
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 4, August 2019, pp. 3241~3246

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i4.pp3241-3246 3241

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Ensemble learning for software fault prediction problem

with imbalanced data

Thanh Tung Khuat, My Hanh Le
Information Technology Faculty, The University of Danang, University of Science and Technology, Vietnam

Article Info ABSTRACT

Article history:

Received Oct 10, 2018

Revised Mar 19, 2019

Accepted Apr 3, 2019

 Fault prediction problem has a crucial role in the software development

process because it contributes to reducing defects and assisting the testing

process towards fault-free software components. Therefore, there are a lot of

efforts aiming to address this type of issues, in which static code

characteristics are usually adopted to construct fault classification models.

One of the challenging problems influencing the performance of predictive

classifiers is the high imbalance among patterns belonging to different

classes. This paper aims to integrate the sampling techniques and common

classification techniques to form a useful ensemble model for the software

defect prediction problem. The empirical results conducted on the benchmark

datasets of software projects have shown the promising performance of our

proposal in comparison with individual classifiers.

Keywords:

Classifier

Data sampling

Ensemble learning

Random under sampling

Software fault prediction

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

My Hanh Le,

Information Technology Faculty,

University of Danang, University of Science and Technology,

54 Nguyen Luong Bang, Danang, 550000, Viet Nam.

Email: ltmhanh@dut.udn.vn

1. INTRODUCTION

In the past few years, researchers have put more effort into software property prediction problems

such as effort estimation [1], defect classification [2], and software quality prediction [3]. While the risk of

defects within the software modules under development are high, testing operations [4] are time-consuming

and expensive, and they cannot be performed for entire elements. As a result, accurate prediction of faults in

software units might help managers to allocate limited time and precious resources to deploy an efficient

software testing process. Along with the advancement of machine learning techniques, various software

metrics have been used to construct predictive models for identifying fault-prone software modules such as

static code metrics, execution traces, and historical code changes [5]. This work also employs the static code

metrics including class-level and method-level ones to build software fault classifiers.

One of the features of software quality datasets is the imbalance between the number of patterns in

each class label, where most vulnerable components of the software system may only be sought with a small

ratio. Therefore, the quantity of faulty samples in such software datasets is much lower than that of non-

defective patterns [6]. Unfortunately, the performance of most conventional classifiers, like support vector

machines [7], K-nearest neighbor [8], neural networks [9], and Bayesian network [10], is significantly

decreased on the class-imbalance problem. They are usually towards the dominant class and tend to disregard

the minority class, and this phenomenon is possible to lead to high false negative rates [11]. To solve this

problem, data sampling methods are regularly adopted combined with predictive models. This paper makes

use of random undersampling (RUS) to cope with the imbalanced data problem. We first produce the

balanced datasets by utilizing the RUS techniques for an original imbalanced dataset. These balanced

datasets are then put to various base predictors and finally, a specific ensemble rule is deployed to combine

the classification results of these base models.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3241 - 3246

3242

Theoretical and empirical evidence has indicated that the ensemble method of multiple classifiers

may make the ultimate predictive model more accuracy [12]. Nevertheless, there are very few studies

applying the ensemble approach to the software defect prediction problem [13]. To the best of our

knowledge, this work is the first study on empirical assessment of the influence of sampling on ensemble

models concerning imbalanced training datasets for the software fault prediction problem. The principal aim

of this paper is to reveal the vital role of the sampling technique to the accuracy of the ensemble classifier on

imbalanced data. We use a software defect ensemble predictor consisting of five base classifiers: k-nearest

neighbor, Bayesian networks, J48, multilayer perceptron, and support vector machines. The diversity in

classification abilities of the base classifiers may contribute to capturing different statistical characteristics of

the underlying data. Empirical results are performed on seven software defect datasets from the PROMISE

repository [14]. Our main contributions in this paper can be summarized as follows:

- We propose a general method of building an ensemble model of base classifiers for software fault

prediction using imbalanced training datasets

- We assess the crucial role of the under-random sample technique on improving the performance of the

ensemble models through experimental results on highly imbalanced software fault datasets

The remainder of this paper is outlined as follows: section 2 presents the background knowledge and

related work of the random undersampling and ensemble learning. Section 3 discusses our proposed method,

while section 4 the analysis of experimental results. The conclusion and future work are given in section 5.

2. BACKGROUND

2.1. Software fault prediction

Defect prediction is a method of early identification of faults in software modules. It investigates the

properties of individual code elements to determine those units being fault-prone or not [15] or to predict the

number of faults in each component [16]. While the latter considers software defect prediction as a regression

issue, the former approach regards it as a classification problem. This study only deals with the classification

viewpoint, which predicts a software module into fault-prone or non-fault-prone. A large number of static

code characteristics have been proposed for the software fault prediction ranging from method level metrics

such as Lines Of Code-based measures [17], McCabe [18] and Halstead [19] metrics to class level metrics

like Chidamber-Kemerer [20] and Conceptual Cohesion of Classes measure [21].

Based on static code metrics, researchers have adopted different methods to construct software fault

prediction models. In general, conventional defect prediction approaches consist of four main steps, i.e.,

construction of training datasets, feature extraction from software defect datasets, development of a

predictive model, and the application of the constructed model.

2.2. Class imbalance problem and random under sampling
Class imbalance is an integral attribute of the software defect data, which comprise only a few faulty

units and a large number of non-faulty modules [22]. This characteristic has a considerable impact on both

the training of a model and the predictive performance since most machine learning algorithms tend to form

classifiers maximizing the overall classification accuracy. Consequently, the valuable minority class is

usually ignored by such models. For example, given a dataset having only 1% of the faulty components,

an overall accuracy of 99% might be easily attained by a binary classifier grouping all data patterns as non-

faulty patterns. As a result, the minority defective instances are all misclassified with this simple model.

In this case, it outputs a very high accuracy, but it makes no sense. Therefore, the class imbalance problem

often diminishes the binary predictors, and further makes these classification models not to predict the

minority faulty software units accurately.

Many studies have been introduced to handle the class imbalance problem. A survey of techniques

for reducing the negative impact of imbalance on classification performance was proposed

by Weiss et al. [23]. Crucial methods for alleviating the influence of class imbalance might be categorized

into groups, namely external and internal methods. Internal techniques aim to modify existing machine

learning algorithms for reducing their sensitiveness to class imbalance [24], while the external approach

tends to form a balanced training dataset. The external approaches are widely used as they are independent of

the underlying classification algorithms. Data sampling belongs to the external group. The undersampling

technique often eliminates samples of the majority class for obtaining a balanced dataset before training the

classifiers. Mani and Zhang [25] pointed out that the random undersampling technique regularly outperforms

other complex sampling strategies. Therefore, we use random undersampling in comparison with base

classifiers to build an ultimate ensemble model.

Int J Elec & Comp Eng ISSN: 2088-8708

Ensemble learning for software fault prediction problem with imbalanced data (My Hanh Le)

3243

3. PROPOSED ENSEMBLE MODEL

In our proposed model, each base classifier is trained on a different balanced dataset formed from

the sampling step, and the model includes three components: data balancing, classifiers training,

and classifying. The details are shown in Figure 1.

Figure 1. Proposed ensemble classifier

During the training process, the majority class samples in the original imbalanced dataset are split

into several bins by adopting the random undersampling method. Each bin includes the equal number of

patterns to that of the minority class, and then all minority class patterns are put into each bin to form the

balanced training dataset. After that, each base classifier will be trained on a separated balanced dataset by

a specific classification algorithm. Finally, the final classifier is built by combining the outcomes of base

predictors relied on the majority voting rule. The ensemble model would then be deployed to classify new

data. There are various classification techniques possible to be used for base classifiers. The diversity of base

predictors might result in the performance improvement of the final ensemble model. In this study, we use

five common classification algorithms, including support vector machines (SVM) [7], multilayer perceptron

(MLP) [9], Bayesian networks [10], K-nearest neighbor (KNN) [26], and decision tree J48 [27]. Diversity is

a crucial factor in the ensemble members' decisions. It can be seen that base learners are trained on different

datasets, and this will contribute to the diversity of the final ensemble model formed from the majority voting

rule for outcomes of base classifiers.

4. RESULTS AND ANALYSIS

4.1. Empirical evaluation criteria and dataset

Each binary classification issue is associated with four possible prediction cases, i.e., true positives

(TP), true negatives (TN), false positives (FP), and false negatives (FN). As for the software defect

prediction, if a sample is classified as "faulty" and is actually "faulty", it is a true positive; if a non-faulty

pattern is misclassified as "faulty", it is a fault positive. In a similar way, true negative shows that the non-

faulty sample is predicted to "non-faulty," while fault negative indicates an error situation where a buggy

program unit is incorrectly grouped as "non-buggy". Based on these four variables, measures such as

Precision, Recall, and F1-score are computed as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3241 - 3246

3244

To evaluate the effectiveness of the ensemble classifier, we conducted experiments on a collection

of seven highly imbalanced binary datasets from the PROMISE repository of software defect databases [14]

These seven open source datasets have the different number of patterns, features, and the class imbalance

ratio. Table 1 shows the attributes of each selected imbalanced dataset, including the total number of

attributes (#Attr.), the number of patterns (# Pats.), the number of defective components (# Defect),

the number of non-defective units (# Non-defect), the ratio of faulty modules to all modules in each dataset

(% Defect). All seven software systems have been written in Java programming language. Each instance in

these datasets represents a single Java class. The feature set of each dataset consists of 20 software metrics

such as complexity, coupling, cohesion, size and defect proneness characteristics of a Java class.

Table 1. Summary of seven highly imbalanced datasets
Dataset # Attr. # Pats # Defect # Non-defect %Defect

Ant 1.7 20 745 166 579 22.28%
Camel 1.6 20 965 188 777 19.48%

Ivy 2.0 20 352 40 312 11.36%

Poi 2.0 20 314 37 277 11.78%
Tomcat 20 858 77 781 8.97%

Xalan 2.4 20 723 110 613 15.21%

Synapse 1.2 20 256 86 170 33.59%

4.2. Experimental results

4.2.1. Comparison of the ensemble models with and without using random undersampling

This part is to uncover if the undersampling-based ensemble model can handle the class imbalance

problem more efficient compared with one without using the undersampling technique. Non-sampling

ensemble means that base classifiers are trained on the entire original imbalanced dataset. Table 2 shows the

average results of F1-score over 30 execution times for the non-sampling and undersampling ensemble

models. In the table, the best value of each dataset is highlighted in bold.

From Table 2, it is observed that the integration of the random undersampling method with

ensemble learning outperforms the ensemble classifier without using the sampling technique in all

imbalanced datasets, especially for the poi 2.0 dataset. In this dataset, the ensemble predictor trained on the

original imbalanced data outputs the F1-score value being completely inaccurate, while the ensemble model

using the random undersampling algorithm significantly enhances the accuracy of F1-score. These results

indicate that sampling technique contributes to the considerable improvement of the accuracy of the

ensemble classifier regarding the class imbalance training datasets.

Table 2. Average F1-score values of imbalanced datasets for the ensemble models
Dataset Non-sampling ensemble UnderSampling ensemble

Ant 1.7 0.5278 0.6261
Camel 1.6 0.2321 0.4413

Ivy 2.0 0.2759 0.3937

Poi 2.0 0 0.3354
Tomcat 0.2222 0.3899

Xalan 2.4 0.2535 0.4535
Synapse 1.2 0.5333 0.6487

4.2.2. Comparison of the ensemble model and its base classifiers

The purpose of this experiment is to validate whether the ensemble model using the random

undersampling lead to better average F1-score values compared to their base classifiers. Table 3 describes the

results of the ensemble model and its base classifiers when trained on the original imbalanced data and

balanced datasets. The best results for each dataset are highlighted in bold.

Generally, base predictors trained on balanced data output much better average F1-score results over

all datasets compared to those trained on original imbalanced datasets, especially kNN, MLP, and SVM.

It is easy to observe that several classifiers such as J48, SVM, and kNN are very sensitive to imbalanced data,

and they generate incredibly inaccurate F1-score values. When adopting the original imbalanced dataset to

train models, the ensemble model cannot outperform all base classifiers on all experimental datasets.

However, the random undersampling technique assists the ensemble classifier to perform better than their

base learners on all datasets. It is concluded that the use of random undersampling contributes to the

significant improvement of the performance of base classifiers and the final ensemble model.

Obtained results have shown the critical role of balanced training datasets on the accuracy of binary

classification algorithms.

Int J Elec & Comp Eng ISSN: 2088-8708

Ensemble learning for software fault prediction problem with imbalanced data (My Hanh Le)

3245

Table 3. Average F1-score over datasets of the ensemble model and its base classifiers
Type Classifier Dataset

Ant 1.7 Camel 1.6 Ivy 2.0 Poi 2.0 Tomcat Xalan 2.4 Synapse 1.2

Original

imbalanced
dataset

Ensemble 0.5278 0.2321 0.2759 0 0.2222 0.2535 0.5333

kNN 0.4961 0.2171 0.2667 0.0833 0.1154 0.1918 0.5556
BN 0.6095 0.2449 0.3256 0 0.3634 0.4348 0.5385

J48 0.5576 0.2857 0.3125 0 0.3077 0.2632 0.557

MLP 0.4493 0.3172 0.1935 0.0667 0.274 0.3059 0.5789
SVM 0.3186 0.0208 0.1905 0.0833 0 0.0351 0.4706

Random under

sampling

Ensemble 0.6261 0.4413 0.3937 0.3354 0.3899 0.4535 0.6487

kNN 0.5382 0.4021 0.2695 0.3191 0.3455 0.3865 0.5943
BN 0.6059 0.2439 0.3709 0.3206 0.3686 0.4067 0.6105

J48 0.5833 0.3804 0.3534 0 0.3418 0.3984 0.559

MLP 0.5015 0.3954 0.2934 0.3184 0.3393 0.3807 0.5833
SVM 0.5884 0.3776 0.3227 0.3078 0.3538 0.3931 0.5924

5. CONCLUSION

This paper showed the efficiency of integrating the random undersampling to the ensemble learning

on the imbalanced software defect datasets. Experimental outcomes pointed out that balanced training

datasets allow the significant enhancement of performance of both the ensemble model and base classifiers.

As a result, the combination of the sampling technique and ensemble learning contributes to forming a

promising classifier for the software fault prediction problem. The ensemble model in this paper adopts only

a simple majority voting rule. Therefore, we intend to produce a variety of ensemble classifiers using

different rules in the future. Moreover, several other sampling methods such as oversampling techniques and

evolving sampling strategies will be applied to binary classification models.

ACKNOWLEDGEMENTS

This work was supported by University of Danang, University of Science and Technology,

code number of Project: T2018-02-50, and Ministry of Education and Training Vietnam for the research

project in the period 2019–2020, code number of Project: B 2019-DNA-03.

REFERENCES
[1] T. T. Khuat and M. H. Le, "A Novel Hybrid ABC-PSO Algorithm for Effort Estimation of Software Projects Using

Agile Methodologies," Journal of Intelligent Systems, vol. 17, no. 3, pp. 489-506, 2017.

[2] I. H. Laradji, M. Alshayeb, and L. Ghouti, "Software defect prediction using ensemble learning on selected

features," Information and Software Technology, vol. 58, pp. 388-402, 2015.

[3] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, "An application of fuzzy clustering to software quality

prediction," in Proceedings of the 3rd IEEE Symposium on Application-Specific Systems and Software Engineering

Technology, pp. 85-90, 2000.

[4] T. M. H. Le, T. B. Nguyen, and T. T. Khuat, "Survey on Mutation-based Test Data Generation," International

Journal of Electrical and Computer Engineering (IJECE), vol. 5, no. 5, pp. 1164-1173, 2015.

[5] M. D’Ambros, M. Lanza, and R. Robbes, "Evaluating defect prediction approaches: a benchmark and an extensive

comparison," Empirical Software Engineering, journal article, vol. 17, no. 4, pp. 531-577, 2012.

[6] Z. Sun, Q. Song, and X. Zhu, "Using Coding-Based Ensemble Learning to Improve Software Defect Prediction,"

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6,

pp. 1806-1817, 2012.

[7] R. Akbani, S. Kwek, and N. Japkowicz, "Applying Support Vector Machines to Imbalanced Datasets,"

in Proceedings of the 15th European Conference on Machine Learning, pp. 39-50, 2004.

[8] H. He and E. A. Garcia, "Learning from Imbalanced Data," IEEE Transactions on Knowledge and Data

Engineering, vol. 21, no. 9, pp. 1263-1284, 2009.

[9] N. Japkowicz and S. Stephen, "The class imbalance problem: A systematic study," Intell. Data Anal., vol. 6, no. 5,

pp. 429-449, 2002.

[10] N. Bouguila, W. Jian Han, and A. B. Hamza, "A Bayesian approach for software quality prediction," in

Proceedings of the 4th International IEEE Conference Intelligent Systems, pp. 1149-1154, 2008.

[11] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, "Cost-sensitive boosting for classification of imbalanced

data," Pattern Recognition, vol. 40, no. 12, pp. 3358-3378, 2007.

[12] L. Rokach, "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated

bibliography," Computational Statistics & Data Analysis, vol. 53, no. 12, pp. 4046-4072, 2009.

[13] T. Wang, W. Li, H. Shi, and Z. Liu, "Software Defect Prediction Based on Classifiers Ensemble," Journal of

Information and Computational Science, vol. 8, no. 16, pp. 4241-4254, 2012.

[14] T. Menzies, R. Krishna, and D. Pryor. "The Promise Repository of Empirical Software Engineering Data,"

[Online]. Available: http://openscience.us/repo.

http://openscience.us/repo

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3241 - 3246

3246

[15] T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code Attributes to Learn Defect Predictors," IEEE

Transactions on Software Engineering, vol. 33, no. 1, pp. 2-13, 2007.

[16] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the location and number of faults in large software

systems," IEEE Transactions on Software Engineering, vol. 31, no. 4, pp. 340-355, 2005.

[17] N. E. Fenton and M. Neil, "Software metrics: successes, failures and new directions," Journal of Systems and

Software, vol. 47, no. 2, pp. 149-157, 1999.

[18] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, vol. SE-2, no. 4,

pp. 308-320, 1976.

[19] D. N. Card and W. W. Agresti, "Measuring software design complexity," Journal of Systems and Software, vol. 8,

no. 3, pp. 185-197, 1988.

[20] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[21] A. Marcus, D. Poshyvanyk, and R. Ferenc, "Using the Conceptual Cohesion of Classes for Fault Prediction in

Object-Oriented Systems," IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 287-300, 2008.

[22] D. Bowes, T. Hall, and D. Gray, "DConfusion: a technique to allow cross study performance evaluation of fault

prediction studies," Automated Software Engineering, journal article. vol. 21, no. 2, pp. 287-313, 2014.

[23] G. M. Weiss, "Mining with rarity: a unifying framework," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1,

pp. 7-19, 2004.

[24] L. Gonzalez-Abril, H. Nuñez, C. Angulo and F. Velasco, "GSVM: An SVM for handling imbalanced

accuracy between classes inbi-classification problems," Applied Soft Computing, vol. 17, no. Supplement C,

pp. 23-31, 2014.

[25] I. Mani and J. Zhang, "KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information

Extraction," in Proceedings of International Conference on Machine Learning, 2003.

[26] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2012.

[27] G. E. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine

learning training data," SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 20-29, 2004.

BIOGRAPHIES OF AUTHORS

Thanh Tung Khuat completed the B.S degree in Software Engineering from University of

Science and Technology, Danang, Vietnam, in 2014. Currently, he is working towards the Ph.D.

degree at the Advanced Analytics Institute, Faculty of Engineering and Information Technology,

University of Technology Sydney, Australia. His research interests include machine learning,

knowledge discovery, evolutionary computation, intelligent optimization techniques and

applications in software engineering.

My Hanh Le is currently a lecturer of the Information Technology Faculty, University of

Science and Technology, Danang, Vietnam. She gained M.Sc. degree in 2004 and Ph.D. degree

in Computer Science from The University of Danang in 2016. Her research interests are about

software testing and more generally application of heuristic techniques to problems in software

engineering.

