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 We present a new digital signature scheme with message recovery and its 

authenticated encryption based on elliptic curve discrete logarithm and 

quadratic residue. The main idea is to provide a higher level of security than 

all other techniques that use signatures with single hard problem including 

factoring, discrete logarithm, residuosity, or elliptic curves. The proposed 

digital signature schemes do not involve any modular exponentiation 

operations that leave no gap for attackers. The security analysis demonstrates 

the improved performance of the proposed schemes in comparison with 

existing techniques in terms of the ability to resist the most common attacks. 
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1. INTRODUCTION  

Digital signature with message recovery has become one of the most important aspects of data 

security. It is used to allow a message owner to send only a signature of his message. The verifiers use the 

received signature for verification first and then to recover the original message from the signature. In [1-3] 

Nyberg and Rueppel presented several signature schemes based on the discrete logarithm problem (DLP) to 

recover the encrypted messages from the received signatures. Later, Horster et al. [4] proposed an 

authenticated encryption scheme modified from Nyberg and Rueppel algorithms, where only the designated 

verifiers can retrieve and verify the messages from the signatures. Therefore, the scheme can be classified as 

a combination of the data encryption scheme and the digital signature scheme.  

In order to recover the original message from the signature, the message cannot be hashed to reduce 

its size. However, if the message is large, it should be divided into a sequence blocks, and each block is 

encrypted and signed as a signature block individually. Consequently, each message block contains some 

data redundancy. The redundant data is employed to correctly link all the data blocks together. The main 

drawback of the above scheme is the high cost of communications. Hwang et al. [5] proposed an 

authenticated encryption scheme with message linkages based on Horster et al. scheme [4]. Since then, 

several improved authenticated encryption schemes have been proposed [6-8] to increase the performance. 

Girault in [9] presents the concept of the self-certified public keys. A public key is obtained from 

the signature of the user's private key, with his/her identity signed by the system authority. The public key of 

each user does not need to be companied by a separate certificate. The proof of the public key can implicitly 

computed with the signature verification. Thus, the storage space and computations cost is reduced by using 
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self-certified public keys. Clearly, the system authority does not know the user's private key, which is chosen 

by user privately.  

Several digital signature schemes using self-certified public keys [10] have been proposed based on 

Girault’s algorithm [9]. Various authenticated encryption schemes are presented to allow only the specified 

receiver to verify and to recover the original message. Obviously, all techniques depends on the fact that 

there is a trusted system authority (SA). In the real world, SA is not guaranteed to be totally reliable. Encinas 

et al. [11] showed that there is a major weakness in [10] and all related schemes [12-16] affecting both 

the authentication of the signer's public key and the security of the system.  

Elliptic curves for cryptographic systems are introduced in [17, 18]. Elliptic curves provides 

a smaller key size with simpler calculations and the same level of security [19-21]. The coding and decoding 

can be carried out more efficiently in the elliptic curves point group, making it a very exciting feature 

The above problems including the limited robustness against attacks and the high computation cost, 

motivated the authors to introduce a digital signature scheme with message recovery based on two hard 

problems. The clue is to use the elliptic curve over Z_n based on elliptic curve discrete logarithm problem 

(ECDLP) and quadratic residue problem (QRP). This idea is novel and never been used for digital 

signature approaches. 

 

 

2. BACKGROUND 

In this section, we describe some elementary tools on elliptic curves. 

Definition: Let 𝐾 be a field with characteristic > 3, then an elliptic curve can be expressed as: 

 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏  (1) 

 

Where 𝑎, 𝑏 ∈ 𝐾 and 4𝑎3 + 27𝑏2 ≠ 0. The set 𝐸(𝐾) consists of all point (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐾 which 

satisfies the defining (1) together with a special point 𝒪 called the point at infinity. Let 𝐺 be a point on 

the elliptic curve defined in (1). If 𝑛 is the smallest positive integer satisfies the equation 𝑛𝐺 = 𝒪, then 𝐺 is 

the base point of order 𝑛 [17]-[23]. 

The new digital signature scheme based on both ECDLP and QRP is given as follows. 

- ECDLP: Let 𝐺 and 𝐶 be two elliptic curve points on (1). Then find a positive integer 𝑘 such that  
𝑘𝐺 = 𝐶. 

- QRP: Let 𝑝 , 𝑞 are two strong primes of large size and 𝛾 is an integer. Then, compute 𝛾 such that 

𝛾 ≡ 𝛽2(mod 𝑝𝑞). 
 

 

3. THE PROPOSED SCHEMES 

In this section, we propose new elliptic curve digital signature schemes with message recovery 

based on two hard problems. We discuss in details two authenticated encryption schemes one of them is with 

message linkage. The proposed three schemes consist of the system initialization phase including the system 

parameters. There are three participants in the trusted SA, a signer 𝑈𝑎 and a verifier 𝑈𝑏.  

First, SA chooses the following system parameters: 

- The field 𝐾 = 𝐹𝑝 of order 𝑝 , where 𝑝 be a large prime number and 𝑝 − 1 have two prime factors �̅�  

and �̅� 

- Two coefficients 𝑎, 𝑏 ∈ 𝐹𝑝 that define the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏(mod 𝑝) over 𝐹𝑝. 

- 𝑛 = �̅��̅�, so that 
/ ( 1)n p 

 is the root points of elliptic curve construct a circulating subgroup. G is a 

generating element for subgroup and its rank equals 𝑛.  

- 
(.)h

 is a secure hash function.  

- (𝑛, 𝑎, 𝑏, 𝐺, 𝑦) are published and( 𝑝, 𝑞) are all discarded.  

- Each user 𝑈𝑖 selects his private key 𝑑𝑖 ∈ 𝑍𝑛
∗  and computes his public 𝑦𝑖 = 𝑑𝑖

2𝐺 (mod 𝑛) 

 

3.1.  Digital signature scheme with message recovery 
The proposed scheme is composed in two phases: the signature generation phase, and the message 

recovery phase. 

 

3.1.1. Signature generation phase 
Suppose that a signer 𝑈𝑎wants to sign a message 𝑀. The signature generation process is given by:  

- Select a random integer 𝑟 ∈ [1, 𝑛 − 1] 
- Compute  
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𝐾 = 𝑟−1𝑑𝑎 𝐺 (𝑚𝑜𝑑 𝑛) = (𝜔, 𝜏)  (2)  
 

- Encrypt the message 𝑀 to find a ciphertext  
 

𝛿 = 𝑀 𝐻−1(𝜔)(mod 𝑛)  (3) 
 

- Calculate  
 

 𝛼 = (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛).  (4) 

 

The pair (𝛿, 𝛼) is the signature of message 𝑀. Finally, the sender delivers (𝛿, 𝛼) to the receiver. 

 

3.1.2. Message recovery phase 
After receiving the digital signature (𝛿, 𝛼), any verifier can use 𝑈𝑎's public key 𝑦𝑎to recover 

the message 𝑀 as follows. 

- Computes  
 

(𝛼𝐺 + 𝐻(𝛿)𝑦𝑎)(𝑚𝑜𝑑 𝑛) = 𝐾 = (𝜔, 𝜏)  (5) 
 

- Decrypt the cipher text 𝛿 to find the plaintext 𝑀 such that  
 

𝑀 = 𝛿 𝐻( 𝜔) (𝑚𝑜𝑑 𝑛)  (6) 
 

- Check that the format of message 𝑀. 

It could be proven that the proposed scheme works correctly. 
 

Theorem 1. The message 𝑀is recovered correctly from the digital signature(𝛿, 𝛼)through (6) Proof.  

From (5), we have  
 

(𝛼𝐺 + 𝐻(𝛿)𝑦𝑎)(𝑚𝑜𝑑 𝑛) = (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))𝐺 + 𝐻(𝛿)𝑦𝑎 

= 𝑑𝑎𝑟−1𝐺 + (− 𝑑𝑎
2  𝐻(𝛿))𝐺 + 𝐻(𝛿) 𝑑𝑎

2 𝐺  

= 𝑑𝑎𝑟−1𝐺(𝑚𝑜𝑑 𝑛) 

 = 𝐾 

=  (𝜔, 𝜏) 
 

Then the message 𝑀 is obtained by calculating  
 

𝛿 𝐻(𝜔) = 𝑀 𝐻−1(𝜔)𝐻(𝜔)(𝑚𝑜𝑑 𝑛) = 𝑀  
 

3.2.  Authenticated encryption scheme 

In this subsection, we present an authenticated encryption scheme that combine the data encryption 

and the digital signature scheme. In other words, the signer can generate a digital signature for message 𝑀 

and then deliver it to a designated verifier. Upon receiving the digital signature, only the designated verifier 

𝑈𝑏 can retrieve and verify the message 𝑀. Details of the signature generation phase and the message recovery 

phase are described as follows: 

 

3.2.1. Encryption and signature generation phase 

Assume that 𝑈𝑎 wants to generate a signature for a message 𝑀 and send it to 𝑈𝑏. The signature 

generating procedure is stated as follows: 

- Select a random integer 𝑟 ∈ [1, 𝑛 − 1] 
- Compute  

 

𝐾 = 𝑟−1𝑑𝑎(𝐺 + 𝑦𝑏)(𝑚𝑜𝑑 𝑛) = (𝜔, 𝜏)  (7) 

 

- Encrypt the message 𝑀 to find a ciphertext 𝛿 

 

𝛿 = 𝑀 𝐻−1(𝜔)(mod 𝑛)  (8) 
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- Calculates  
 

𝛼 = (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛)  (9) 

 

Finally, 𝑈𝑎 delivers the digital signature (𝛿, 𝛼) to 𝑈𝑏 

 

3.2.2. Signature verification and message recovery phase 

After receiving the digital signature (𝛿, 𝛼), 𝑈𝑏 can recover the message 𝑀 by using his/her private 

key 𝑑𝑏 and the public values 𝑦𝑎 as follows: 

- Computes  

 

𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1)𝑦𝑎(𝑚𝑜𝑑 𝑛) = 𝐾 = (𝜔, 𝜏)  (10) 

 

- Decrypt the ciphertext 𝛿 to find the plaintext 𝑀 such that  

 

𝑀 = 𝛿 𝐻( 𝜔) (𝑚𝑜𝑑 𝑛)  (11) 

 

- Checks that the format of message 𝑀 is correct or not. 

The following theorem is used to prove the correctness of this scheme. 

 

Theorem 2. The designated verifier 𝑈𝑏can correctly verify the message 𝑀 from the digital signature (𝛿, 𝛼) 

by (10) and (11) Proof. From (10), we have 

 

𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1)𝑦𝑎(𝑚𝑜𝑑 𝑛) 

= (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))(𝐺 + 𝑦𝑏)⨁𝐻(𝛿)(𝑑𝑏

2 + 1)𝑦𝑎 
=  𝑑𝑎𝑟−1(𝐺 + 𝑦𝑏) + (− 𝑑𝑎

2  𝐻(𝛿))𝐺 + (− 𝑑𝑎
2  𝐻(𝛿)𝑑𝑏

2)𝐺 + 𝑑𝑎
2  𝐻(𝛿)𝑑𝑏 

2 )𝐺 + 𝑑𝑎
2  𝐻(𝛿)𝐺 

= 𝑑𝑎𝑟−1(𝐺 + 𝑦𝑏)(𝑚𝑜𝑑 𝑛) 
= 𝐾 
= (𝜔, 𝜏) 

 

According to (11), the message 𝑀 can be derived by calculating 
 

𝛿 𝐻(𝜔) = 𝑀 𝐻−1(𝜔)𝐻(𝜔)(𝑚𝑜𝑑 𝑛) = 𝑀  
 

This theorem is thus proven. 
 

3.3.  Authenticated encryption scheme with message linkage  

The basic authenticated encryption scheme is only applied to smaller messages. A large message has 

to be divided into smaller blocks first and then each block is signed and encrypted individually. In this 

scheme, if the smaller blocks have been reordered, modified, deleted, or replicated during the transmission 

then the signature is modified as well. The details procedure is as the follows: 
 

3.3.1. Signature and encryption generation phase 

Without loss of generality, assume that 𝑈𝑎 desires to create a message 𝑀 that is to be sent to𝑈𝑏. 

The message is composed of the sequence of {𝑀1, 𝑀2, … , 𝑀𝑡}, where 𝑀𝑖 ∈ 𝑍𝑛 for 𝑖 = 1,2, … , 𝑡.  𝑈𝑎 fulfills 

the following steps to generate the signatures blocks for the message 𝑀. 
- Make 𝑐∘ = 0 and select a random integer 𝑟 ∈ [1, 𝑛 − 1] and computes  

 

𝐾 = 𝑟−1𝑑𝑎(𝐺 + 𝑦𝑏)(𝑚𝑜𝑑 𝑛) = (𝜔, 𝜏)  (12) 
 

- Computes  
 

 𝑐𝑖 = 𝑀𝑖𝐻
−1(𝑐𝑖−1 ⊕ 𝜔)(𝑚𝑜𝑑 𝑛)  (13) 

 

for 𝑖 = 1,2, … , 𝑡, where ⊕ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 bit wise exclusive or operator. 

- Calculates 
 

𝛿 = 𝐻(𝑐1 ∥ 𝑐2 ∥ ⋯ ∥ 𝑐𝑡) 
𝛼 = (𝑑𝑎𝑟−1 − 𝑑𝑎

2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛)  (14) 
 

Where " ∥ " denotes the concatenation operator.  
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𝑈𝑎 deliver the signature blocks (𝛿, 𝛼, 𝑐1, 𝑐2, … , 𝑐𝑡) to 𝑈𝑏 via a public channel. Note that 𝑐𝑖 is used as 

a linking parameter between the 𝑖𝑡ℎand (𝑖 + 1)𝑡ℎ blocks. 

 

3.3.2. Message recovery phase 

After receiving the signature blocks (𝛿, 𝛼, 𝑐1, 𝑐2, … , 𝑐𝑡), 𝑈𝑏 can retrieve the message blocks 

{𝑀1, 𝑀2, … , 𝑀𝑡} by the following steps. 

- Calculate 𝛿 ́ = 𝐻(𝑐1 ∥ 𝑐2 ∥ ⋯ ∥ 𝑐𝑡) and confirm that 𝛿 ́ = 𝛿 is true. 

- Compute  

 

𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1)𝑦𝑎(𝑚𝑜𝑑 𝑛) = 𝐾 = (𝜔, 𝜏)  (15) 

 

Recover the message blocks {𝑀1, 𝑀2, … , 𝑀𝑡} as follows 

 

𝑀𝑖 = 𝑐𝑖𝐻(𝑐𝑖−1 ⊕ 𝜔)(mod 𝑛)  (16) 

for 𝑖 = 1,2, … , 𝑡and 𝑐∘ = 0 

 

The proposed scheme could be proven that it works correctly by the following theorem. 

 

Theorem 3. In the message recovery phase, the designated verifier 𝑈𝑏can recover the message blocks 

{𝑀1, 𝑀2, … , 𝑀𝑡} by using Eqs. (15) and (16). Proof. From (15) we have 

 

𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1)𝑦𝑎(mod 𝑛) 

= (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏

2 + 1)𝑦𝑎 

= 𝑑𝑎𝑟−1(𝐺 + 𝑦𝑏) + (− 𝑑𝑎
2  𝐻(𝛿))𝐺 + (− 𝑑𝑎

2  𝐻(𝛿)𝑑𝑏
2)𝐺 + 𝑑𝑎

2  𝐻(𝛿)𝑑𝑏 
2 )𝐺 + 𝑑𝑎

2  𝐻(𝛿)𝐺   

= 𝑑𝑎𝑟−1(𝐺 + 𝑦𝑏)(mod 𝑛) 

= 𝐾 

= (𝜔, 𝜏) 

 

According to Eq. (16), the message 𝑀𝑖 can be derived by calculating 

 

𝑐𝑖𝐻(𝑐𝑖−1 ⊕  𝜔)(𝑚𝑜𝑑 𝑛) = 𝑀𝑖𝐻
−1(𝑐𝑖−1 ⊕ 𝜔)𝐻(𝑐𝑖−1 ⊕ 𝜔) = 𝑀𝑖 

 

Therefore, 𝑈𝑏 can get the message 𝑀. This theorem is thus proven. 

 

 

4. SECURITY ANALYSIS  

In this section, the robustness of the proposed scheme is tested. The difficulties associated with 

the unauthorized attackers are based on the solution of the ECDLP and quadratic residue problem QRP. 

The security caused from ECDLP and QRP is sufficient under reasonable computational complexity. 

Some possible attacks by which an adversary (Adv) may try to take down the new elliptic curve digital 

signatures with message recovery will be analyzed as follows: 

Attack 1. An Adv attempts to derive the user's private key 𝑑𝑖 from all public information available. 

An Adv can derive 𝑑𝑖 from 𝑦𝑖 ≡ 𝑑𝑖
2𝐺(𝑚𝑜𝑑 𝑛). It is obvious that to find 𝑑𝑖 the Adv has to solve both 

the ECDLP and QRP. An Adv wants to get the signer's private key 𝑑𝑎 from the signer's signature 𝛿 and 𝛼 in 

the message recovery scheme, he/she should first obtain 𝛿 , 𝛼 and 𝑟, Adv need to solve the ECDLP to obtain 

𝑑𝑎𝑟−1 and then obtain 𝑑𝑎
2 (𝑚𝑜𝑑 𝑛) by computing 𝑑𝑎

2 ≡ (𝛼 − 𝑑𝑎𝑟−1)𝐻(𝛿)−1(𝑚𝑜𝑑 𝑛). The Adv needs to 

know the secret random 𝑟 in addition to solve the hard ECDLP. If the Adv know the random number 𝑟 he 

must solve the difficult QRP and then obtain 𝑑𝑎 from 𝑑𝑎
2 (𝑚𝑜𝑑 𝑛). This is because finding 𝑑𝑎 is 

computationally equivalent to factoring the composite number 𝑛 . Similarly the second scheme and third 

scheme the Adv still facing the same difficulties. 

Attack 2. An Adv impersonates the signer's signature without knowing the signer's private key. 

In the first proposed scheme, Adv can know the signature 𝛿, 𝛼, the signer's public key 𝑦𝑎 and the message 𝑀. 
If he tries to invent signer's signature, he needs to select a random number 𝑟 ́ and a message 𝑀.́  However, 

he cannot generate 𝜔 ́  by computing 𝐾 = 𝐾 =́ �́�−1𝑑𝑎𝐺(𝑚𝑜𝑑 𝑛) = (𝜔 ́ , 𝜏 ́ ) because the Adv does not know 

the signer's private key 𝑑𝑎.  

Attack 3. In the authenticated encryption scheme, an Adv attempts to decrypt the message 𝑀 from 

the digital signature (𝛿, 𝛼) without 𝑈𝑏's private key 𝑑𝑏. The Adv does not know 𝑑𝑏, he/she cannot obtain 𝜔 to 
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recover 𝑀 = 𝛿 𝐻( 𝜔) (𝑚𝑜𝑑 𝑛) by calculating 𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1)𝑦𝑎(𝑚𝑜𝑑 𝑛) = (𝜔, 𝜏). The Adv 

attempts to find 𝛼(𝐺 + 𝑦𝑏) + 𝐻(𝛿)(𝑑𝑏
2 + 1) = 𝑑𝑎𝑟−1(𝐺 + 𝑦𝑏)(𝑚𝑜𝑑 𝑛) from 𝛼 = (𝑑𝑎𝑟−1 − 𝑑𝑎

2  𝐻(𝛿)) and 

then calculates 𝑀 = 𝛿 𝐻( 𝜔). Thus, he/she needs to know the private key 𝑑𝑎 by solving ECDLP and QRP.  

In the authenticated encryption scheme with message linkage, he cannot get 𝛼, 𝛿 and 𝑐1, 𝑐2, … 𝑐𝑡. 

If he wants to decrypt the ith cipher text block, he must know the verifier's private key 𝑑𝑏 and then computes 

the value 𝜔 from 𝑟−1𝑑𝑎(𝐺 + 𝑦𝑏) = (𝜔, 𝜏). The Adv will fail to get the content of the message blocks. 

Attack 4. An Adv recorders, modifies, deletes or replicates the message blocks. He/she should also 

modify the signature 𝛼 by computing the equations 𝛿 = 𝐻(𝑐1 ∥ 𝑐2 ∥ ⋯ ∥ 𝑐𝑡) and 𝛼 ≡ (𝑑𝑎𝑟−1 −
 𝑑𝑎

2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛). If he cannot execute the modification, reorder, deletion or replication of the message 

blocks, he/she will not pass the verification equation 𝛿 ́  𝛿.=
?  

Attack 5. Suppose the difficulty of computing ECDLP has been broken.  

If an Adv breaks the ECDLP and get access to 𝛼, 𝛿, 𝑀, and the signer's public key 𝑦𝑎, he can derive 

the  𝑑𝑎𝑟−1  from the equation 𝐾 ≡ 𝑟−1𝑑𝑎 𝐺 (𝑚𝑜𝑑 𝑛). If he wants to get the signer's private key 𝑑𝑎 from 𝛼 ≡
(𝑑𝑎𝑟−1 −  𝑑𝑎

2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛) he must break the difficulty of QRP simultaneously. It is extremely hard to get 

the signer's private key 𝑑𝑎 by computing 𝑑𝑎
2 ≡ (𝛼 − 𝑑𝑎𝑟−1)𝐻(𝛿)−1(𝑚𝑜𝑑 𝑛), where finding 𝑑𝑎 is 

computationally equivalent to factoring the composite number.  

Attack 6. Suppose the difficulty of computing QRP has been broken. Therefore, an Adv can 

undertake 𝛼 ≡ (𝑑𝑎𝑟−1 − 𝑑𝑎
2  𝐻(𝛿))(𝑚𝑜𝑑 𝑛) which is related the factoring assumption. Although an Adv can 

solve the difficulty of QRP, he cannot still get the signer's private key 𝑑𝑎 from the equation. Because the 

equations contains two unknown variables 𝑟 and 𝑑𝑎. 

Attack 7. An Adv, without 𝑈𝑎's private key 𝑑𝑎, attempts to forge the digital signature to 

impersonate 𝑈𝑎. Suppose an Adv wants to forge a valid signature for a given message 𝑀 ́  that can pass the 

verification equation. If the Adv determines 𝛼 first, he will have to solve 𝐻(𝛿) to obtain the value of 𝛿. 

However, this process is as difficult as breaking the one-way hash function. On the other hand, if the Adv 

fixes the integer 𝛿 first, he/she has to obtain the value of 𝛼 by solving ECDLP. 

 

 

5. PERFOMANCE EVALUATION 

In this section, we evaluate the performance of the proposed schemes. The following notations are 

used to analyze the computational complexity:  

- 𝑇𝑒𝑥𝑝 is the time complexity for executing the modular exponentiation; 

- 𝑇𝑚𝑢𝑙 is the time for executing the modular multiplication;  

- 𝑇𝑒𝑐−𝑎𝑑𝑑 is the time complexity for executing the addition of two elliptic curve points;  

- 𝑇𝑒𝑐−𝑚𝑢𝑙 is the time complexity for executing the multiplication on elliptic curve points;  

- 𝑇𝑠𝑞𝑟 is the time complexity for executing the modular square;  

- 𝑇ℎis the time for executing the one-way hash function.  

To describe the efficiency performance in terms of 𝑇𝑚𝑢𝑙, we convert various operations units to the time 

complexity for executing the modular multiplication [8]. 

 

𝑇𝑒𝑥𝑝 ≈ 240 𝑇𝑚𝑢𝑙;  𝑇𝑒𝑐−𝑚𝑢𝑙 ≈ 29𝑇𝑚𝑢𝑙;  𝑇𝑒𝑐−𝑎𝑑𝑑 ≈ 0.12𝑇𝑚𝑢𝑙 

 

First scheme, in the signature generation phase, the signer needs (𝑇𝑒𝑐−𝑚𝑢𝑙 + 4𝑇𝑚𝑢𝑙 + 𝑇𝑠𝑞𝑟 + 2𝑇ℎ) ≈

33𝑇𝑚𝑢𝑙+𝑇𝑠𝑞𝑟 + 2𝑇ℎ to perform the process of this phase. In the message recovery and verification phase, 

the verifier should perform (2 𝑇𝑒𝑐−𝑚𝑢𝑙 + 𝑇𝑒𝑐−𝑎𝑑𝑑 + 𝑇𝑚𝑢𝑙 + 2𝑇ℎ) ≈ (59.12𝑇𝑚𝑢𝑙 + 2𝑇ℎ) to complete the 

processes the message recovery.  

Second scheme, in the authenticated encryption scheme, the signer requires (𝑇𝑒𝑐−𝑚𝑢𝑙 + 𝑇𝑒𝑐−𝑎𝑑𝑑 +

4𝑇𝑚𝑢𝑙 + 𝑇𝑠𝑞𝑟 + 2𝑇ℎ) ≈ (33.12𝑇𝑚𝑢𝑙+𝑇𝑠𝑞𝑟 + 2𝑇ℎ) to generate the signature. The time required by the 

designated verifier to recover the message is (2𝑇𝑒𝑐−𝑚𝑢𝑙 + 2𝑇𝑒𝑐−𝑎𝑑𝑑 + 2𝑇𝑚𝑢𝑙 + 𝑇𝑠𝑞𝑟 + 2𝑇ℎ) ≈

 (60.24 𝑇𝑚𝑢𝑙+𝑇𝑠𝑞𝑟 + 2𝑇ℎ). 

Third scheme, if there are 𝑡 blocks. The authenticated encryption scheme with message linkage 

requires (𝑇𝑒𝑐−𝑚𝑢𝑙 + 𝑇𝑒𝑐−𝑎𝑑𝑑 + 𝑇𝑠𝑞𝑟 + (𝑡 + 4)𝑇𝑚𝑢𝑙 + (𝑡 + 2)𝑇ℎ) ≈ ((𝑡 + 33.12) 𝑇𝑚𝑢𝑙 + 𝑇𝑠𝑞𝑟 + (𝑡 + 2)𝑇ℎ)to 

generate the message blocks, while verifying and retrieving the message blocks requires (2𝑇𝑒𝑐−𝑚𝑢𝑙 +
2𝑇𝑒𝑐−𝑎𝑑𝑑 + 𝑇𝑠𝑞𝑟 + (𝑡 + 1)𝑇𝑚𝑢𝑙 + (𝑡 + 2)𝑇ℎ) ≈ ((𝑡 + 59.24)𝑇𝑚𝑢𝑙 + 𝑇𝑠𝑞𝑟 + (𝑡 + 2)𝑇ℎ). 

The efficiency performance reveals that the modular multiplication operation dominates our 

proposed schemes in terms of time complexity. Note that, in our proposed algorithms no modular 

exponentiation operation is used giving our schemes a clear advantage over other schemes. 
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6. CONCLUSION  

In this paper, we proposed new elliptic curve digital signature schemes with message recovery based 

on ECDLP and QRP. Multiple levels of security are used to amplify the difficulty of breaking the proposed 

system. It requires breaking ECDLP, QRP and a one-way hash function. The main attractive features of the 

Elliptic curve cryptography are simplicity and easiness of achieving encoding. The proposed schemes require 

minimal operation for signing and verifying the signature. The effectiveness and the security of the proposed 

schemes are evaluated by conducting several attacks. The results clearly showed the robustness of the 

proposed schemes. 
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