
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 9, No. 5, October 2019, pp. 4336∼4343
ISSN: 2088-8708, DOI: 10.11591/ijece.v9i5.pp4336-4343 r 4336

Optimizing requirement analysis by the use of
meta-heuristic in Search Based Software Engineering

Rajesh Kumar1, Rakesh Kumar2

1Department of Computer Science & Applications, CRM Jat College, Hisar, Haryana, India
2Department of Computer Science & Applications, Kurukshetra, University, Kurukshetra, Haryana, India

Article Info

Article history:

Received Oct 16, 2018
Revised Apr 17, 2019
Accepted Apr 22, 2019

Keywords:

Genetic algorithm
Human based computation
Optimization
Requirement selection
Search Base Software
Engineering

ABSTRACT

Requirements analysis is the first phase of software development process and it is
one of the main concerns of software engineers. The selection of requirements is a
complex problem caused by the heterogeneity of the users and their varied interests
and demands. In this paper, it is justified that their is a strong need of optimization
in requirement analysis. The paper argues that requirement selection can be viewed
as an application area of Search-Based Software Engineering(SBSE). The aim is to
justify the claim that requirement engineering can be re-formulated as search problem
to which meta-heuristic technique can be applied.

Copyright c© 2019 Insitute of Advanced Engineeering and Science.
All rights reserved.

Corresponding Author:

Rajesh Kumar,
CRM Jat College, Hisar, Haryana, India.
Tel: +919896402345
Email: lsntl@ccu.edu.tw

1. INTRODUCTION
Requirement analysis is an important part of the software engineering process. The process of require-

ment engineering is described as a series of activities including elicitation, modeling & analysis, specification
and validation & verification.

In a problem, sometimes the size of requirements is huge and it is very difficult to implement all the
requirements. It is also observed that the requirements gathered from heterogeneous users are of varying size.
A key aspect in any successful project is to determine an appropriate set of requirements for implementation.
The requirements selection needs to be optimized to limit the infinite flow of demands posed by the users.
Requirements selection is an engineering process to select an optimal set of requirements out of all the require-
ments proposed by the customers. The objective of requirement analysis is to address the question: ”What do
you want to achieve in a product or service?”, which however is a subtle task in the praxis.

Hence, a formalized representation technique is required to optimize the requirement selection pro-
cess. Thus, it is a big challenge to represent these requirements in a formalized way. This justify that Re-
quirements selection can be viewed as an application area of Search-Based Software Engineering (SBSE).
Search based Software Engineering (SBSE) seeks to reformulate Software Engineering problems as search
problems.There is a need of optimization to find out the perfect requirement set using some metaheuristics.
Harman[1, 2] coined a term Search Based Software Engineering (SBSE) in which Search Based Optimisation
is applied to Software Engineering. The first objective of this paper is to reformulate the requirement selection
as a search based problem.

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Int J Elec & Comp Eng ISSN: 2088-8708 r 4337

2. REQUIREMENT SELECTION: A SEARCH PROBLEM
It is assumed that an initial set of requirements has been collected and the requirements have been

identified using a requirements elicitation process. The task of optimizing requirements is usually regarded
to be a challenging and hard problem in itself[3, 4, 5] Nevertheless, there are still several feasible approaches
in previous works that address the solution of this problem[6, 7, 8] but none is absolute. So, in software en-
gineering, determining the set of requirements is a critical foundation for the success of a project. Including
or excluding requirements inappropriately may result in the emergence of products that fail to satisfy stake-
holders’ needs and might cause a huge loss of revenue. However, uncertainty is inevitable in the early phase
of requirements engineering and could lead to unsound requirement decisions. So, requirement engineering
needs some intelligent techniques to overcome these type of problems. So, first objective is to represent the
problem in the form of search space. Then selection will be performed on using some fitness function followed
by encoding scheme. Then crossover, mutation and replacement will be take place and repeat these steps until
the terminating criteria reached.

The framework proposed in the paper is working in the context of requirement representation in the
form of state space. The emphasis of the framework is to provide a systematic method which uses the search-
based optimization approach to solve the computational and cognitive complexity of the requirement selection.

3. SEARCH BASED SOFTWARE ENGINEERING
Search Based Software Engineering is the name given by Harman[1] to a oeuvre in which Search

Based Optimization is applied to Software Engineering. Optimization approaches have been applied to solve
software engineering problems since the 1970s decade[9]. There are different solutions to optimization problem
and one solution is searching. According to Harman[10] there are three aspects for formulating software
engineering problem as search based Optimization problem.
(a) Problem Representation Technique
(b) Selection of Fitness Function
(c) Choice of Search-Based Technique

3.1. Problem representation
Problem representation should be in the form of state space. Choosing a proper problem representation

technique is essential for reconstructing a problem into a search-based optimization problem. To represent the
problem in the form of state space firstly state space need to be define.

3.1.1. State space representation
Search-based requirements selection and optimization lies within the general SBSE framework[11].

SBSE is concerned with the application of search-based algorithms to software engineering topics such as
Requirement analysis. The purpose of all search algorithms is to explore the optimal, near-optimal or “good
enough” solutions among a number of possible solutions in a search space. Search/state space search is formally
describes a search problem. A search problem consists of the following:
(a) S: the non empty set of states.
(b) S0: the initial state where s0 ⊆ S.
(c) S⇒S is a set of operator.
(d) G is the set of final state. Note that G ⊆ S.

3.2. Use of meta-heuristic
Different meta-heuristic technique are available such as Genetic Algorithms (GA) [12], Simulated

Annealing (SA)[13] and Hill Climbing (HC)[14]. In this paper Genetic Algorithm has been proposed to search
the state space.

3.2.1. Genetic algorithms
GA is a generalized search and optimization technique. It works with populations (chromosomes) of

individuals, each representing a possible solution to a given problem. Each individual is evaluated to give some
measure of its fitness to the problem from the objective functions. Algorithm applies the principle of survival
of fittest to find better approximations. At each generation, a new set of approximation is created by the process
of selecting individual potential solutions according to their level of fitness in the problem domain and breeding

Optimizing requirement analysis by the use of... (Rajesh Kumar)

4338 r ISSN: 2088-8708

them together using operators borrowed from natural genetics. A simple GA that yields good results in many
practical problems is composed of following operators[15]:

(a) Encoding

(b) Selection

(c) Crossover

(d) Reproduction

3.2.2. Encoding schemes-categorization
Depending on the structure of encoding, it can be classified into two groups, namely, one dimensional

and two-dimensional. Binary, Value and Permutation encoding is one dimensional and Tree encoding is two
dimensional encoding schemes[6]. Studying these encoding schemes, one can infer that characters represented
by permutation encoding are position dependent. In Binary encoding, real value encoding, the characters
are value oriented. The two factors identified by studying different encoding schemes are locus and value of
character in the chromosome. So, factors like locus and value should be kept in mind while encoding a solution
for a particular problem.

3.3. Goldberg’s classification of encoding techniques
Goldberg has declared in his work that fitness function for a specific encoding scheme is dependent

on two factors- value and order[8]. Three different categories of encoding can be grouped depending on fitness
evaluation factors such as:

(a) Encoding schemes where fitness depends on value only: f(v). Eg: Value encoding

(b) Encoding schemes where fitness depends on value and order: f(v,o). Eg: Binary Encoding

(c) Encoding schemes where fitness depends on order only: f(o). Eg: Permutation encoding.

4. NEED OF NOVEL ENCODING
It can be stated that the existing encoding schemes fall under the three categories mentioned above and

they are dependent on value or order or both factors for assessment of fitness function. These existing encoding
schemes are not suitable for the representation of the requirements because there is no mathematical way to
represent all the requirements in the form of state space. Consequently, there arises a need to unearth a new
encoding scheme that is independent of these two factors. It is a big challenge for the researchers to represent
the requirements, gathered from the different users, in the form of a chromosome. The size of the requirements
is not fixed. In this purposed encoding scheme, requirements are stored in the form of a SET.

4.1. Prerequisites for purposed encoding scheme
It is assumed that there are N users and M possible system requirements are gathered from users, out

of these M requirements some are common and some are altogether different. Every requirement is assign a
unique number on the basic of their uniqueness. It is assumed that there is a SET of users, N={N1, N2,, Nn}
and a SET of possible system requirements, R = {R1, R2,, RM}.

In this new Encoding scheme all the requirements gathered from a user are represented as a chromo-
somes in raw form. In figure 1, chromosome 1 represent the requirements gathered from user 1
and so on.

Chromosome 1: R1, R3, R6, R8, R9, R12, R15

Chromosome 2: R1, R3, R4, R6, R7, R12

Chromosome 3: R1, R2, R5, R8, R10, R16, R20, R23

Figure 1. Representation of the requirements as chromosome

Int J Elec & Comp Eng, Vol. 9, No. 5, October 2019 : 4336 – 4343

Int J Elec & Comp Eng ISSN: 2088-8708 r 4339

5. FITNESS FUNCTION
It can not be denied that there is uncertainty, inconsistency and ambiguity in the requirement analysis

phase. Requirement selection is a complex task as it is difficult to select the fitness function for requirements.
No mathematical function is applicable to measure the fitness value of a particular requirement [16]. Thus,
in this section, the author tries to justify that Human Based Computation can be used as a fitness function
for the genetic algorithm. Human-based computation is a technique in which human computational power
is utilized to solve the problems that computers cannot yet solve[17]. Alex Kosorukoff[18], who coined the
term, designed a genetic algorithm that allows humans to suggest solutions that might improve evolutionary
processes. Since the evolution of Artificial Intelligence(AI) research in the 1950s, computer scientists have
been trying to imitate human-like capabilities, such as visual processing, language and reasoning. Alan Turing
wrote in 1949:The idea behind computers may be explained by saying that these machines are intended to carry
out any operations which could be done by a human mind using mathematical model. [19] The idea of using
human effort to perform tasks that computers cannot yet perform[20] is called Human-based computation. It
is a technique that makes use of human abilities for computation to solve complex problems[21]. The thesis
”Human Computation” [17] defines the term as: A paradigm for utilizing human processing power to solve
problems that computers cannot yet solve.

Both CAPTCHA (which stands for Completely Automated Public Turing Test to Tell Computers and
Humans Apart) and reCAPTCHA are the invention of Luis von Ahn, a Carnegie Mellon computer scientist
and MacArthur ”genius grant” recipient. ”A couple hundred million CAPTCHAs are typed daily around the
world,” von Ahn tells NEWSWEEK. ”The first time I did the calculations, I felt quite proud. And then I felt
bad because people really find these annoying.” They’re also wasteful. It takes about 8 to 10 seconds to type
a CAPTCHA more, obviously, if you err and have to start over meaning a total of some 400,000 human hours
per day are spent typing them in. As a point of comparison, according to von Ahn, the Empire State Building
took 7.5 million human hours to build. ”Life is only like 750,000 hours,” The Author says. ”It’s almost the
equivalent of a life. One thought, is there any way oneself can use this human effort in a way that’s good for
humanity?”

Recognizing distorted words is one of the things that the human mind can still do better than comput-
ers. In order to make old newspaper, books and other texts searchable, pages are scanned and fed into optical
character recognition software. Because ink and paper degrade over time, some words remain incomprehensi-
ble. The reCAPTCHA system presents Web users with two words: one word that computers can not read, and
one that they can. So long as you type the known word in correctly, and a few other people agree with you on
the unknown word, you have helped digitize an archival page. And, Von Ahn says, typing in two words instead
of one does not cost you a significant amount of extra time.

It has been said that by oneself should not ask what is next in terms of what the technology and Internet
will be able to do but instead try to understand what society already got and figure out how to put it to good
use. Von Ahn’s efforts surely prove that point. They also show that in some ways, peoples can help computers
as much as they help society.

Another example of human based computation is Duolingo. Duolingo is a free-ware language learning
platform. It includes a language learning website and application, as well as a digital language competence
assessment exam. As of Aug., 2018, the language learning website and application offer 81 different language
courses across 36 languages. The application has about 350 million registered users across the world. Duolingo
wins Apple’s iPhone App of the Year award in 2013.

On the basis of above instances, it is concluded that human based computation is a compelling fitness
function in requirement selection. With the ever-increasing number of Internet users, the relevance of man
based computation becomes all the more prominent. It is a potential medium to procure the fitness value of
requirements.

6. SELECTION
Selection is the first genetic operation in the reproductive phase of genetic algorithm. The objective of

selection is to choose the fitter individuals in the population that will create offsprings for the next generation,
commonly known as mating pool. The mating pool thus selected takes part in further genetic operations,
advancing the population to the next generation and hopefully close to the optimal solution. In other words,
Selection is the process of choosing breeding stock or parents from a population. As the generations pass, the

Optimizing requirement analysis by the use of... (Rajesh Kumar)

4340 r ISSN: 2088-8708

members of population should get fitter and fitter. Individuals from the mating pool are used to generate new
offsprings, with the resulting offspring forming the basis of next generation. So it is desirable that the mating
pool should have good individuals. Selection operator works at the level of chromosomes. The key idea of
selection operator is to give preference to better individuals by allowing them to pass on their genes to the
next generation and prohibit the entrance of worst fit individuals into the next generation. The goodness of
each individual depends on its fitness. Fitness value is determined by an objective function [21]. Selection of
individuals in the population is fitness dependent and is done using different algorithms[8]. Some are roulette
wheel selection, rank selection, tournament, steady state selection and many more. Selection acts as active force
in a genetic algorithm by regulate the genetic search towards favorable domain in the search space. Selection
operator emulate phenomena and processes in nature. Selection chooses more fit individuals in analogy to
Darwin’s theory of evolution – survival of fittest[22]. All the individuals have a chance of being selected into
the mating pool, but there are chances that an individual in the population can be selected more than once
depending upon its fitness. Selection schemes are characterised by selection pressure, selection variance and
loss of diversity. They primarily determine the convergence characteristics of genetic algorithms. Selection
has to be balanced. Too strong selection means suboptimal highly fit individuals will take over the population
reducing the diversity and too weak selection will result in too slow evolution[23]. Goldberg and Deb grouped
selection methods in to four categories: Proportionate, Ranking, Tournament and Steady state selection.

(a) Roulette Wheel Selection

(b) Rank Selection

(c) Tournament selection

(d) Steady State Selection

6.0.1. Rank selection
Rank selection is used in this paper for selection. Rank Selection sorts the population first according to

fitness value and ranks them. Rank N is assigned to the best individual and rank 1 to the worst individual. Then
every chromosome is allocated selection probability with respect to its rank[24]. Individuals are selected as
per their selection probability. Rank selection is an explorative technique of selection. Rank selection prevents
too quick convergence and differs from roulette wheel selection in terms of selection pressure. Rank selection
overcomes the scaling problems like stagnation or premature convergence. Ranking controls selective pressure
by uniform method of scaling across the population. Rank selection behaves in a more robust manner than
other methods[25, 26].

7. CROSSOVER
Genetic algorithms are optimization algorithms and mimic the natural process of evolution. Important

operators used in genetic algorithms are selection, crossover and mutation. In the previous chapters, different
forms of selections have been discussed. Crossover and mutation operators are used to introduce diversity in
the population. Type of crossover and mutation operator used for a problem depends on the type of encoding
used. Different crossover operators are described in this section. In natural systems, crossing-over is a complex
process that occurs between pairs of chromosomes. Two chromosomes are physically aligned, breakage occurs
at one or more corresponding locations on each chromosome, and homologous chromosome fragments are
exchanged before the breaks are repaired. This results in a recombination of genetic material that contributes
to variability in the population. In genetic algorithms, crossover operator exchanges substrings between chro-
mosomes represented as linear strings of symbols. The basic crossover operation is a three-step procedure[27].
First, two individuals are chosen at random from the population of ’parent’ strings generated by the selection
operator. Second, one or more string locations are chosen as breakpoints or crossover points delineating the
string segments to exchange. Finally, parent string segments are exchanged and then combined to produce two
resultant offspring individuals. Crossover operates on selected genes from parent chromosomes and creates
new offspring. Simplest crossover may be exchanging genetic material of two strings with respect to single
crossover point. Crossover can be quite complicated and depends mainly on the encoding of chromosomes.
Specific crossover made for a specific problem can improve performance of the genetic algorithm. Crossover
combines parental solutions to form offspring with a hope to produce better solutions. Crossover operators are
critical in ensuring good mixing of building blocks[28].

Int J Elec & Comp Eng, Vol. 9, No. 5, October 2019 : 4336 – 4343

Int J Elec & Comp Eng ISSN: 2088-8708 r 4341

7.1. Uniform crossover
Uniform crossover operator does not divide the parent chromosome into segments for recombination.

Rather, it treats each gene of the chromosome independently to choose for the offspring. In Uniform crossover,
number of crossover points is not fixed initially. It recombines genes of parent chromosomes on the basis of
crossover mask. It selects x number of crossover points in the chromosome where the value of x is a random
value less than the length of the chromosome. Crossover mask is generated according to this random value. In
this crossover, each gene in the offspring is created by copying the corresponding gene from one of the parents.
The selection of the corresponding parent is undertaken via a randomly generated crossover mask[29, 30, 31]
. At each index, the offspring gene is taken from the first parent if there is a 1 in the mask at this index, and if
there is a 0 in the mask at this index, the gene is taken from the second parent. Due to this construction principle
uniform crossover does not support the evolvement of higher order building blocks. Uniform crossover does not
exhibit positional bias but do exhibit distributional bias due to which uniform crossover has a strong tendency
towards transmitting 50% of the genes from each parent and against transmitting an offspring a large number
of co-adapted genes from one parent.

Table 1. Uniform Crossover
Parent 1 R1, R2, R8, R4, R9, R6, R7

Parent 2 R4, R2, R6, R3, R5, R7, R1, R8

Mask 1 1 0 1 0 1 1 0
Child 1 R1, R2, R6, R4, R5, R6, R7, R8

Child 2 R4, R2, R8, R3, R9, R7, R1

8. CONCLUSION AND FUTURE WORK
The application of metaheuristics to resolve Software Engineering problems is part of a nearly new

field called Search Based Software Engineering (SBSE). In this paper, the author justified the claim that re-
quirement engineering can be re-formulated as a search problem. This paper has presented the novel encoding
technique for requirement optimization. The author used the idea of harnessing human computation power in
order to solve a problem that computers cannot yet solve. People engage in computation not because they want
to do a good deed but because they enjoy it. The future of SBSE is a luminous one. There are many areas to
which the techniques associated with SBSE surely apply, but have yet to be fully considered. In existing fields
of application, the results are already very encouraging.

REFERENCES
[1] Mark Harman and Bryan F. Jones. Search-based software engineering. Information and Software Tech-

nology, 43(14):833–839, December 2001.
[2] Sarro, Federica and Kessentini, Marouane and Deb, Kalayanmoy Guest Editorial Special Issue on Search-

Based Software Engineering. IEEE Transactions on Evolutionary Computation, 3(22):333–333, 2018.
[3] Tom Tourwé, Wim Codenie, Nick Boucart, and Vladimir Blagojević. Demystifying release definition:

from requirements prioritization to collaborative value quantification. In International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality, pages 37–44. Springer, 2009.

[4] Thakurta, Rahul Understanding requirement prioritization artifacts: a systematic mapping study. Re-
quirements engineering, 4(22):491–495, 2017.

[5] Joachim Karlsson and Kevin Ryan. A cost-value approach for prioritizing requirements. IEEE Softw.,
14(5):67–74, September 1997.

[6] Franz Rothlauf and David E. Goldberg. Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag, 2002.

[7] Pal, Sankar K and Wang, Paul P Genetic algorithms for pattern recognition. CRC press, 4(20):499–510,
2017.

[8] T. Gilb. Competitive Engineering: A Handbook For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage. Elsevier Science, 2005.

[9] W. Miller and D. L. Spooner. Automatic generation of floating-point test data. IEEE Trans. Softw. Eng.,
2(3):223–226, May 1976.

Optimizing requirement analysis by the use of... (Rajesh Kumar)

4342 r ISSN: 2088-8708

[10] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software engineering: Trends,
techniques and applications. ACM Comput. Surv., 45(1):11:1–11:61, December 2012.

[11] Mark Harman.umbarkar2015crossover The current state and future of search based software engineering.
In 2007 Future of Software Engineering, FOSE ’07, pages 342–357, Washington, DC, USA, 2007. IEEE
Computer Society.

[12] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor,
MI, 1975. second edition, 1992.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. SCIENCE,
220(4598):671–680, 1983.

[14] Sheldon H. Jacobson and Enver Yücesan. Analyzing the performance of generalized hill climbing algo-
rithms. Journal of Heuristics, 10(4):387–405, July 2004.

[15] K.A. De Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. PhD thesis, Univer-
sity of Michigan, 1975.

[16] John J. Grefenstette. Genetic algorithms and machine learning. In Proceedings of the Sixth Annual
Conference on Computational Learning Theory, COLT ’93, pages 3–4, New York, NY, USA, 1993. ACM.

[17] Luis Von Ahn. Human Computation. PhD thesis, Pittsburgh, PA, USA, 2005. AAI3205378.
[18] A. Kosorukoff. Human based genetic algorithm. In 2001 IEEE International Conference on Systems, Man

and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), volume 5,
pages 3464–3469 vol.5, Oct 2001.

[19] A. M. Turing. Computers & thought. chapter Computing Machinery and Intelligence, pages 11–35.
MIT Press, Cambridge, MA, USA, 1995.

[20] Edith Law and Luis von Ahn. Input-agreement: A new mechanism for collecting data using human
computation games. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’09, pages 1197–1206, New York, NY, USA, 2009. ACM.

[21] Man-Ching Yuen, Ling-Jyh Chen, and Irwin King. A survey of human computation systems. 2009
International Conference on Computational Science and Engineering, 4:723–728, 2009.

[22] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE
Press, Piscataway, NJ, USA, 1995.

[23] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1998.
[24] James E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the 1st Interna-

tional Conference on Genetic Algorithms, pages 101–111, Hillsdale, NJ, USA, 1985. L. Erlbaum Asso-
ciates Inc.

[25] Darrell Whitley. The genitor algorithm and selection pressure: Why rank-based allocation of reproductive
trials is best. In Proceedings of the Third International Conference on Genetic Algorithms, pages 116–
121, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[26] Thomas Bäck. Evolutionary algorithms. SIGBIO Newsl., 12(2):26–31, June 1992.
[27] Conor Ryan, Arthur H.M. van Roermund, and Christina Johanna Maria Verhoeven. Automatic Re-

engineering of Software Using Genetic Programming. Kluwer Academic Publishers, Norwell, MA, USA,
1999.

[28] T. Baeck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic Algorithms and Opera-
tors. Basic algorithms and operators. Taylor & Francis, 2000.

[29] D.H Ackley. A Connectionist Machine for Genetic Hillclimbing, volume SECS28 of The Kluwer Inter-
national Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, 1987.

[30] Umbarkar, AJ and Sheth, PD CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW..
ICTACT journal on soft computing, 6(1):299–301, 2015.

[31] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the 3rd International Con-
ference on Genetic Algorithms, pages 2–9, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers
Inc.

Int J Elec & Comp Eng, Vol. 9, No. 5, October 2019 : 4336 – 4343

Int J Elec & Comp Eng ISSN: 2088-8708 r 4343

BIOGRAPHIES OF AUTHORS
Rajesh Kumar obtained his B.Sc. Degree, Master’s Degree (Master of Computer Applications)
from Kurukshetra University, Kurukshetra. Currently, He is an Assistant Professor in the Depart-
ment of Computer Science and Application’s, Chhaju Ram Memorial Jat College, Hisar, Haryana,
INDIA. His research interests are in Genetic Algorithm, Theory of Automata, Software Engineering,
Artificial Intelligence, Design and Analysis of Algorithm and Linux.

Prof. Rakesh Kumar obtained his B.Sc. Degree, Master’s Degree – Gold Medalist (Master of
Computer Applications) and PhD (Computer Science & Applications) from Kurukshetra University,
Kurukshetra. Currently, He is Professor & Chairperson in the Department of Computer Science and
Applications, Kurukshetra, University, Kurukshetra, Haryana, INDIA. His research interests are in
Genetic Algorithm, Software Testing, Artificial Intelligence, and Networking. He is a senior member
of International Association of Computer Science and Information Technology (IACSIT).

Optimizing requirement analysis by the use of... (Rajesh Kumar)

