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 ARM processors are receiving more attention as per IoT customized devices 

are concerned. A novel framework design tool for Linux kernel 

customization on ARM architecture has been illustrated. The tool is best suit 

from ARM based platformss like Raspberry pi, Beagle Bone, Intel Edison 

etc. The proposed techniques uses different tool chains for the kernel 

customization. The paper represents an integral framework that integrates all 

the cross compiling tools and simplifies the overall process. The framework 

has been used for the development of a customized kernel for Raspberry Pi 

on Ubuntu 14.04 host computer. The custom kernel has been ported in to 

Raspberry Pi and the performance evaluation has been done. Furthermore, 

the analysis aims to help users choose and configure their tracers based on 

their specific requirements to reduce their overhead and get the most of out 

of them. The testing of customized OS with raspberry Pi device in the field 

of agriculture. The smart node/mote is designed based on it to deploy in the 

agriculture field to test its feasibility. The group of nodes data is gathered 

using ThingSpeak cloud server. The gathered sensory data is analyzed and 

forecast on farmer’s mobile phone in the form of APP or handheld device for 

farmer. 
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1. INTRODUCTION 

Since the feature of technologies are being enhanced and the performances are also getting 

improved accordingly that the hardware and software are modified [1]. In this article we discuss 

the configuration Linux kernel for advanced ARM processors [2]. So it is necessary to update the old Linux 

kernel when that become not appropriate for interrupt handling, Scheduling different tasks, resources 

allocating, management of on chip memory, multitasking and Easy user interfaces [3, 4]. 

Porting of Linux kernel on a target platform depends upon number of factors. We concerns with 

the Linux kernel configuration and compilation for the raspberry pi on Host Ubuntu 14.04. Tool chains are 

build up around cross compiler and executable file can ported in target platform [5]. The Linux kernel 

supports different types of architectures, such as X86, ARM.so the protocols for are different for each 

architectures. In this article we create embedded Linux system in to raspberry pi Computer based on 

ARM1176JFZ-S processor with BCM2835 system on chip [6]. 
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2. LINUX KERNEL ARCHITECTURE 

There are three different layers in Linux kernel. At the top level SCI (system call interface), 

the significance of this layer is to read and write instruction and socket calls [7]. Then there are architecture 

dependent and architecture independent layers. Process management execute the process and shares the CPU 

and the active threads. The virtual file system provides common interface abstraction for file system in 

kernel. The kernel also concerns with management for memory for keeps track of which pages are partially 

filled, filled and empty [8, 9]. Figure 1 shown the Linux kemel architecture. The device drivers have 

the source codes for Linux kernel. The arch subdirectory is the architecture-dependent and contain 

subdirectories for various architecture of machine [8]. 
 

 

 
 

Figure 1. Linux kernel architecture 

 

 

3. NODE ARCHITECTURE 

The generalized block diagram in Figure 2 shows the various nodes are placed in the agriculture 

field. The nodes namely node1, node2 … and node N are homogeneous in nature. The nodes are having their 

own architecture and capable to communicate via Xbee network to coordinator node. The coordinator node 

having Wi-Fi to communicate over internet [10]. The cloud server namely ThingSpeak record the data of 

different fields of the particular channel. The server direct the decision to mobile app of the farmer using 

Blynk APP. 
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Figure 2. Generalized architecture 
 

 

In remote agricultural field if internet facility is not available then the xbee network formed via  

the architecture as shown in Figure 3. The Node contains controller unit i.e Arduino, the group  

sensors i.e DHT11, BMP185, ultrasonic sensor as water level sensor, gas sensor measures hazardous gases, 

soil moisture sensor, flame sensor, display unit, xbee modem and power supply adaptor (+12V), power 

supply convertor [5]. 

The xbee based network formed a wireless personal area network [WPAN] required a coordinator 

whose architecture as shown in Figure 4 to collect data locally and having customized OS loaded raspberry 

pi3 capable to send the data to cloud. The coordinator are having customized OS loaded raspberry pi3, 

display unit, xbee modem and power supply convertor [3, 8, 9]. The agricultural field where internet facility 
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is available then direct raspberry pi-based node directly upload data on cloud using the architecture as shown 

in Figure 5. The Node OS loaded raspberry pi3, the group sensors i.e DHT11, BMP185, ultrasonic sensor as 

water level sensor, gas sensor measures hazardous gases, soil moisture sensor, flame sensor, display unit and 

power converter [11]. 
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Figure 3. Node architecture if internet is not available in agriculture field 
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Figure 4. Intermediate device/coordinator architecture  
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Figure 5. Node architecture if internet is available 

 

 

4. CIRCUIT AND SCHEMATICS DIAGRAM 

The system is design and tested as per given hardware circuitry as shown in Figure 6, Figure 7 and 

Figure 8. The Figure 7 shows the node circuit of remote agricultural filed using xbee modem. The various 

sensors and their mode of communication with Arduino is fairly discussed in schematics. The connection 

among xbee, Arduino and LCD20*4 also discussed. 

The Figure 7 shows the node circuit of coordinator and its shows the interconnection among xbee, 

LCD 20*4, and raspberry pi. The various sensors and their mode of communication with Arduino is fairly 

discussed in schematics[12-13]. The Figure 8 shows the node circuit of if the internet connection is available 

in agricultural filed. The various sensors and their mode of communication with raspberry pi3 is fairly 

discussed in schematics. The connection among xbee, LCD20*4 and power supply also discussed [7]. 
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Figure 6. Node Circuit if internet is not available in agriculture field 

 

 

 
 

Figure 7. Intermediate device/coordinator architecture  
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Figure 8. Node circuit if internet is available 

 
 

5. CROSS COMPILATION AND SOFTWARE DEVELOPMENT 

Cross compiler provides the platform to generate and execute codes for a target in which compiler is 

running. Cross compilation environments support Application Binary Interface (ABI) and Embedded 

Application Binary interface (EABI) [8]. The ABI represents higher level language to machine level 

language. For different targets Linux kernel get updated with tool chains for different application. Figure 9 

shown flow diagram for cusyomization of Linux Kemel [5, 14, 15]. 
 

 

 
 

Figure 9. Flow diagram for customization of linux kernel 
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5.1. Compilation of linux kernel on ARM 

5.1.1. Method 1 

Download the latest stable kernel release from www.kernel.org and extract it in ~/linux-stable. 

To speed up the process, use the current kernel named .config which can be found in /boot with a name 

starting with config- followed by the kernel version.and copy it to the top src directory of the kernel [16]. 

$ cp /boot/config-* ~/linux-stable/.config 

The new kernel may include options not found in your current kernel and thus there may be a few 

configuration options that you need to still specify. 

$ cd ~/linux-stable 

$ make oldconfig 

If we are not sure what to answer to those questions, you can select the default by simply pressing 

the Enter key for each of the questions. Once the kernel configuration is complete you are ready to actually 

start compiling the linux kernel [15]. 

$ make -j`cat /proc/cpuinfo | grep -c processor` 

It will take 4-5 Hours’ time would be required to build kernel.The above command builds the kernel 

image as well as the kernel modules that get loaded dynamically. Now, all that is left is to install the new 

kernel image and kernel modules and to get the bootloader (ex: GRUB) to recognize and boot the new kernel 

the next time you boot your computer [14].  

$ sudo make modules install 

The above command installs the kernel image and copies the configuration for the new kernel in 

the /boot directory. It also modifies the bootloader configuration so that the boot loader (ex: GRUB) 

recognizes the new kernel. The kernel modules are installed into /lib/modules with the kernel version as 

the name and are linked to the kernel image. The kernel headers are installed into /usr/src [17]. 

Reboot the system Verify the new kernal version  

$ Uname -r. 

If you decide that you no longer need a particular kernel version, you can completely get rid of it 

by deleting the corresponding kernel's config, vmlinuz, System.Map and initrd from the /boot folder and 

the corresponding kernel modules from /lib/modules and the kernel header from /usr/src [18]. Once we are 

done deleting these files, all that remains is to update the bootloader by running  

"$ sudo update-grub2". 

If you decide to rebuild the new kernel, run "$ make mrproper" in ~/linux-stable to clean the kernel 

configuration and all the files that have already been built and you are ready to start all over again [6]. 

Compilation of custom linux kernel for raspberrypi on Ubuntu 14.04 host 

Create our own root directory and download linux and tools for raspberrypi 

https://github.com/raspberrypi/tools.git 

https://github.com/raspberrypi/linux.git 

cd linux 

$ mkdir -p ~/raspberry_armtools/build/toolchain \ ~/raspberry_armtools/toolchains \ 

Crosstool-NG isn't available in the standard Ubuntu  

Repositories, so we must build it. Run the following commands todownload, build, and install Crosstool-NG: 

$ pushd ~/raspberry_armtools/build 

http://crosstoolng.org/download/crosstoolng/crosstool-ng-1.18.0.tar.bz2 

$ tar xf crosstool-ng-1.18.0.tar.bz2 && cd crosstool-ng-1.18.0 

Run the following commands to launch menuconfig, then follow the sub-sections below to configure the 

toolchain build parameters: 

$ pushd ~/raspberry_armtools/build/toolchain 

$ ct-ng menuconfig 

Customization of Toolchain for ARM processor: 

$ ct-ng build 

$ popd 

If the build was successful, the toolchain will be located at ~/raspberry_armtools/toolchains/arm-

unknown-linux-gnueabihf/. All the tools (gcc, ld, gdb, etc) are located in the bin/ directory of the toolchain 

with the name of the toolchain prefixed [12, 19]. 

 

5.1.2. Method 2: using YOCTO project 
Then you need to edit conf/local.conf to match your compilation environment and to set the target 

machine as Raspberry Pi, and possibly to adjust the GPU memory, by updating or adding the corresponding 

lines in local.conf: 

http://www.kernel.org/
http://crosstool-ng.org/download/crosstool-ng/crosstool-ng-1.18.0.tar.bz2
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BB_NUMBER_THREADS = "2" 

PARALLEL_MAKE = "-j 2" 

MACHINE ?= "raspberrypi" 

GPU_MEM = "16" 

Other system parameters such as GPU memory, license codecs and overclocking can be adjusted as described 

in [20]. The path to meta-raspberrypi needs to be added to bblayers.conf file located in poky/build/conf, so 

that it would look like to this: 

“BBLAYERS ?= " \ 

/home/mahi/yocto/poky/meta \ 

/home/mahi/yocto/poky/meta-yocto \ 

/home/mahi/yocto/poky/meta-yocto-bsp \ 

/home/mahi/yocto/poky/meta-raspberrypi \ 

" 

Now we can create the image by invoking the command: 

$ bitbake rpi-basic-image 

This image will contain ssh server support. After the system is compiled and built there will be a file in 

tmp/deploy/images/rpibasic-image-raspberry.rpi-sdimg. This is a symlink to the binary image that can be 

copied into a SD card: 

$ sudo dd.sh if=tmp/deploy/images/rpi-basicimage-raspberrypi.rpi-sdimg of=/dev/sdb bs=1M 

The SD boots the Raspberry Pi with the newly compiled kernel and modules. 

To add features or adjust memory of the kernel, you can change the kernel configuration before building 

the system with command: 

$ bitbake virtual/kernel –c menuconfig. 

This opens the same graphical kconfig menu that was used in the earlier compilation sections [21]. Through 

the menu selections you can do similar configuration changes as were described in the previous section, 

“Compiling for QEMU”. 

The new configured kernel should be built with the “$ bitbake virtual/kernel”. 

 

 

6. PERFORMANCE EVALUATION 

Performance evaluation has been done on custom kernel for following details as shwon in Table 1, 

Table 2, and Table 3. 

 

 

Table 1. Using python on raspbian 
Evaluation parameters Bubble sort Binary Search Merge sort 

CPU cycles used 2.2x1018 3.2x1018 2.5x1018 

Context switch time in ms 1245 1324 1367 

Task clock cycle 3456 3589 3678 
Cache hit time in ms 976 976 945 

Overall performance in percentage 75 69 79 

 

 

Table 2. Using python on PiLFS 
Evaluation parameters Bubble sort Binary Search Merge sort 

CPU cycles used 2.1x1018 2.9x1018 2.3x1018 

Context switch time in ms 1189 1201 1235 
Task clock cycle 3879 3987 3794 

Cache hit time in ms 1125 1192 1232 

Overall performance in percentage 84 73 65 

 

 

Table 3. Using python (YOCTO) 
Evaluation parameters Bubble sort Binary Search Merge sort 

CPU cycles used 3.2x1018 4.5x1018 2.7x1018 

Context switch time in ms 1239 1287 1342 
Task clock cycle 4232 3954 3875 

Cache hit time in ms 1345 1356 1189 

Overall performance in percentage 73 65 75 
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7. RESULTS AND CONCLUSION 

Customizing Linux kernel for target processor is one effective tool. The analysis has been done on 

target processor i:e Raspberry Pi. Same techniques can be used for other platform as well. The Figure 10 

shows that overall performance comparison among three OS namely Raspbian, PiLFS and Yocto 

(customized) with respect to three algorithm namely bubble sort, binary search and merge sort. 

The customized OS for raspberry pi-based system may be used in various domain of engineering like smart 

cities, agriculture, waste management, water management etc. 

 

 

 
 

Figure 10. Performance comparison 
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