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 In a power system, the load demand considers two components such as the 

real power (P) because of resistive elements, and the reactive power (Q) 

because inductive or capacitive elements. This paper presents a graphical 

representation of the electric power demand based on the topological 

properties of the Julia Sets, with the purpose of observing the different 

graphic patterns and relationship with the hourly load consumptions. 

An algorithm that iterates complex numbers related to power is used to 

represent each fractal diagram of the load demand. The results show some 

representative patterns related to each value of the power consumption and 

similar behaviour in the fractal diagrams, which allows to understand 

consumption behaviours from the different hours of the day. This study 

allows to make a relation among the different consumptions of the day to 

create relationships that lead to the prediction of different behaviour patterns 

of the curves. 
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1. INTRODUCTION 

Benoit Mandelbrot defined the concept of fractals as a semi-geometric element with a repetitive 

structure at different scales [1], with characteristics of self-similarity as seen in some natural formations such 

as snowflakes, ferns, peacock feathers, and Romanesco broccoli. Fractal theory has been applied to various 

fields such as biology [2, 3], health sciences [4-8], stock markets [9], network communications [10-12], 

and others. Fractal theory is one of the methods used to analyse data and obtain relevant information in 

highly complex problems. Thus, it has been used to study the price of highly variable markets, which are not 

always explainable from classical economic analysis. 

For example, in [9], the authors demonstrate that current techniques have some issues to explain 

the real market operation and a better understanding is achieved by using techniques such as chaos theory 

and fractals. In their publication, the authors show how to apply fractal behaviour to stock markets and refer 

to multifractal analysis and multifractal topology. The first describes the invariability of scaling properties of 

time series and the second is a function of the Hölder exponents that characterizes the degree of irregularity 

of the signal, and their most significant parameters. 

In [13], the authors discuss the basic principle of fractal theory and how to use it to forecast 

the short-term electricity price. In the first instance, the authors analyse the fractal characteristic of 

the electricity price, confirming that price data have this property. In the second instance, a fractal model is 
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used to build a forecasting model, which offers a wide application in determining the price of electricity in 

the markets. 

Similarly, the authors of [14] demonstrate that the price of thermal coal has multifractal features by 

using the concepts introduced by Mandelbrot-Bouchaud. Hence, a quarterly fluctuation index (QFI) for 

thermal power coal price is proposed to forecast the coal price caused by market fluctuation. This study also 

provides a useful reference to understand the multifractal fluctuation characteristics in other energy prices. 

Fractal geometry analysis has been also applied to study the morphology and population growth of cities, and 

electricity demand related to the demography of cities. In [15], a multifractal analysis is used to forecast 

electricity demand, explaining that two fractals are found that reflect the behaviour pattern of power demand. 

Two concepts linked to fractal geometry are fractal interpolation and extrapolation, which are related to the 

resolution of a fractal-encoded image. In [16], an algorithm is used to forecast the electric charge in which 

fractal interpolation and extrapolation are also involved; for the forecast dataset, the average relative errors 

are only 2.303% and 2.296%, respectively, indicating that the algorithm has advantages in improving forecast 

accuracy. 

In [17], a slotted is introduced at each of the radiating elements on the 1st iteration log periodic 

fractal Koch antenna (LPFKA). The antenna is designed to testify the appropriate performance at UHF 

Digital television which operates from 4.0 GHz to 1.0 GHz. The dimension of the conventional 0th iteration 

LPKFA is successfully reduced by 17% with the implementation of slotted. The results show a good 

agreement with a stable radiation pattern across the operating bandwidth, stable gain more than 5 dBi and 

reflection coefficient of below -10 dB over the desired frequency range. 

Finally in [18]  a  multiband  and  miniature  rectangular  microstrip antenna  is designed  and  

analyzed  for  Radio  Frequency  Identification  (RFID)  reader applications. The miniaturization is achieved 

using fractal technique and the physical parameters of the structure as well as its ground plane are optimized 

using CST Microwave Studio. The total area of the final structure is 71.6 x 94 𝑚𝑚2. The results show that 

the proposed antenna has good matching input impedance  with  a  stable  radiation  pattern  at  915  MHz,  

2.45  GHz,  and  5.8 GHz. 

In the literature reviewed there are no papers focused on the daily real and reactive power 

consumption based on the topological properties of the Julia sets. There are no graphical analyses that show 

the behaviour of the system by observing different fractal patterns. Most studies on fractals are focused on 

other types of applications such as medicine, biology, communications, electronics, leading to an important 

opportunity to perform the study on power systems. In addition, the characteristics of the real and reactive 

powers are not analysed in depth by applying fractal geometry, concluding that these techniques are not 

commonly used to study the different power consumption. Therefore, this paper studies a typical load 

demand curve of an electric power system with the fractal theory of Julia sets. The graphic study focuses on 

determining the characteristics that the fractal diagrams created from Julia sets related with the complex 

numbers of real and reactive powers and seeking for other graphical patterns of the load demand curve. 

For this reason, this work proposes the following hypothesis: The load demand curve has a clear fractal 

pattern obtained from the Julia sets, which allows to characterize the consumption behaviour. The main 

contribution of this article is related to the development of a new methodology, as a complement to those 

found in literature, which allows to characterize the daily load demand curve. This paper confirms that the 

density of the folds in the Julia sets reveal the transitivity in the electric power consumption registers, which 

is related to the irregularity of the hourly consumption. Eventually, the fractal topology that is obtained from 

the Julia sets reflects when the load is inductive or capacitive. 

 

 

2. RESEARCH METHOD 

This methodology is based on constructing an algorithm that allows an analysis of the fractal 

diagrams applied to the typical load demand curve. Below, this section shows the general procedure and 

the algorithms implemented to obtain the Mandelbrot and Julia sets, which are useful tools to graph fractals 

from the complex numbers related to the load demand.  

 

2.1. General procedure 

Figure 1 presents a step-by-step procedure applied to graph the fractal diagrams from the load 

demand with the Mandelbrot and Julia sets. This figure shows that the first step (P1) is to convert the initial 

data to manage the procedure to the Mandelbrot and Julia algorithms. Next, the Mandelbrot algorithm is 

programmed according to the mathematical theory (P2) to generate a new data set. Besides, the Julia 

algorithm is also programmed to perform the generation of the new sets, based on the Mandelbrot set. 

With these data sets, it is possible to plot the different fractals (P4) which are then analysed to present 

the different results in this paper (P5) and the corresponding conclusions.  
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Figure 1. General procedure of the study 

 

 

2.2. Load demand curve 

The process begins by reading the typical load demand records of real and reactive defined for a  

24-hour period as shown in Table 1 [19, 20]. The per unit values of the power demand are calculated with the 

following expression: per unit power = actual power / base power. In this case, the base power is 

4000 𝑀𝑉𝐴. These data are used to plot the diagrams with the programmed algorithms, in which the lowest 

and highest consumption points are considered to evaluate the different fractal diagrams.  

 

 

Table 1. Daily power demand 

𝑯𝒐𝒖𝒓 𝑷 𝑸 𝑺 𝑷𝒑𝒖 𝑸𝒑𝒖 𝑺𝒑𝒖 

00:00:00 889 371 963 0.222 0.092 0.240 

01:00:00 834 405 927 0.208 0.101 0.231 
02:00:00 792 337 861 0.197 0.082 0.215 

03:00:00 790 324 854 0.199 0.081 0.213 

04:00:00 804 323 867 0.201 0.080 0.216 
05:00:00 925 355 991 0.231 0.088 0.247 

06:00:00 1041 482 1147 0.260 0.120 0.286 
07:00:00 1105 556 1237 0.276 0.139 0.309 

08:00:00 1191 610 1338 0.297 0.152 0.334 

09:00:00 1256 704 1439 0.314 0.176 0.359 
10:00:00 1309 744 1506 0.327 0.186 0.376 

11:00:00 1366 775 1571 0.341 0.193 0.392 

12:00:00 1385 793 1595 0.346 0.198 0.398 
13:00:00 1356 774 1561 0.339 0.193 0.390 

14:00:00 1337 759 1537 0.334 0.189 0.384 

15:00:00 1350 774 1556 0.337 0.193 0.389 
16:00:00 1336 773 1543 0.334 0.193 0.385 

17:00:00 1312 749 1511 0.328 0.187 0.377 

18:00:00 1287 687 1459 0.321 0.171 0.364 
19:00:00 1420 683 1575 0.355 0.170 0.393 

20:00:00 1389 660 1538 0.351 0.167 0.384 

21:00:00 1311 605 1444 0.327 0.151 0.361 
22:00:00 1175 544 1295 0.293 0.136 0.323 

23:00:00 1030 489 1140 0.257 0.122 0.285 

 

 

2.3. Algorithm to create the Mandelbrot set 

The Mandelbrot set, denoted as 𝑀 = {𝑐 ∈ 𝐶/𝐽𝑐}, represents sets of complex numbers C obtained 

after iterating from the initial point Zn and the selected constant 𝐶 as shown in Equation (1). The results form 

a diagram with connected points remaining bounded in an absolute value. One property of 𝑀 set is that the 

points are connected, although in some zones of the diagram it seems that the set is fragmented. The iteration 

of the function generates a set of numbers called “orbits.” The results of the iteration of those points outside 

the boundary set tend to infinity: 

 

𝑍𝑛+1 = 𝐹(𝑍𝑛) = 𝑍𝑛
2 + 𝐶. (1) 
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From the term 𝐶, a successive recursion is performed with 𝑍0 = 0 as the initial term. If this 

successive recursion is dimensioned, then the term 𝐶 belongs to the Mandelbrot set; if not, then they are 

excluded. Therefore, Figure 2 shows the Mandelbrot set with points in the black zone called the “prisoners” 

while the points in other colours are the “escapists” and represent the escape velocity to infinity. 

 

 

 
 

Figure 2. Graphical representation of the Mandelbrot set 

 

 

In Figure 2, the value −1 is inside of the set while the number 1 is outside. In the Mandelbrot set, 

the fractal is the border and the dimension of Hausdorff is unknown. If the image is enlarged near 

the boundary of the set, then many areas the Mandelbrot set are represented in the same form. Besides, 

different types of Julia sets are distributed in different regions of the Mandelbrot set. If a complex number 

appears with a greater value than 2 in the 0 orbit, then the orbit tends to infinity. The orbits that are generated 

are part of a sequence of complex numbers and their characteristics depend fundamentally on the values of 

the initial point 𝑍𝑛 and of the selected 𝐶 constant. The pseudocode of the algorithm that is used to represent 

the Mandelbrot set is presented as follows: 

 

Start 

For each point 𝐶 in the complex plane do: 

       Fix 𝑍0 = 0 

For 𝑡 = 1 to 𝑡𝑚𝑎𝑥 do: 

Calculate 𝑍𝑡 = 𝑍𝑡
2 + 𝐶 

If |𝑍𝑡| > 2 then 

      Break 

End if 

If < 𝑡𝑚𝑎𝑥 then 

     Draw 𝐶 in white (the point does not belong to the set) 

Else if 𝑡 = 𝑡𝑚𝑎𝑥 then 

     Draw 𝐶 in black (as the point does belong to the set) 

End if 

End For 

End 

 

In this research, the presented algorithm has been used to obtain the Mandelbrot set and the diagram 

that represents it. Some points related to the real and reactive powers with the respective signs, in the first 

quadrant of the complex plane, are studied in the Mandelbrot set and related to those points created for 

the Julia sets as explained in the following sections. 

 

2.4. Algorithm to create the Julia sets 

At the beginning of the twentieth century, mathematicians Gastón Julia and Pierre Fatou developed 

fractal sets obtained by iterating complex numbers. The Julia sets of a holomorphic function  𝑓 is constituted 

by those points that under the iteration of  𝑓 have a chaotic behaviour, and each point of the set forms a 

different set 𝑓 that is then denoted by 𝐽(𝑓). The Fatou set consists of the points that have a stable behavior 
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when they are iterated. The Fatou set of a holomorphic function 𝑓 is denoted by 𝐹(𝑓) and it is a complement 

of 𝐽(𝑓). An important family of the Julia sets is obtained from the simple quadratic functions; for example, 

𝑍𝑛+1 = 𝐹(𝑍𝑛) = 𝑍𝑛
2 + 𝐶 , where 𝐶  is a complex number. The values obtained from this function are 

denoted 𝐽𝐶, with points of 𝑍 obtained from the parameter 𝐶 that belong to the Julia sets. Other points obtained 

during the iteration are excluded from the Julia sets as they tend to infinity. 

For example in Figure 3, the complex number 𝐶 = 0.30 + 0.21i  lies within the M set and produces 

Julia sets of connected points represented in black, and the points that go to infinity are represented in 

different colors according to the number of iterations necessary to escape. However, as shown in Figure 4, 

the complex number C = 0.40 + 0.15i  lies on the boundary of the M set and produces a Julia set of points 

that are partially connected  and distributed in different subgroups. Finally, Figure 5 shows a complete Julia 

sets of the complex number C = 0.50 + 0.21i, located outside of the M set. 

 

 

 
(a) 

 
(b) 

 

Figure 3. Fractal diagrams when C is inside the M set, (a) M set, (b) J set 

 

 

 
(a) 

 
(b) 

 

Figure 4. Fractal diagrams when C is in the boundary of the M set, (a) M set, (b) J set 

 

 

 
(a)  

(b) 
 

Figure 5. Fractal diagrams when C is outside of M set, (a) M set, (b) J set 
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In summary, there are three types of Julia sets: the first set is formed by connected points that are 

obtained when the complex number 𝐶 is inside of the Mandelbrot set; the second set is formed by partially 

connected points that are obtained when the complex number 𝐶 is the boundary of the Mandelbrot set; 

and the third set is formed by non-connected points when the constant 𝐶 is outside of the Mandelbrot set, 

resulting in infinite collections of isolated points with no discernible pattern. An important relation between 

the Mandelbrot and Julia sets is given when point 𝐶 belongs to the Mandelbrot set; then, the Julia set 𝐽(𝑓𝑐) 

obtain a series of points that are connected. On the other side, when the point does not belong to 

the Mandelbrot set, the Julia set 𝐽(𝑓𝑐) is formed by non-connected points. 

One property of the Mandelbrot set is that the different types of Julia sets are distributed in different 

regions of the set 𝑀. For all the above, it is concluded that in Figure 5, 𝐶1 is in the set of 𝑀 and 𝐶2 is not in 

the set. In general, for any point within the 𝑀 cardioid or its boundary, the Julia set of 𝐽(𝑓𝑐) has points that 

are connected. The most interesting 𝐶 values are those near the boundary of the Mandelbrot set because 

the points can be transformed from connected points to non-connected points. 

 

2.5. Algorithm to study the fractals of power demand 

In order to obtain the results of the fractal topology patterns that represent the real and reactive 

power demand curves, the procedure shown in Figure 6. 

 

 

 
 

Figure 6. Algorithm with the steps used to obtain the fractal of the power demand 

 

 

The initial process stars reading data of the power base and the real and reactive powers, followed 

by the calculation of each per unit value. In this case, the 𝑃 and 𝑄 curves with respect to the time are plotted 

to represent the power demand during the day. Next, the 𝑀 set is calculated and used to plot the fractal 

diagram. Now, the real and reactive powers of each point in the load demand curve are scaled into the 𝑀 set 

and used to obtain the 𝐽 sets. Then, the 𝐽 sets are plotted into fractal diagrams to analyse qualitatively their 

geometries. 

 

 

3. RESULTS AND ANALYSIS  

Figure 7 presents the typical demand curves plotted with the data of Table 1 and Figure 8 presents 

the power demand plotted in the first quadrant of the complex plane. As real and reactive powers are positive, 

they represent a load consumption related to inductive elements. Under these conditions, the three most 

interesting values of the power consumption are selected such as the lowest consumption at 3:00, the highest 

consumption at 19:00, and the approximate average consumption at 09:00. Other hours of the day represent 

diagrams that are forms between the values as shown in the following results in this section. Figure 9 shows 

the fractal generated for each point of Figure 8. These fractals are created by performing iterations of 

the complex numbers obtained from the daily load demand.  
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Figure 7. Typical load demand in a day 

 

 
 

Figure 8. Real and reactive power plotted in the first 

quadrant of the complex plane of the M set 

 

 

 
(a) 1:00 

 
(b) 3:00 

 
(c) 5:00 

 
(d) 7:00 

    

 
(e) 9:00 

 
(f) 11:00 

 
(g) 13:00 

 
(h) 15:00 

    

 
(i) 17:00 

 
(j) 19:00 

 
(k) 21:00 

 
(l) 23:00 

 

Figure 9. Representation of power demand in the first quadrant of the complex plane of J sets 

 

 

All Julia sets plotted closed curves of connected points and represent the fractal topology of 

inductive power loads that belong to the first quadrant of the complex plane. The curves are transformed into 

fractal curves, where the semi plane save inverted reflections each other and with quadrants symmetrically 

inverted with respect to the origin. It is also true that, when the set of Julia is connected, the point 𝐶 does not 

reach the boundary of the 𝑀 set, and do not generate periodicity of the Julia set.  
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Now, with respect to the topological properties of the Julia sets registered in the lower demand 

period [00:00 - 05:00], the equivalent fractal topology is presented at 3:00 with an inverted reflective 

symmetry. Another feature of the sub-period is the practical invariance in the load demand, which is evident 

in the unmoving folding at the boundary of the fractal curve. At 05:00, the load demand begins to increase, 

generating greater fractal folds at the boundaries of the Julia set. At 09:00, the significant increase in the load 

demand is evidenced by the increase in the fractal folds of the Julia set. From 12:00 to 17:00, an average load 

demand is maintained, representing insignificant changes in the boundary of the Julia set. The point of 

greatest interest occurs at 19:00, when the greatest load demand, generating a topology with dense fractal 

folds at the boundary related to the properties of the peak load demand. From 19:00 to 24:00, the load 

demand decreases and the boundary of Julia set softens. 

 

 

4. CONCLUSION 

The paper presented a graphical representation of the power demand based on the topological 

properties of the Julia Sets, with the purpose of observing the different graphic patterns and relationship with 

each consumption in a daily load demand curve. An algorithm that iterates complex numbers of real and 

reactive powers is used to represent each fractal diagram of the consumption.  

It is concluded that the load demand curve presents a clear fractal topology pattern of the Julia set 

and the following observations were obtained: 

a. A new way of visualizing the state of the power demand curves is performed by using the fractal 

diagrams of Julia set.  

b. The fractal topology of the Julia sets related to the properties of power demand does not give a 

quantitative but qualitative geometry information as results of studying the different images.  

c. The topology of the Julia set reveals that the real and reactive powers studied for the load demand curve, 

which is related to an inductive load, belongs to the first quadrant of the complex plane.  

d. The density of folds obtained from the Julia set is related to the proximity of the demand for real and 

reactive powers to the boundary of the Mandelbrot set.  

e. From the electrical point of view, the densities of folds are related to: (a) power consumption through 

the different hours and (b) the combination of the real and reactive power magnitudes during the day.  

The load demand curves studied in this article produce Julia sets with connected points because 

the points are within the Mandelbrot set. The fractals found with the Julia sets evidence that the load demand 

curves relate to the steady-state operation, which represents the zone of predictable values. After repeating 

the simulation for different real and reactive powers within the first quadrant of the complex plane, 

they produce the Julia set with symmetrically inverted fractal curves with respect to the origin. 
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