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 Unsupervised leaning is a popular method for classify unlabeled dataset i.e. 
without prior knowledge about data class. Many of unsupervised learning are 
used to inspect and classify network flow. This paper presents in-deep study 
for three unsupervised classifiers, namely: K-means, K-nearest neighbor and 
Expectation maximization. The methodologies and how it’s employed to 
classify network flow are elaborated in details. The three classifiers are 
evaluated using three significant metrics, which are classification accuracy, 
classification speed and memory consuming. The K-nearest neighbor 
introduces better results for accuracy and memory; while K-means announce 
lowest processing time. 
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1. INTRODUCTION 

Network traffic classification occupied a significant role in several fields, such as network security, 
network management and surveillance… etc. It is the process of classifying network traffic into the original 
application that generated this traffic. The challenges that face this process is increased because of emerging 
new applications that caused redoubled size of data [1]. Port-based is one of the first techniques that used in 
data classification. However, this technique is no longer used since it's easy to masquerade, by using the 
well-known ports of some applications by other applications. For example, some VoIP applications use port 
23 that allocated by IANA to the Telnet protocol [2], [3]. Payload-based and signature-based [4] are two 
alternative methods that used in data classification. Unfortunately, the two approaches suffer from consuming 
space of memory and long processing time. In addition, they fail to classify encrypted packets accurately. 
Behavior-based [5] is another method that used for data classification. However, it fail in real time and online 
classification evaluation. 

As you can see, the aforementioned methods suffer from many problems; which compelled the 
researches to suggest new approach for data classification; that is, machine learning. Machine learning [6] 
populates to be a suitable solution since it's powerful of automation, identification, and predication. Basically, 
machine learning can be classified into supervised and unsupervised learning [7], [8], [9]. Supervised is 
classify dataset with a prior knowledge about class result. In contrast unsupervised had the potential to 
classify dataset without knowledge about the resulting class. In this paper, we will evaluate and compare 
three popular unsupervised classification methods; namely, k-means, k-nearest neighbor, and expectation 
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maximization. The three methods are evaluated in term of classification accuracy, classification speed and 
memory consuming. 

This paper is organized as follows. Section 2 introduces the three classification methods and shows 
how to employ each method in data classification. Section 3 evaluates and compares the result of the three 
methods and discusses the results. Finally, Section 4 presents the conclusion.  
 
 
2. NETWORK TRAFFIC CLASSIFICATION METHODS 

This section reveals the approaches of three unsupervised classification methods and how they 
employed to classify network flow. The procedure of each one is explained in details to fully understand 
these methods. 

 
2.1. K-means Clustering 

Bernaille et al. [10] proposed using K-means cluster unsupervised learning method that classify 
network flow by categorizing a dataset into a definite number of clusters (assume ݇ clusters) fixed a priori. 
The key idea is to select ݇ centroids randomly, one for each cluster. Each input represented as coordinator by 
considering the features values which is consisted a group of points, each point is allocated to the closest 
centroid, and each group of points allocated to a centroid is a cluster the distance is measure. The centroid of 
each cluster is updated later based on the points allocated to the cluster. Network flows are represented by 
points in a P-dimensional space (dimension refer to the feature such as packet size), where each packet is 
linked with a dimension; the coordinate on dimension p is the size of packet p in the flow. The procedure is 
repeated with updating the steps until no changes clusters, or equally, until the centroids remain the same. 
Figure 1 shows simply the steps of K-means idea [11]. 

 
 

 
 

Figure 1. Key steps of K-means method [11] 
 
 

The similarity between flows is represented by measuring distance between each point in cluster and 
centroid which is calculate using Euclidean distance as formulated in equation 1. The K-means method 
attempts to find an optimal solution by reducing the square error, which is defined as in equation 2. The 
square error is calculated with the distance squared between each point (object) 	ݔ	and the center of its 
cluster	ܿ. 
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Where, 
 objective function =ܧ
 number of cluster =ܭ
݊= number of cases (points) 
 ௜= case iݔ

௝ܿ= centroid for cluster j 
 

The results illustration that more than 80% of entire flows are correctly classified for a number of 
applications. One exceptional case is the POP3 application. The classifier labels 86% of POP3 flows as 
NNTP and 12.6% as SMTP, because POP3 flows always belong to clusters [12]. However, this method is 
failed to classify some of application with low accuracy; furthermore, the main weakness is that the initial 
partitions (clusters) are very important. If the initial clusters are not well selected then the K-Means can 
converge to a local minimum instead of the global minimum solution. To avoid that, a solution is to run the 
algorithm several times and preserve the best solution. This was led for emerge two issues computationally 
expensive and extra time of processing [13]. 

 
2.2. K-Nearest Neighbor 

Roughan et al [14] suggested k-nearest neighbor to classify network traffic. K-nearest neighbor is 
type of common method called instance-based learning (IBL), which uses specific training instances to make 
classifications without having to build model from training data. IBL algorithms require a proximity measure 
to determine the similarity or distance between data inputs (instances) and a classification function that 
returns the resulted class of a test instance based on its proximity to other instances. A nearest neighbor’s 
classifier represents each instance as a data point in a d-dimensional space, where d is the number of 
attributes. For a given  test instance, we compute it proximity to the rest of the data points in the training set 
by measuring distance between the instance and class. The k-nearest neighbors for instance ݎ denote to the ݇ 
points that are closest to	ݎ. For an example figure 2 demonstrates the 1-, 2-, 3- nearest neighbors of a data 
point located at the center of each circle. The data point is predicated based on the class labels of its 
neighbors. In the case where the neighbors have more than one class, the data point is assigned based on the 
majority class of its nearest neighbors. In figure 2a, the 1-nearest neighbor of the data point is a negative 
instance. Therefore the data point is assigned to the negative class. If the number of nearest neighbors is 
three, as shown in Figure 2c, then the neighborhood contains two positive samples and one negative sample. 
Based on the majority voting scheme, the data point is allocated to the positive class. K-nearest neighbor 
computes the similarity by measuring the distance between each test instance point ݎ ൌ ሺݔ,  ሻ and all theݕ
training instances ሺݔ, ሻݕ ∈  .to compute its nearest neighbor list (represent whole dataset ܦ) where ܦ
Commonly, there are different ways to compute the distance between point and neighbor class for continuous 
features such as Euclidean, Manhattan, Minkowski and formulated in equations 3, 4 and 5 respectively, for 
discrete features using hamming distance which is implement ܱܴܺ between points. 
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Figure 2. 1-2-3-Nearest Neighbor [15] 
 
 
Generally KNN possess some limitations. At first, it needs to determine the neighbors list for each 

instances such computation can be costly if the training dataset is large. In addition, ݇ value is sensitive for 
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choosing. In other word, if dataset ݇ is too small the nearest neighbor classifier may be susceptible to 
overfitting because of noise in the training data. On the other hand, if ݇ is too large, the nearest neighbor 
classifier may misclassify the test instance because listing of nearest neighbors may include points that are 
located far away from its neighborhood as shown in figure 3. 
 
2.3. Expectation Maximization 

Jeffrey Ermanet al. [16] is employed expectation maximization (EM) unsupervised machine 
learning method to classify network traffic according to the application. EM is an iterative procedure that 
converges to a maximum likelihood using posteriori probability function. EM works based on two steps. In 
first step, EM expects the calculation of the cluster probabilities (i.e. expected class values) therefore, this 
step described as “expectation”. In second step, EM calculates of the distribution parameters, is 
“maximization” of the likelihood of the distribution given the data. Figure 4 shows EM iteration alternatives 
between performing an expectation (E) step, which produces a function for the expectation of the likelihood 
calculated using the two estimate parameters means µ and variance 2ߪ of points, and a maximization (M) 
step, which computes the maximum parameters for expected likelihood that found it in the step (E). 

 
 

 
 

Figure 4. Life cycle of expectation-maximization 
 

To estimate the probability for each class (application type) ܥ for a given certain features-vector ݔ 
using posterior probability function as used in equation 6 for Naïve Bayse method. The maximum likelihood 
is calculated by re-estimate the value of mean µ and variance 2ߪ continuity then substituted again in the 
conditional probability function ܲሺܺ|ܥሻ is calculate using the below formula, where	݅ number of instance in 
each feature ݔ. The authors used 200 iteration as conditional to stop EM loop. 
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Authors used nine different classes in the experiment namely (SMTP, HTTP, DNS, FTP-

CONTROL, Socks, IRC, POP3, FTP-DATA and P2P LimeWire). The overall classification accuracy was 
91% for the collected dataset. However, the iteration process consume resources (Memory, CPU) and adding 
extra processing time where repeated the parameters (means and covariance) calculation up to 200 times 
[16]. 
 
 
3. PERFORMANCE EVALUATION 

In this section, the performance of the K-means clustering, K-Nearest neighbor and expectation 
maximization methods is evaluated and compared. We have evaluated and compared the three methods using 
three factors; namely, classification accuracy, classification speed, and memory consumption. We used these 
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three factors in the comparison because they are play a significant role in real time and online classification 
environment. 
 
3.1. Testing Environment 

The Weka software version 3.7.10 [17] and the Moore dataset [18] are used to evaluate and compare 
the three classification methods; namely, K-means clustering, K-Nearest neighbor and expectation 
maximization. The Moore dataset consists of 24863 instances, 248 attributes, and 11 classes, which are 
WWW, FTP-CONTROL, MAIL, FTP-PASV, P2P, ATTACK, FTP-DATA, DATABASE, SERVICES, 
MULTIMEDIA, and INTERACTIVE. 14918 out of 24863 records are used as a training dataset while the 
remaining dataset, 9945 records, are adopted as testing data. 
 
3.2. Results and Discussion 

The classification accuracy is evaluated by testing the overall accuracy through determine correctly 
and incorrectly classified instances. Figure 5 shows the overall accuracy of the three classification methods. 
The result showed that the K-Nearest neighbor (KNN) (using three neighbors) achieved the highest accuracy 
by up to 98%, expectation maximization (EM) achieved the second highest accuracy by up to 91%, and K-
means achieved the lowest accuracy by up to 80 %. Figure 6 shows the total processing time of the three 
classification methods including the buildup time. The result showed that the total processing time of EM, 
KNN, and K-means is 900, 350, and 60 seconds, respectively. As you can see, K-means achieved the best 
processing time between the three methods, which make it a suitable solution for online classification. Figure 
7 shows the memory consumption of the three classification methods. The result showed that the memory 
consumption of EM, KNN, and K-means is 223MB, 60MB, and 130MB, respectively. 

The results showed KNN with 3-Nearst neighbors is the best in term of accuracy and memory 
consumption due to the powerful and low complexity of method but the memory and processing time is 
threaten to increase in case number of neighbors increase. K-means was the best in term of time consumption 
this aspect make it anappropriate solution for real time classification but still needs enhancement with regard 
to accuracy and memory consumption where data traffic is pumped in high rate in real time and online 
environment [19]. Expectation-Maximization ranked in the end due to the cost computation was led to high 
memory and time consuming. 

 
 

 
 

Figure 5. Overall Accuracy of k-means, KNN, and 
EM 

 
 

Figure 6. Total processing time of k-means, KNN, 
and EM 
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Figure 7. Memory consumption of k-means, KNN, and EM 
 
 
4. CONCLUSION 

Unsupervised learning is known method used widely for identify and classify network traffic. There 
are several unsupervised classifiers were proposed by researchers to classify network flow. These researchers 
are competed in term of QoS to test which classifiers are more suitable for real time and online classification. 
This paper presents a comparative study for three popular unsupervised classifiers namely K-means, K-
nearest neighbor (KNN) and Expectation Maximization (EM). These classifiers were studied deeply through 
explain the methodologies for each and how were employed to classify network flow. The classifiers are 
evaluated with regard to three significant metrics spatially for real time and online environment. These 
metrics are classification accuracy, classification speed and memory consumption. As a result KNN was the 
best in term of accuracy and memory consuming but k-means introduced better performance with regard to 
total time of processing while expectation maximization was the worst for the three metrics. Based on the 
generated results we recommend to study the avenues to optimize KNN to reduce time processing to be fit 
with real time and online environment. Furthermore, we recommend enhancing classification accuracy and 
decreasing memory consumption for K-means. Thereafter, implement both on huge dataset. 
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