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 Hashing is popular technique of image authentication to identify malicious 

attacks and it also allows appearance changes in an image in controlled way. 

Image hashing is quality summarization of images. Quality summarization 

implies extraction and representation of powerful low level features in 

compact form. Proposed adaptive CSLBP compressed hashing method uses 

modified CSLBP (Center Symmetric Local Binary Pattern) as a basic method 

for texture extraction and color weight factor derived from L*a*b* color 

space. Image hash is generated from image texture. Color weight factors are 

used adaptively in average and difference forms to enhance discrimination 

capability of hash. For smooth region, averaging of colours used while for 

non-smooth region, color differencing is used. Adaptive CSLBP histogram is 

a compressed form of CSLBP and its quality is improved by adaptive color 

weight factor. Experimental results are demonstrated with two benchmarks, 

normalized hamming distance and ROC characteristics. Proposed method 

successfully differentiate between content change and content persevering 

modifications for color images. 
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1. INTRODUCTION 

Success and popularity of digital technology is enormous. Digital forgery (tampering) and 

unauthorized use have reached a significant level that makes multimedia authentication and security very 

challenging and demanding. Some of this data is confidential and there is need of protecting and verifying 

the data integrity. It is necessary to protect some data for its confidentiality and integrity. In cryptography, 

hashing techniques are there for data integrity. These methods are basically designed for text data and follow 

stringent approach in which even change in single bit drastically causes change in its hash code. 

Such techniques cannot be utilized for digital data like image, video etc. as limited change is common on 

these data types. Limited change in the image data indicates content preserving operations like gamma 

correction, scaling, contrast modification etc. To deal with data integrity issues, image hashing is simple and 

efficient solution. Content change in an image is treated as malicious operation. The hash code of original 

and modified image is drastically different or above prescribed threshold when some malicious changes 

occur in an image [1-4].  

Most of the existing image hashing methods target only gray scale images. The proposed hashing 

method is designed for colour images. For colour image hashing, color is an important feature. However, 

relying only on colour feature for feature extraction is not sufficient. Texture is a very useful depiction for a 

wide range of images. Colour is highly correlated, specially RGB colour model whereas structures are 

uncorrelated and random in nature.  

Proposed method extracts spatial texture features using modified CSLBP which mainly concentrates 

on pixel statistics to determine texture strength and pattern. Colour features are fastened in modified CSLBP 
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texture descriptor. Colour features are adaptively used based on local region analysis. Color feature is pixel 

dependent while texture features are determined from set or pixels or neighbourhood. CIE L*a*b* color 

space is selected for color features as this color model satisfy the perceptual uniformity property. 

To determine smoothness of local region, Canny edge detector is used. For smooth region, colour averaging 

is used which represents mean of neighbourhood. For edge dominant region, color differencing is used which 

represents gradient of neighbourhood. Luminance (L) channel of the lab color space is essentially the gray 

scale of original RGB image. Texture features is extracted using modified CSLBP on gray scale image 

(Luminance channel).  

As number of features increases, hashing algorithm becomes more robust and gives desirable 

discrimination quality. However, with increase in features, size of hash also increases which is not 

acceptable. To overcome this problem, color and texture features are not used separately but color feature is 

superimposed on texture feature.  

Various researchers studied image hashing in terms of quality feature extraction and their compact 

representation. Pairing local and global features together is quite robust and popular approach for image 

hashing as it identifies content change at local as well as at global level. Following represents various global 

and local features pairs for content change location locally as well as globally. DWT-SVD and Saliency 

object detection using spectral residual model; Projected Gradient Non-negative Matrix Factorization 

(PGNMF), ring partition and saliency detection; Zernike moment and Salient point detection; Zernike 

moment and Haralick local features; Zernike moments, MOD-LBP and Haralick texture features; Invariant 

moments from Radon coefficients and statistical measures from Radon coefficients; DCT coefficients of 

Watson's visual model and SIFT key points; Color vector angle and Salient edge points [5-12]. 

Transform is an very efficient way to separate out components from an image. These components 

are sensitive to content change and robust to content preserving. These components can be easily represented 

in hash form by applying simple operations. Fourier–Mellin transformed (FMT) image is converted into 

polar co-ordinates. From polar co-ordinates, features are extracted and quantized to generate a binary 

hash [13]. To improve the imperceptibility aspect in cryptography, combination of DCT and DWT 

transformed is used and double protection on the digital message is achieved by OTP encryption [14]. To 

provide protection from attacks, wavelet based Least Significant Bit Watermarking (WLSBWM) integrates 

the alphabet pattern approach which generated the shuffled image and wavelet concept to reduce the 

dimensionality of watermark [15]. Texture feature is extracted from Wave atom transform having 

characteristics of sparser expansion. Gray code optimization and chaotic map quantization is performed [16]. 

Sub band images are generated by applying 2-level DWT on the input color image. LL2 sub-band image 

arranged in concentric rings to extract features for hash creation [17]. Features such as Discrete Cosine 

Transformation (DCT) and Gray Level Co-occurrence Matrix (GLCM) are extracted in circular rings to 

generate rotation invariant hash [18].  

For color image hashing approaches color represents important feature to detect changes. Perceptual 

color difference is captured by color vector angle which is used to generate hash. Secondary image is 

generated from color vector angle. Mean is calculated from non overlapping blocks of secondary image and 

further compressed by DWT to generate compact hash [19]. From HSI plane, secondary HSI quantized 

image is generated. 24 bin histogram is generated from quantized HSI histogram to represent hash. 

This method considers purely global features and hence, performance is limited for various attacks [20]. 

From HSI and YCbCr colour space, block mean and variance are obtained. Euclidean distance is calculated 

between block features and reference features and treated as a image hash [21]. Three histograms are 

generated for an color image. Histogram captures specific distribution of pixel over the image which is 

measured as four moment like mean, standard deviation, skewness and kurtosis to generate hash [22].  

Local Binary Pattern (LBP) texture descriptor is popular because of its computational simplicity, 

tolerance for illumination changes, rotation and scale invariance. However it generates histogram of 256 bin 

which makes inappropriate choice an image hashing [23, 24]. Image hashing using Centre Symmetric Local 

Binary Pattern (CSLBP) [25] is suitable option as it generates histogram of 16 bin. In CSLBP, to extract 

texture, only sign difference of four cross symmetric pairs is taken. Davarzani et al. [26] used sign as well as 

magnitude difference of four cross symmetric pairs. In this approach, authors generated four histogram for 

each direction with magnitude as weight factor, which resulted in total histogram of 64 bin. The 64 bin 

histogram violates compact length property of image hash as well as magnitude weight on each histogram did 

not enhance discrimination capability. CSLBP histogram can be compressed by flipped difference 

concept [27]. Compression of plain histogram gives poor discrimination results. To get desirable 

discrimination of hashing, local weight factors are used during histogram correction. In our previous 

approaches, various types of weight factors are used to enhance discrimination. In AQ-CSLBP [28], 

instead of separate magnitude, the average of magnitude difference of four cross symmetric pairs is used as 

weight factor. In SDQ-CSLBP [29], weight factor is standard deviation of four cross symmetric is used. 
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Similar for CoCQ- CSLBP [30], correlation coefficient between reference local area and image local area 

represents weight factor. Finally, in LoGQ-CSLBP [31], Laplacian of Gaussian (LoG) of local area which is 

robust to noise is used as a weight factor. LBP can easily extended to color images. In Color LBP [32], 

the operator is used on each color channel independently, and then for pairs of color channels in which center 

pixel is taken from one channel and the neighbouring pixels from the other channel. Therefore by this method 

total nine histogram are generated. Size of resultant descriptor is huge. However opposing pairs, such as R-G 

and G-R are highly redundant, so either of them can be used in the analysis. This result in total six histograms 

(R channel, G channel, B channel, RG channel, RB channel, GB channel). Generated feature vector is six 

times larger than LBPs. For color images, various combinations of LBP are available like RGB-LBP, 

nRGB-LBP, Transformed color LBP, Opponent LBP, nOpponent-LBP, Hue-LBP [33]. In Improved 

Opponent Colour [34], intra and inter channel features are considered. In this method, thresholding is done 

against the average value. In experimental result analysis section, we showed that, all these color LBP variant 

approaches are not suitable for image hashing due its long length and poor discrimination power. 
 

 

2. PROPOSED METHOD 

In the proposed approach, the input RGB color image is converted to L*a*b* color space for color 

features extraction. Luminance channel of Lab color space is used by CSLBP and Canny edge detector. 

CSLBP extracts texture features and Canny edge detector detects presence of gradient information in local 

region.  

 

2.1. Pre-processing 

Initially, the input RGB color image is converted to a fixed size by using bilinear interpolation. 

Image resizing is necessary for experimental analysis and comparison with other methods. Also it is 

necessary to ensure that, images with different resolutions will have similar hash code. To enhance 

robustness against content preserving manipulations, input image is filtered by Gaussian filter. A 3×3 

Gaussian filter mask is convolved over the entire image. By doing convolution operation, it reduces 

disturbance caused by manipulations like noise, lossy compression. 

 

2.2. Modified CSLBP 

CSLBP considers only cross symmetric pairs which captures rotation invariant texture details and 

also produces histogram with less no. of bin. CSLBP considers signed gray level di-erences of cross 

symmetric pixel pairs multiplied by powers of two in a particular direction. For 3×3 local area, CSLBP value 

for a pixel lies in the range from 0 to 15, which leads to 16 bin histogram at semi global level. CSLBP is 

suitable choice for hashing for number of reasons. First it generates small histogram, captures improved 

texture information, provides robustness on flat areas. Equations (1) and (2) represents CSLBP. 
 

P/2 1 p
CSLBP (g ) s(g g )2c pP,R,T (P/2)p 0


 

  (1) 

 

p p (P/2)

p p (P/2)

1, (g g ) T
sign(g g )

0, otherwise





 
  

  (2) 
 

where, T: threshold; R: radius; P: no. of neighbours; gc: center pixel; gp: neighbours of centre pixel;  

s(gp- gp+(P/2)): sign function of CSLBP; CSLBP: CSLBP texture extractor. Values of parameters are set as 

T=0.1, P=8, R=1. 

In modified CSLBP, we divided eight neighbours into two types, four immediate neighbours and 

four diagonal neighbours. Immediate neighbours are at distance of 1 unit from centre pixel while diagonal 

neighbours are at distance of (√2) unit. Signed differences of cross symmetric pairs is taken for four 

immediate neighbours and for four diagonal neighbours separately as shown in Equations (3) and (4). 
 

P/2 1 nM _CSLBP(g ) s(g g )2c pE p (P/2)even p 0


    (3) 

 
P/2 1 nM _CSLBP(g ) s(g g )2c pO p (P/2)odd p 1


    (4) 
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where ME-CSLBP is CSLBP for nearest neighbours; MO-CSLBP is CSLBP for diagonal neighbours; n is unit 

increment operator; p is even increment operator for nearest neighbours and odd increment operator for 

diagonal neighbours; P represents neighbours of center pixel; s(gp - gp+(P/2)) is sign function 

In this proposed approach, like CSLBP, histogram is constructed by taking signed differences of 

cross symmetric pairs. But unlike CSLBP, it generates 8 bin histogram without any quality reduction. 

This gives 50% reduction in hash size with same discrimination capability that of 16 bin CSLBP. After M-

CSLBP calculation for all pixels in an image. Histogram is constructed at semi global level. For every block, 

two histogram generated of four bin, one for immediate and other for diagonal neighbours. To further 

enhance discrimination power, adaptive color weight factors from Lab color space is used. 

 

2.3. Color weight factor 

Color is the most dominant and distinguishing visual feature. Drawback of the RGB color space is 

high correlation between planes. L*a*b* or Lab color space is a color-opponent space with dimensions L for 

lightness and a and b for the color-opponent dimensions. Lab color space satisfies perceptual uniformity 

property at local level. A perceptual uniform color space ensures that the difference between two colors 

(as perceived by the human eye) is proportional to the Euclidian distance within the given color space. 

As color weight factors are selected at local level, total advantage of perceptual uniformity property 

is utilized. 

For local region 3×3, Canny edge detector is applied to find edge details. Adaptive averaging and 

difference weight factor is selected based on response of canny edge detectors for four neighbours. 

For smooth region, color averaging weight factor is used while for non-smooth region color differencing 

weight factor is used. 

- For 4 nearest neighbours 

 

Canny Edge Output = [CE0; CE4; CE2; CE6] 

 

where CE represent Canny edge output either one or zero which shows region is either smooth or presence of 

edge points. CE0, CE4, CE2 and CE6 represents nearest neighbours around a center pixel. For local region of 

3×3 of LAB color image, neighbourhood is represented as below 

Odd neighbours: [L0, A0, B0], [L2, A2, B2] , [L4, A4, B4], [L6, A6, B6] 

Even neighbours: [L1, A1, B1], [L3, A3, B3], [L5, A5, B5], [L7, A7, B7] 

- For smooth region 

 

nearest avg avg avgAVG (L A B )  
 (5) 

 
2 2 2 2

avg 0 2 4 6L (L L L L ) / 4   
 (6) 

 
2 2 2 2

avg 0 2 4 6A (A A A A ) / 4   
 (7) 

 
2 2 2 2

avg 0 2 4 6B (B B B B ) / 4   
 (8)

 

 

- For non-smooth region 

 

nearest diff diff diffDiff (L A B )  
 (9) 

 

diff 0 4 0 4 2 6 2 6L (L L )(L L ) (L L )(L L )     
 (10) 

 

diff 0 4 0 4 2 6 2 6A (A A )(A A ) (A A )(A A )     
 (11) 

 

diff 0 4 0 4 2 6 2 6B (B B )(B B ) (B B )(B B )     
 (12) 
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where Lavg, Aavg, Bavg are averages of even components of L, A and B color space respectively; Avgnearest  is 

summation of Lavg, Aavg, Bavg;  Ldiff, Adiff, Bdiff are squared difference of cross symmetric pairs of even 

components of L, A and B color space respectively; Diffnearest is summation of Ldiff, Adiff, Bdiff 

- For 4 diagonal neighbours 

 

Canny Edge Output = [CE1; CE3; CE5; CE7] 

 

where CE represent Canny edge output either one or zero which shows region is either smooth or presence of 

edge points. CE1, CE3, CE5 and CE7 represents diagonal neighbours around a center pixel. 

- For smooth region 

 

diagonal avg avg avgAVG (L A B )  
 (13) 

 
2 2 2 2

avg 1 3 5 7L (L L L L ) / 4   
 (14) 

 
2 2 2 2

avg 1 3 5 7A (A A A A ) / 4   
 (15) 

 
2 2 2 2

avg 1 3 5 7B (B B B B ) / 4   
 (16)

 

 

- For non-smooth region 

 

diagonal diff diff diffDiff (L A B )  
 (17) 

 

diff 1 5 1 5 3 7 3 7L (L L )(L L ) (L L )(L L )     
 (18) 

 

diff 1 5 1 5 3 7 3 7A (A A )(A A ) (A A )(A A )     
 (19) 

 

diff 1 5 1 5 3 7 3 7B (B B )(B B ) (B B )(B B )     
 (20)

 

 

where Lavg, Aavg, Bavg are averages of  odd components of L, A and B color space respectively; Avgnearest  is 

summation of Lavg, Aavg, Bavg; Ldiff, Adiff, Bdiff are squared difference of cross symmetric pairs of odd 

components of L, A and B color space respectively; Diffnearest is summation of Ldiff, Adiff, Bdiff. AVGnearest, 

AVGdiagonal, DIFFnearest and DIFFdiagonal are converted into weight as given in Table 1. 

 

 

Table 1. Delta E values and their weight 
Value Meaning Weight 

0 - 1 A normally invisible difference 10 

1 - 2 Very small difference, only obvious to a trained eye 20 
2 - 3.5 Medium difference, also obvious to an untrained eye 30 

3.5 - 5 An obvious difference 40 

> 6 A very obvious difference 50 

 

 

immediate diagonalA AVG AVG 
 (21) 

 

immediate diagonalD DIFF DIFF 
 (22)

 

 

where A and D represents color weigh factors which acts as boosting agent during ME-CSLBP and MO-CSLBP 

histogram construction for sub-block size B×B respectively. Final equation of ME-CSLBP and MO-CSLBP 

histogram are as below. 
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 (23) 

 

 (24) 

 

where B is size of the sub-block set to 32×32 and value of b varies from 0 to 3.
  For each sub-block two histograms are constructed. Each histogram is quantized to generate binary 

output. To generate final image binary hash, binary output of all histograms is concatenated. 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, experimental results for the proposed method and its comparative methods are 

presented. Sensitivity to content change and robustness to content preserving are checked with two 

benchmarks, first is Normalized Hamming Distance (NHD) and other is Receiver operating characteristics 

(ROC). NHD shows how much hash code of original and forged images are vary for malicious and non 

malicious operations. However if normalized hamming distance is similar for both types of operations i.e. 

malicious and non-malicious attacks, it indicates poor performance of the algorithm. Second benchmark is 

ROC which indicates the discrimination power of hashing algorithm. TPR (True Positive Rate) should be 

high for less FPR (False Positive Rate) for desirable discrimination. The original database contains 23 color 

images taken from internet and Matlab standard directory. Image size taken as 256×256 for analysis purpose 

with other methods. Variety types of attacks are applied on original image database to generate new database 

which contain malicious as well as non malicious images based on intensity of attacks. Total 61 operations 

are applied to generate 23×61=1403 images in which some are authentic images as content is preserved and 

some are non-authentic as content is changed. Various attacks and their parameters are given in following 

given in following Table 2. Table 2 also indicates symbolic names for various attacks for showing results in 

simplified manner. Table 3 and Table 4 shows NHD and ROC observations for various attacks mentioned in 

Table 2 for the proposed method.  

 

 

Table 2. Various attacks, parameter, and their symbolic names 
Operations Descriptions Parameters 

Cropping (A) Ratio 1%, 3%, 5%, 7%, 9% 

Salt & Pepper Noise (B) Noise Density 0.01, 0.02, 0.03, 0.05, 0.1 

Gaussian Noise (C) Noise Variance 0.001, 0.005, 0.01, 0.02, 0.05 
Scaling (D) Scaling factor 0.7, 0.8, 0.9, 1.1, 1.2, 0.01, 0.05, 0.10, 0.15, 0.20 

Rotate (E) Rotation Angle 20, 40, 60, 80, 100 

JPEG Compression (F) Quality Factor 10, 30, 50, 70, 90 
Gamma Correction (G) Gamma value 0.75, 0.8, 0.9, 1.1, 1.25, 4.25, 4.50, 4.75, 5.00, 5.25 

Increase Brightness (H) Range of adjustment [0.8 1],[0.6 1],[0.4 1],[0.2 1] 

Decrease Brightness (I) Range of adjustment [0 0.6],[0 0.4],[0 0.2],[0 0.1] 
Increase Contrast (J) Range of adjustment [0 0.8], [0 0.6], [0 0.4], [0 0.2] 

Decrease Contrast (K) Range of adjustment [0.8 1], [0.6 1], [0.4 1], [0.2 1] 

 

 

Table 3. NHD for adaptive CSLBP compressed image hashing 

Attack 
Adaptive CSLBP Compressed Color Image Hashing TNHD=0.10 

Auth Non Auth 

Cropping 0.10 0.21 

Salt & Pepper Noise 0.07 0.17 
Gaussian Noise 0.10 0.21 

Scaling 0.05 0.24 

Rotate 0.16 0.24 
JPEG Compression 0.05 0.15 

Gamma Correction 0.04 0.18 

Increase Brightness 0.07 0.22 
Decrease Brightness 0.04 0.11 

Increase Contrast 0.09 0.23 

Decrease Contrast 0.07 0.21 
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Observations: Table 3 results clearly shows that proposed method distinguished between content 

preserving and content change for TNHD = 0.10. Only for rotation authentic images results are not satisfactory. 

Also there is sufficient gap between minimum and maximum TNHD distance. Minimum is 0.04 and maximum 

is 0.24. This difference is also indicates proposed method has distinguish power of separating authentic and 

non-authentic images. 
 

 

Table 4. TPR and FPR for adaptive CSLBP compressed color image hashing 
Attack TPR FPR 

Cropping 0.65 0.04 
Salt & Pepper Noise 0.93 0.19 

Gaussian Noise 0.67 0.00 

Scaling 0.98 0.09 
Rotate 0.26 0.07 

JPEG Compression 1.00 0.26 

Gamma Correction 1.00 0.11 

Increase Brightness 0.78 0.04 

Decrease Brightness 0.97 0.26 

Increase Contrast 0.96 0.25 
Decrease Contrast 0.91 0.13 

Avg. Database 0.87 0.11 

 

 

Observations: Table 4 shows results for average database is 87%. Figure 2 shows that proposed 

method gives satisfactory results for almost all types of attacks. 

In the following section, proposed method results are compared with other methods. Various types 

of color LBP's are available which is considered here for comparative analysis. These methods are Color 

LBP [32], variant of LBP's for color images like RGB-LBP, nRGB-LBP, Transformed color LBP, Opponent-

LBP, nOpponent-LBP, Hue-LBP [33]. All methods based on LBP's have large no. of histogram bin also 

results shows that color LBP based methods have a very poor discrimination capability. Zhao et al. [20] 

developed color image hashing based on color histogram generated from HSI quantized image. It purely 

takes only color global feature. Size of image hash is small but discrimination power is very poor. 

Zhou et al. [35] developed Spatial-Color Binary Patterns having histogram of 64 bin. Method is designed for 

background subtraction. It's hash size is small compared to LBP based method however its discrimination 

capability for authentication application is very poor. Color image hashing methods cannot rely only on color 

factor, but also combinations of color and other features should be used. 

Table 5 clearly shows that for methods number from 1 to 7, hash size is more and discrimination 

power spans from very low to average. For method number 8 and 9, histogram bins are less than LBP based 

method but discrimination power is very low and average respectively. However, for the proposed method 

'Adaptive CSLBP Compressed Color Image Hashing', number of histogram bins are only 8 which results in 

compact hash size of 512 bits. Discrimination power is also desirable for almost all types of attack. 
 

 

Table 5. Comparison of existing color hashing techniques with 

the proposed hashing method 'adaptive compressed CSLBP image hashing' 
No 

 
Color image hashing methods Histogram bin 

Image hash size 

(bits) 

Discrimination 

Power (%TPR) 

Symbolic 

Name 

1. RGB LBP 768 49152 Low (58%) E1 

2. nRGB LBP 768 49152 Very Low (47%)  
3. Transformed Color LBP 768 49152 Low (58%)  

4. Opponent LBP 768 49152 Low (53%) E2 

5. nOpponent LBP 512 32768 Very Low (48%)  
6. Hue LBP 256 16384 Very Low (33%)  

7. Color LBP 1536 98304 Average (64%) E3 

8. Color Histogram 24 276 Very Low (44%) E4 
9. Spatial-Color Binary Pattern 64 4096 Average (69%) E5 

10. 
Adaptive Compressed CSLBP 

Image Hashing 
8 512 High (87%) P1 

 

 

Methods 1, 4, 7, 8 and 9 are taken into consideration for comparative analysis with the proposed 

method for various attacks. Symbolic names are given to them as E1, E2, E3, E4 and E5 respectively. 

For the proposed method symbolic name is P. E stands for existing method while P stands for proposed 

method. Following Figure 3 to Figure 14 shows ROC curves for various attacks for existing and proposed 

methods on ROC benchmark. 
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Figure 3. ROC: Cropping 

 

 

 
 

Figure 4. ROC: Salt & pepper noise 

 

 

 
 

Figure 5. ROC: Gaussian noise 

 

 

 
 

Figure 6. ROC: Scaling 

 

 

 
 

Figure 7. ROC: Rotation 

 

 

 
 

Figure 8. ROC: JPEG 

 

 

 
 

Figure 9. ROC: Gamma correction 

 
 

Figure 10. ROC: Increase brightness 
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Figure 11. ROC: Decrease brightness 

 

 

 
 

Figure 12. ROC: Increase contrast 

 

 

 
 

Figure 13. ROC: Decrease contrast 

 
 

Figure 14. TPR for existing and proposed methods 

 

 

4. CONCLUSION 

We have proposed novel image hashing scheme based on combination of texture, color and edge 

features. As more features are added, hashing scheme becomes more robust at the cost of increased hash size. 

To achieve compact hash as well as desirable discrimination capability, multiple features are used. 

In the proposed method, color features are selected adaptively based on the response from edge feature. 

Color features are not stored separately but super-imposed on texture features as a weight factor. Original 

CSLBP histogram is compressed by generating two histogram based on location of neighbours and achieved 

50% compression in histogram size without compromise on quality. Results of NHD and ROC shows that 

proposed method gives satisfactory results for almost all types of attacks. 
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