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 Fault prediction problem has a crucial role in the software development 

process because it contributes to reducing defects and assisting the testing 

process towards fault-free software components. Therefore, there are a lot of 

efforts aiming to address this type of issues, in which static code 

characteristics are usually adopted to construct fault classification models. 

One of the challenging problems influencing the performance of predictive 

classifiers is the high imbalance among patterns belonging to different 

classes. This paper aims to integrate the sampling techniques and common 

classification techniques to form a useful ensemble model for the software 

defect prediction problem. The empirical results conducted on the benchmark 

datasets of software projects have shown the promising performance of our 

proposal in comparison with individual classifiers. 
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1. INTRODUCTION  

In the past few years, researchers have put more effort into software property prediction problems 

such as effort estimation [1], defect classification [2], and software quality prediction [3]. While the risk of 

defects within the software modules under development are high, testing operations [4] are time-consuming 

and expensive, and they cannot be performed for entire elements. As a result, accurate prediction of faults in 

software units might help managers to allocate limited time and precious resources to deploy an efficient 

software testing process. Along with the advancement of machine learning techniques, various software 

metrics have been used to construct predictive models for identifying fault-prone software modules such as 

static code metrics, execution traces, and historical code changes [5]. This work also employs the static code 

metrics including class-level and method-level ones to build software fault classifiers. 

One of the features of software quality datasets is the imbalance between the number of patterns in 

each class label, where most vulnerable components of the software system may only be sought with a small 

ratio. Therefore, the quantity of faulty samples in such software datasets is much lower than that of non-

defective patterns [6]. Unfortunately, the performance of most conventional classifiers, like support vector 

machines [7], K-nearest neighbor [8], neural networks [9], and Bayesian network [10], is significantly 

decreased on the class-imbalance problem. They are usually towards the dominant class and tend to disregard 

the minority class, and this phenomenon is possible to lead to high false negative rates [11]. To solve this 

problem, data sampling methods are regularly adopted combined with predictive models. This paper makes 

use of random undersampling (RUS) to cope with the imbalanced data problem. We first produce the 

balanced datasets by utilizing the RUS techniques for an original imbalanced dataset. These balanced 

datasets are then put to various base predictors and finally, a specific ensemble rule is deployed to combine 

the classification results of these base models. 
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Theoretical and empirical evidence has indicated that the ensemble method of multiple classifiers 

may make the ultimate predictive model more accuracy [12]. Nevertheless, there are very few studies 

applying the ensemble approach to the software defect prediction problem [13]. To the best of our 

knowledge, this work is the first study on empirical assessment of the influence of sampling on ensemble 

models concerning imbalanced training datasets for the software fault prediction problem. The principal aim 

of this paper is to reveal the vital role of the sampling technique to the accuracy of the ensemble classifier on 

imbalanced data. We use a software defect ensemble predictor consisting of five base classifiers: k-nearest 

neighbor, Bayesian networks, J48, multilayer perceptron, and support vector machines. The diversity in 

classification abilities of the base classifiers may contribute to capturing different statistical characteristics of 

the underlying data. Empirical results are performed on seven software defect datasets from the PROMISE 

repository [14]. Our main contributions in this paper can be summarized as follows: 

- We propose a general method of building an ensemble model of base classifiers for software fault 

prediction using imbalanced training datasets 

- We assess the crucial role of the under-random sample technique on improving the performance of the 

ensemble models through experimental results on highly imbalanced software fault datasets 

The remainder of this paper is outlined as follows: section 2 presents the background knowledge and 

related work of the random undersampling and ensemble learning. Section 3 discusses our proposed method, 

while section 4 the analysis of experimental results. The conclusion and future work are given in section 5. 

 

 

2. BACKGROUND 

2.1.  Software fault prediction 

Defect prediction is a method of early identification of faults in software modules. It investigates the 

properties of individual code elements to determine those units being fault-prone or not [15] or to predict the 

number of faults in each component [16]. While the latter considers software defect prediction as a regression 

issue, the former approach regards it as a classification problem. This study only deals with the classification 

viewpoint, which predicts a software module into fault-prone or non-fault-prone. A large number of static 

code characteristics have been proposed for the software fault prediction ranging from method level metrics 

such as Lines Of Code-based measures [17], McCabe [18] and Halstead [19] metrics to class level metrics 

like Chidamber-Kemerer [20] and Conceptual Cohesion of Classes measure [21]. 

Based on static code metrics, researchers have adopted different methods to construct software fault 

prediction models. In general, conventional defect prediction approaches consist of four main steps, i.e., 

construction of training datasets, feature extraction from software defect datasets, development of a 

predictive model, and the application of the constructed model. 

 

2.2.  Class imbalance problem and random under sampling 
Class imbalance is an integral attribute of the software defect data, which comprise only a few faulty 

units and a large number of non-faulty modules [22]. This characteristic has a considerable impact on both 

the training of a model and the predictive performance since most machine learning algorithms tend to form 

classifiers maximizing the overall classification accuracy. Consequently, the valuable minority class is 

usually ignored by such models. For example, given a dataset having only 1% of the faulty components, 

an overall accuracy of 99% might be easily attained by a binary classifier grouping all data patterns as non-

faulty patterns. As a result, the minority defective instances are all misclassified with this simple model. 

In this case, it outputs a very high accuracy, but it makes no sense. Therefore, the class imbalance problem 

often diminishes the binary predictors, and further makes these classification models not to predict the 

minority faulty software units accurately. 

Many studies have been introduced to handle the class imbalance problem. A survey of techniques 

for reducing the negative impact of imbalance on classification performance was proposed  

by Weiss et al. [23]. Crucial methods for alleviating the influence of class imbalance might be categorized 

into groups, namely external and internal methods. Internal techniques aim to modify existing machine 

learning algorithms for reducing their sensitiveness to class imbalance [24], while the external approach 

tends to form a balanced training dataset. The external approaches are widely used as they are independent of 

the underlying classification algorithms. Data sampling belongs to the external group. The undersampling 

technique often eliminates samples of the majority class for obtaining a balanced dataset before training the 

classifiers. Mani and Zhang [25] pointed out that the random undersampling technique regularly outperforms 

other complex sampling strategies. Therefore, we use random undersampling in comparison with base 

classifiers to build an ultimate ensemble model. 
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3. PROPOSED ENSEMBLE MODEL 

In our proposed model, each base classifier is trained on a different balanced dataset formed from 

the sampling step, and the model includes three components: data balancing, classifiers training, 

and classifying. The details are shown in Figure 1.  

 

 

 
 

Figure 1. Proposed ensemble classifier 

 

 

During the training process, the majority class samples in the original imbalanced dataset are split 

into several bins by adopting the random undersampling method. Each bin includes the equal number of 

patterns to that of the minority class, and then all minority class patterns are put into each bin to form the 

balanced training dataset. After that, each base classifier will be trained on a separated balanced dataset by  

a specific classification algorithm. Finally, the final classifier is built by combining the outcomes of base 

predictors relied on the majority voting rule. The ensemble model would then be deployed to classify new 

data. There are various classification techniques possible to be used for base classifiers. The diversity of base 

predictors might result in the performance improvement of the final ensemble model. In this study, we use 

five common classification algorithms, including support vector machines (SVM) [7], multilayer perceptron 

(MLP) [9], Bayesian networks [10], K-nearest neighbor (KNN) [26], and decision tree J48 [27]. Diversity is 

a crucial factor in the ensemble members' decisions. It can be seen that base learners are trained on different 

datasets, and this will contribute to the diversity of the final ensemble model formed from the majority voting 

rule for outcomes of base classifiers. 

 

 

4.  RESULTS AND ANALYSIS 

4.1. Empirical evaluation criteria and dataset 

Each binary classification issue is associated with four possible prediction cases, i.e., true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN). As for the software defect 

prediction, if a sample is classified as "faulty" and is actually "faulty", it is a true positive; if a non-faulty 

pattern is misclassified as "faulty", it is a fault positive. In a similar way, true negative shows that the non-

faulty sample is predicted to "non-faulty," while fault negative indicates an error situation where a buggy 

program unit is incorrectly grouped as "non-buggy". Based on these four variables, measures such as 

Precision, Recall, and F1-score are computed as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
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To evaluate the effectiveness of the ensemble classifier, we conducted experiments on a collection 

of seven highly imbalanced binary datasets from the PROMISE repository of software defect databases [14] 

These seven open source datasets have the different number of patterns, features, and the class imbalance 

ratio. Table 1 shows the attributes of each selected imbalanced dataset, including the total number of 

attributes (#Attr.), the number of patterns (# Pats.), the number of defective components (# Defect), 

the number of non-defective units (# Non-defect), the ratio of faulty modules to all modules in each dataset 

(% Defect). All seven software systems have been written in Java programming language. Each instance in 

these datasets represents a single Java class. The feature set of each dataset consists of 20 software metrics 

such as complexity, coupling, cohesion, size and defect proneness characteristics of a Java class. 
 

 

Table 1. Summary of seven highly imbalanced datasets 
Dataset # Attr. # Pats # Defect # Non-defect %Defect 

Ant 1.7 20 745 166 579 22.28% 
Camel 1.6 20 965 188 777 19.48% 

Ivy 2.0 20 352 40 312 11.36% 

Poi 2.0 20 314 37 277 11.78% 
Tomcat 20 858 77 781 8.97% 

Xalan 2.4 20 723 110 613 15.21% 

Synapse 1.2 20 256 86 170 33.59% 

 
 

4.2.   Experimental results 

4.2.1. Comparison of the ensemble models with and without using random undersampling 

This part is to uncover if the undersampling-based ensemble model can handle the class imbalance 

problem more efficient compared with one without using the undersampling technique. Non-sampling 

ensemble means that base classifiers are trained on the entire original imbalanced dataset. Table 2 shows the 

average results of F1-score over 30 execution times for the non-sampling and undersampling ensemble 

models. In the table, the best value of each dataset is highlighted in bold. 

From Table 2, it is observed that the integration of the random undersampling method with 

ensemble learning outperforms the ensemble classifier without using the sampling technique in all 

imbalanced datasets, especially for the poi 2.0 dataset. In this dataset, the ensemble predictor trained on the 

original imbalanced data outputs the F1-score value being completely inaccurate, while the ensemble model 

using the random undersampling algorithm significantly enhances the accuracy of F1-score. These results 

indicate that sampling technique contributes to the considerable improvement of the accuracy of the 

ensemble classifier regarding the class imbalance training datasets. 
 

 

Table 2. Average F1-score values of imbalanced datasets for the ensemble models 
Dataset Non-sampling ensemble UnderSampling ensemble 

Ant 1.7 0.5278 0.6261 
Camel 1.6 0.2321 0.4413 

Ivy 2.0 0.2759 0.3937 

Poi 2.0 0 0.3354 
Tomcat 0.2222 0.3899 

Xalan 2.4 0.2535 0.4535 
Synapse 1.2 0.5333 0.6487 

 

 

4.2.2. Comparison of the ensemble model and its base classifiers 

The purpose of this experiment is to validate whether the ensemble model using the random 

undersampling lead to better average F1-score values compared to their base classifiers. Table 3 describes the 

results of the ensemble model and its base classifiers when trained on the original imbalanced data and 

balanced datasets. The best results for each dataset are highlighted in bold. 

Generally, base predictors trained on balanced data output much better average F1-score results over 

all datasets compared to those trained on original imbalanced datasets, especially kNN, MLP, and SVM. 

It is easy to observe that several classifiers such as J48, SVM, and kNN are very sensitive to imbalanced data, 

and they generate incredibly inaccurate F1-score values. When adopting the original imbalanced dataset to 

train models, the ensemble model cannot outperform all base classifiers on all experimental datasets. 

However, the random undersampling technique assists the ensemble classifier to perform better than their 

base learners on all datasets. It is concluded that the use of random undersampling contributes to the 

significant improvement of the performance of base classifiers and the final ensemble model. 

Obtained results have shown the critical role of balanced training datasets on the accuracy of binary 

classification algorithms. 
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Table 3. Average F1-score over datasets of the ensemble model and its base classifiers 
Type Classifier Dataset 

Ant 1.7 Camel 1.6 Ivy 2.0 Poi 2.0 Tomcat Xalan 2.4 Synapse 1.2 

Original 

imbalanced 
dataset 

Ensemble 0.5278 0.2321 0.2759 0 0.2222 0.2535 0.5333 

kNN 0.4961 0.2171 0.2667 0.0833 0.1154 0.1918 0.5556 
BN 0.6095 0.2449 0.3256 0 0.3634 0.4348 0.5385 

J48 0.5576 0.2857 0.3125 0 0.3077 0.2632 0.557 

MLP 0.4493 0.3172 0.1935 0.0667 0.274 0.3059 0.5789 
SVM 0.3186 0.0208 0.1905 0.0833 0 0.0351 0.4706 

Random under 

sampling 

Ensemble 0.6261 0.4413 0.3937 0.3354 0.3899 0.4535 0.6487 

kNN 0.5382 0.4021 0.2695 0.3191 0.3455 0.3865 0.5943 
BN 0.6059 0.2439 0.3709 0.3206 0.3686 0.4067 0.6105 

J48 0.5833 0.3804 0.3534 0 0.3418 0.3984 0.559 

MLP 0.5015 0.3954 0.2934 0.3184 0.3393 0.3807 0.5833 
SVM 0.5884 0.3776 0.3227 0.3078 0.3538 0.3931 0.5924 

 

 

5. CONCLUSION 

This paper showed the efficiency of integrating the random undersampling to the ensemble learning 

on the imbalanced software defect datasets. Experimental outcomes pointed out that balanced training 

datasets allow the significant enhancement of performance of both the ensemble model and base classifiers. 

As a result, the combination of the sampling technique and ensemble learning contributes to forming a 

promising classifier for the software fault prediction problem. The ensemble model in this paper adopts only 

a simple majority voting rule. Therefore, we intend to produce a variety of ensemble classifiers using 

different rules in the future. Moreover, several other sampling methods such as oversampling techniques and 

evolving sampling strategies will be applied to binary classification models. 
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