

time to other DTC’s classifiers. 
Finally, for train mode and test mode, table 4 also demonstrates the computation time in seconds. 

Strongly, it can be observed that for both systems used, C4.5 got minimum computation time (0.0001) second 
for training and testing phases. Furthermore, for the recall (test) phase where C4.5 got computation time of 0 
s. and 0.001 s. for training and testing phase respectively.   
 
 
4. CONCLUSION 

The results and discussions of using C4.5 and other decision tree classifiers for SSE the electric 
power has presented. Also, the results and discussions of using feature selection for designing classifiers for 
SSE the electric power grid has presented. The implementation of feature selection involved appropriateness 
data reduction. The implementation decision tree methods on several IEEE test systems involved 
appropriateness SSE and classification by using four algorithms of DT’s. From this research work, it is 
observed that all these algorithms promise successful and alternative techniques for large scale power grid 
SSE. 98.7% of CCR and 0.0001 second of computation time made C4.5 is very well fit in the real-time 
power systems SSE. Mentioned techniques can effectively be implemented for SSE with high accuracy rate. 
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