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 Elearning education has developed a crucial factor in the educational 

organization. With the situation of declining student size, elearning has to 

offer more cross-departmental and multi-disciplinary courses for individual 

needs to go over “one-size-fits-all” traditional model. Elearning data 

analytics which has not been professionally classified cannot produce reliable 

results. Classifications for elearning data help comfort the accuracy of 

outcomes and reducible pre-processing time. This research proposes  

a practical model for individual learning and personality. The proposed 

model based on data from the LMS classifies both the student preferences 

and personalities. The model helps design future curricula to suit student 

personalities, which intangibly assists them to be efficient in the study 

practice. Performance of the proposed classification is evaluated  

by using MOA software. It outperforms and improves the accuracy of 

complex elearning datasets. Besides, the results indicate an achievement in 

the students' study time after applying the association rule model  

on the elearning. 
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1. INTRODUCTION 

Elearning has developed from the phase of utilizing smart devices to access digital content which is 

residing on the virtual learning system. With the emergence of cloud-based applications, eLearning is 

obtaining popularity in digital learning and in academic education. Not to mention, with the internet power 

available everywhere, data analytics plays a critical role in eLearning environment experiences. Learning 

Analytics has been about in pedagogy as digital education allows to collect facilitator attention as well as 

learners’ behavioral data, by establishing quizzes and exams. Analytics also plays an ultimate part in learning 

practices. With the advance of technological innovations, learning is presently dispersed through mobile 

gadgets. Learners thus employ several social media networks, Tweeter, WhatsApp, emails, WeChat and etc. 

Collected data is an unstructured format, but still, insights remain. In eLearning environment, data analytics 

focuses on making use of insights to leverage learning outcomes by using useful tools such as machine 

learning, regression-based predictive analysis, and similarity mapping, it is likely to design a learning system 

that satisfies to individual learner needs. After integrating outcomes from data analytics into eLearning 

environment it results more in-depth and ubiquitous assessment of learners. Knowledge repositories over the 

website of chat, wikis, blogs and video stream shared by online communities are gradually attracting the 

main resources for current students. It is significant to account learners’ interactions with social knowledge 

repositories through phases of analytics [1]. 

Adaptive systems can automate digital learning content through analytics by varying responses to 

input parameters based upon historical context and collected data from different sources. The efficiency of 

this system is evaluated by the capacity to improve outcomes regarding these alterations. For example, 
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systems are designed to collect data, analyze and make decisions to improve learners’ experience. 

The learning experience starts with mouse clicks, navigation, and interaction with online resources. 

With analytics, who are active learners can be monitored and how they interact with Learning Management 

Systems (LMS) can be viewed. In the old days, analytics has been driven by the needs of the educational 

institute in order to support learning and teaching. However, there has been an excess of analytical 

approaches from different grounds, including data mining, business intelligence, web analytics and predictive 

modeling. Due to multi-disciplinary learning activities and emergence of “Big Data Curation” [2], there are 

various prospects to reflect problematic questions and provide solutions to deal with demands of elearning. 

For example, fully interacting with learners is deliberated as one of the important communication channels to 

enable learning experience. Mostly, by analyzing data about learners’ activities and picturing results, tips on 

improvement and real-time response about learners can be given. 

Data analytics classifies how activities of learners are [3] and how they interact with elearning 

contents. Having information on such interactions helps facilitators create an exact comprehension of 

learners’ requirements. By allowing facilitators to observe and compare success across various methods of 

instruction, the impact and quality in the teaching of their courses are raised. The use of big data to boost 

learning models is growing. A great number of educational institutions are implementing big data analytics in 

elearning to reform teaching activities. There has been a transformation to a learning activity where data 

analyst helps provide an effective learning outcome and support decision-making process for both learners 

and facilitators. Currently, universities are aware of the ecosystem emerging around the data analysis. In this 

regard, perfect strategies and tools should be familiarized, the right know-how is practically applicable and 

analyzing how learning can be enhanced is needed. Absolutely, integration of analytical procedures into 

elearning has unlocked a new arena for innovation [4] which indeed can provide learners and facilitators with 

the speedy response on their learning processes. This possibility is the source for reforming teaching 

structures. In reality, it is essential to classify the role of data analytics and its impact on traditional and future 

learning models. 

This research centers on classifying elearning data using MOA simulation [5]. Both pre-processing 

(classification) and post-processing (association) are executed for collected data. Firstly, the performance has 

been highlighted to develop pre-processing capacity in terms of classification accuracy and precision. 

Secondly, an association-based method has been executed, and these experimental outcomes are used to 

leverage future curricula in order to suit learner personalities and indirectly to aid them to be much more 

efficient in the study practice. Lastly, conclusion and future works are discussed. 

 

 

2. E-LEARNING DATASET  

In elearning environments, a dataset about learners’ engagement can be retrieved. There are needs to 

cater online courses for more flexible and interactive interfaces to motivate both facilitators and students in a 

virtual class. The qualified elearning environment provides a real-time interactive response to both 

facilitators and students during the learning process. To comprehend students’ engagement at several steps of 

the elearning experience can help cater more interfaces that further information learned by students and help 

initialize the learning experience and reduce dropout rates. This paper uses a synthetic dataset which contains 

students’ engagement during elearning experience. 

The synthetic dataset contains 1,800 attributes and 7,000 instances about e-learning environment, 

explained with labels for student id, engagement, registration, evaluation and background levels. The dataset 

composes of detailed records of students who currently enroll. A synthetic dataset with 16 attributes and 480 

instances also has been employed by [6] for the mining process. Especially, how to apply elearning data 

analytics to help disabled students has been presented by [7]. It is likely possible that the enrolled subjects 

may tell students’ behavior to suit their objectives of the learning. Carmona et al. [8] demonstrate elearning 

student preferences in order to make decision for matching some features of the LMS with the student’s 

elearning methodology. Ghatasheh [9] presents an innovative design of an eLearning organization, where 

user activities and machine learning are taken into consideration. The paper focuses on the evaluation of 

online students’ behavior. Classification algorithms such as features extraction, map analysis, 

and normalization are introduced to forecast the knowledge level of online students. However, the paper does 

not evaluate the performance of pre-processing approaches in terms of classification accuracy (CA) and 

precision. Farrus and Costa-juss´a [10] present an automatic assessment of elearning assignments by 

emphasizing on its applicability and significance. The authors also point out the favorable results of an 

automatic evaluation tool based upon Semantic Analysis approach, which has been inspected in a particular 

elearning environment. Employing an automatic scoring system for an evaluation reflects the online students 

a prompt access to their achievement at any time, without the assistance of a facilitator. The automatic 

system as such provides more adaptable for students to timetable and to fine-tune their vulnerable. 
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3. DATA CLASSIFICATIONS 

This section illustrates diverse performance considerations of the classification mechanisms in the 

elearning dataset. The main purpose is to evaluate classification algorithms, which are taken into 

consideration in the pre-processing phase. The assessment metrics for the classification algorithms are 

classification accuracy (CA), precision (PR) and area under the receiver operating characteristic curve 

(AUROC). The reliable and well known SMO, RF and Zero-R classifiers are investigated then these 

outcomes are compared to what the proposed algorithm can result. These four algorithms are described as 

follows. 

 

3.1.  Sequential minimal optimization (SMO) 

The algorithm is a machine learning approach which trains a support vector classification by 

replacing all missingness and changing nominal attributes into binary values. The algorithm normalizes all 

attributes as well as contributes that the coefficient in the outcome depends on the dataset normalization, not 

the primary content. This approach produces ultimate estimation results, but its accuracy reckons on a set of 

input parameters. The detail of the algorithm can be found in [11].  

 

3.2.  Random forest (RF) 

The classification algorithm presented by [12] trains dataset with more than two classes by building 

a forest of a random decision-tree structure. The algorithm employs randomization on the input parameter as 

well. The individual tree is established from a root sample of the dataset. As constructing each tree, a subset 

of attributes is randomly outlined from which superb attribute for the fragment has opted. The difference 

between the traditional decision tree algorithm and RF is that in the RF, the final decision depends on the 

popular vote from each tree established in the forest. Moreover, RF can be applicable for data streams, but its 

performance is not essentially improved [13]. 

 

3.3.  Zero-R (ZR) 

The algorithm [14] calculates the recurrent class, the average value for a numeric class and the mode 

for a nominal class from the datasets. This classifier develops a model which usually forecasts the majority 

and average value. In case of more than two majority classes, the classifier selects the class randomly. 

The algorithm per se is always employed as a basic approach for other models. The simple ZR method builds 

a frequency table for all possible targets and chooses the recurrent value. It is clearly seen that the algorithm 

is nothing about the predictions towards the model as ZR does not apply anything. 

 

3.4.  Proposed method 

The proposed method is an approach combining results from several forecasting models to develop a 

different model for the sake of higher precision. The method splits the calculation into two levels. The first 

level, the integration of inputs from each of the individual classifiers after the execution is taken into 

consideration in order to find out each baseline model whose performance outperforms. The second level, 

each baseline model whose performance is inferior will be ignored. For this motivation, the proposed 

algorithm is operational as the baseline models are all diverse. Suppose six people shoot a combination of 

200 arrows at a target. Meanwhile, only 50 of those who can shoot at the right target. For the rest,  

their performance can be discarded. The only task is to find out who did not shoot the arrow on landing 

target, detach them and keep collecting those 50 outperformers. The algorithm of the proposed method is 

depicted in Figure 1.  
 

 

Proposed Method  
Require: Dataset matrix [M]ab with a rows and b columns 

Ensure:[M]ab , C = total number of classifications, T = dimension of [M] 

for i = 1 to a do 

for j = 1 to b do 

for k = 1 to C do /** First level of prediction **/ 

Classifier Ck applying for dataset [M] 

end for 
for n = 1 to T do /** Prediction to maximize regression-based probability**/ 

Mc = {a’n,bn}, where a’n= c0 + c1 an + c2 an+ ... + cT an 

end for 

Choose new classifier C with Mc /**Second level of prediction **/ 

Return C 

 end for 

 end for 

 

Figure 1. Proposed method prediction 
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4. EXPERIMENTAL MODEL 

Cloud-based LMS can contribute an extensive scale of prospects, for instance, cost-effectiveness 

followed by a wide-ranging scalability. The secure-cloud-based LMS issues a number of online services in 

connection with social media and mobile applications for the learners’ experience. In parallel, there are 

dedicated services to log the learner behavioral activities. The accumulation of the exam performances and 

the activity records of the individual learner have been logged in a data repository. The repository then is 

employed in the assessment of the online learners. Veselinova and Ristova [15] have developed advanced 

technologies and innovation using open-source based Moodle, in the elearning classroom, for the sake of 

making the language virtual classroom more attractive and creative as well as motivating learners to utilize 

this pedagogy with their facilitators. Facilitators can decide soft-skill objectives and further construct them in 

a framework of successive activities for drafting a lesson plan based upon a communicative competence of 

elearning students as studied in [16]. 

In this paper, the experimental model as depicted in Figure 2 consists of three sections. The pre-

processing based upon classification technique is the first process of extracting an insightful data from the 

repository. The insight from this stage is warehoused for a further process, a step of association. Finally, the 

suitability of the offered courses to the learners regarding standard curricula in online educational programs 

is analyzed. As concluding outcomes from the third step, the dynamic elearning environment and adaptive 

elearning system must be considered to mimic the learners’ behavior of elearning based method. 

 

 

 
 

Figure 2. Experimental model 

 

 

5. RESULTS AND ANALYSIS 

The classification models are constructed and evaluated in this paper utilizing the synthetic datasets 

from an elearning system (so-called LMS). The individual synthetic dataset denotes the learner’s model and 

is mainly categorized into three basic parts which are the examination result attributes, the individual 

registration records and the background knowledge records. There are about 7,000 instances whose size is 

about 0.2 GB. In this paper, the MOA simulation is employed for the data analytics. All experiments have 

been run on an Asus Windows 7 with Intel® Core ™ i7 CPU, 2.2 GHz Processor and 8 GB RAM. 

The datasets have been opted in different years and with variable size. The experimental model as shown in 

Figure 2 has been executed in order to collect performance metrics (such as AUROC, precision, and CA) of 

the proposed algorithm then compare to other three traditional algorithms, namely SMO, RF, and ZR. 

The pre-processing improvement results from five datasets in the repository are listed in Table 1. 

Numerous researches aim at emerging methods for association rule. But, simplification and 

efficiency are obstructions for the development as such. Normally, pre-processing (classification) and post-

processing (association model) are both necessary for curating data, such as extracting and converting the 

data from any particular format to expected format. In this paper, the first attempt has been completed to 

propose an effective classification comparatively among the SMO, RF, and ZR approaches. The next attempt 

involves with association model to achieve valuable information. Association rule model intends to curate 

insightful, frequent patterns, inter-correlations, or any associations between sets of instances in datasets or 

other databases from the repository [17]. The main objective of the model is to find out the set of all 

attributes or instances in which regularly repeat in database transactions or records, and furthermore, to check 

rules on whether or not instances subset affects the existence of other subsets. Association rule algorithm 

concerns high-level estimation rules based on the If-Then-Else condition; IF the condition of the estimation 

attribute is “True”, THEN estimate value for the targeted attribute. In addition, the rule is a relation  
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between two occurrences in the pattern of A→ C, in which A is anticipated while C is a successor. The rule 

per se demonstrates how many occurrences C has followed after A arises regarding the confidence and 

leverage values.  

 

 

Table 1. Results from classification 
Dataset1 

Classifier Type Precision (%) AUROC CA (%) 

SMO 94.4 98 93 

RF 95 98.2 95.2 

ZR 42.1 50 65 

Proposed 97.4 99.2 97 

Dataset2 

Classifier Type Precision (%) AUROC CA (%) 

SMO 94.6 98.7 94.1 

RF 93.2 97.7 93.1 

ZR 43.2 50 62 

Proposed 96.9 99 96.8 

Dataset3 

Classifier Type Precision (%) AUROC CA (%) 

SMO 91.6 98 91 

RF 93.1 97.5 93.2 

ZR 42.4 50 65.9 

Proposed 96.2 98.8 96.9 

Dataset4 

Classifier Type Precision (%) AUROC CA (%) 

SMO 65 50.7 62.1 

RF 84.1 82.9 84.7 

ZR 57.6 50 75.9 

Proposed 84.5 89.1 85 

Dataset5 

Classifier Type Precision (%) AUROC CA (%) 

SMO 97 98 97.5 

RF 97.2 97.8 97.2 

ZR 27 50 52 

Proposed 98.2 98.8 98.5 

 

 

The specific formulas which are employed to calculate the association metrics for a given 

association rule (A→C) are support, confidence and leverage. Support represents the probability of instances 

in the dataset that holds an itemset in the given database where support (A→C) is defined as support 

(A U C). Confidence denotes a conditional probability, for a rule, where confidence (A→C) can be described 

as support (A→C)/ support (A). Leverage is the difference between the expected probability of the 

independent itemset and the probability of the rule and leverage (A→C) can be characterized as support 

(A→C) – (support (A)* support (C)). 

The Apriori algorithm, so-called the level-wise algorithm, is applied for the association model (post-

processing). The algorithm per se is based upon preceding information of repeated itemset properties. 

The algorithm employs two states (an entrant and a clipping) in each recursion. It keeps iterating by starting 

from the first level till the nth level, in which no entrant leftovers after discarding. 

In the preliminary simulation in post-processing, to list all association rules, the confidence value 

has been initially set to be 1 %, and the support degree is set to be 0%. After the association rule execution, 

315 association rules, as well as 72 rules whose confidence degree is larger than 60%, have been achieved. 

Table 2 demonstrates how these 315 rules are distributed. The maximum confidence value of the rule 

descends when the number preceding itemset drops, as the number of preceding itemset is identical to 9, 

the maximum confidence value is about 90%, while the confidence value of all association rules is lower than 

60%, where the maximum confidence is around 43%. The following results designate that a student involves 

more on social media; he will have higher opportunity for elearning graduation in specified duration of time. 

Association rules whose confidence value is larger than 60% are rules in which the number of 

precedent items is 7. Thirty-nine rules explain 51.2% of rules whose confidence value is larger than 60%. 

Table 3 lists the results with graduation factor as the successor. These association rules are in descending 

order of confidence values. The results shown in Table 3 demonstrate that students who have got high 

English test score, and complete all core courses, will produce a 100% chance of graduation. The following 

100% probability of graduating is also 100%, which arises in those students who have got high GPA at high 

school, complete all core courses, and take IT project option.  
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Table 2. Association model using Apriori algorithm between social communication factors and graduation: 

successor = graduation in specified period of time 
Number  

of preceding set 

Number repeated itemsets 

(conf > 60%) 

Number repeated itemsets 

(conf > 5%) 

Confidence (%) 

Average Min Max 

1 0 6 5.6 3.4 8.4 

2 0 17 10.9 6.6 21 

3 0 25 19.7 8.9 33.5 

4 0 39 35.1 19.3 48.1 

5 0 96 42.9 15.7 60.2 

6 14 45 67.2 44.3 78.8 

7 39 38 46.8 26.4 80.3 

8 10 27 74.0 70.5 85.7 

9 6 8 80.6 76.4 90.2 

10 2 2 N/A N/A N/A 

 

 

Table 3. Association model among factors: successor = graduation 
Sequence Precedence I Precedence II Precedence III Conf Lift Lev Conv 

1 High Eng Score Core Courses  1 1.2 0.07 13.2 

2 High School GPA Core Courses IT Project 1 2.49 0.24 47.9 

3 High Eng Score Family Business  1 2.62 0.06 13.0 

4 Social Media Working Physical Ed 1 2.59 0.23 12.5 

5 Average School GPA IT project  0.98 1.8 0.18 18.2 

 

 

6. CONCLUSION 

This elearning data analytics found that the most significant factor in graduation is English test 

score, followed by core courses completion, and IT project involvement. In our experimental dataset, 3.53% 

of the students could not finish. Regarding to the first association rule shown in Table 2, with social 

communication as the precedent item and graduation in specified time as the successor, the confident value is 

8.4% – this is about 2.84 times the occurrence rate of the total training dataset. The experiment has revealed 

that English test is one of the largest factors of graduation, and is particularly co-operating the group of 

students who can graduate just in time. Some researchers have appealed that social media may help students 

succeed in elearning education, students from business family cannot be beneficial entirely, but related 

project in IT leads to insignificance. The results of this research show that in physical education as the 

successor, there are 39 motivating association rules. The results point out that short of physical exercise could 

lead to the associated factors of unfulfillment. Prevention and intervention of fail factors such as 

incompletion of all core courses can help increase chance of graduation greatly. The direct prevention is 

changing of studying style, such as focusing on core courses, enjoying regular physical education, and 

involving more IT projects. Future research will take other association algorithms, such as frequent pattern or 

genetic algorithms, into account. 
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