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This paper investigates the feasibility of Timed Efficient Stream Loss-tolerant Authen-
tication to serve security needs of Power Line Communication (PLC) system. PLC
network has been identified as the ideal choice to function as the last mile network,
deliver load management messages to smart meters. However, there is a need to ad-
dress the security concerns for load management messages delivered over power line
communications. The ubiquitous nature of the power line communication infrastruc-
ture exposes load management systems (LMS) deployed over it to a security risk. Or-

dinarily, PLC network does not employ security measures on which the smart meters
and data concentrators can depend on. Therefore, the need to provide a secure mech-
anism for communication of load management system messages over a PLC network.
In LMS, source authentication is of highest priority because we need to respond only
to messages from an authenticated source. This is achieved by investigating suitable
robust authentication protocols. In this paper we present modifications to Timed Effi-
cient Stream Loss-tolerant Authentication for secure authentication to secure messages
for load management over PLC. We show that PLC may be used to securely and effec-
tively deliver Load Management messages to smart meters, with minimal overhead.
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1. INTRODUCTION

The introduction of smart meters enables electricity suppliers to manage electricity demand efficiently,
by implementing load management systems (LMS), thus coping with electricity demand. These LMS systems
forecast the demand [1, 2, 3] therefore advising on mitigating steps. This demand would be in terms of quantity
and quality —which is still increasing by the escalation of new and more electronic devices in homes as popula-
tion grows. Prior to Smart grids, power suppliers could not sufficiently exploit the advances in communication
and information technology to improve the electricity grid’s efficiency, reliability, security, and quality of ser-
vice (QoS). Smart grid addresses all these desired features by modernizing the electricity grid by incorporating
of communication technologies [4, 5]. The term “smart grid” has been expanded from just smart meters, to
more focused on advanced metering infrastructure (AMI) [6].

Successful implementation of electrical load management system via smart meters requires a secure
communication channel which must also be robust to deliver load management commands such as load redistri-
bution, dimming of lights and switching off of hot water geysers. While, the effects of transferring data at high
bit rate through the mains network generates acceptable radiated emission regulated by international standards.
The increment in speed for New Generation PLC may cause higher levels of emissions that could be mitigated
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through the use Time Reversal (TR) technique [7]. In the load management system source authentication is of
highest priority because we need to respond only to messages from an authenticated source. Privacy is not a
priority for load management messages because they are broadcast to everyone on the network to manage the
load. Therefore, there is no need to make load management messages private through encryption, but there is a
need to respond only to commands from authentic sources because of possible attacks, such as denial of service
(DOS) [8] elaborated in title-24 [9]. For example —an attacker could falsify data thereby transmitting wrong
commands to smart meters —such as “electricity demand low” therefore users may switch on non-essential
gadgets. This could cause overloading that may lead to grid instability or even power outages, thus defeating
the sole intended purpose of load management. The scheme we present can be used by any application em-
ployed on PLC network to authenticate messages but it is heavily biased towards PLC based load management
systems. These are systems that employ data concentrators and smart meters as the two primary components.
Figure 1 shows a typical power line communication network for advanced metering infrastructure (AMI).

PLC Network External Network

Concentrator Power Supplier
eters

Smart M

Figure 1. Typical PLC Network [10]

The rest of this paper is organised as follows; In section 2. we discuss PLC channel characteristics,
followed by its security threats, risk management methods and mitigation techniques. (Both crypto and non-
crypto). Timed Efficient Stream Loss-tolerant Authentication (TESLA) scheme is presented in section 3.,
followed by research methodology in section 4. Modification to TESLA scheme are outlined in section 4.2.
Finally, performance analysis and results are presented in section 5.

2. BACKGROUND
2.1. PLC channel characteristics
In PLC systems, a transmit signal propagating from one location to another suffers from reflections
at impedance discontinuities along its path. Branching and impedance appearing at the termination points are
the main source of impedance discontinuity in power line networks (PLNs) giving rise to reflections. These
mechanisms are illustrated in Figure 2.
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Figure 2. Propagation mechanism for PLC channels [4]

Due to the propagation mechanisms effective in both environments, when a signal is emitted by a
transmitter, the signal received at the receiver consists of attenuated, delayed, and phase-shifted replicas of the
transmit signal leading to time dispersion. In communications community, significance of time dispersion is
quantified by a parameter called root-mean-squared (RMS) delay spread. RMS delay spread for both commu-
nication mediums is to be discussed in a more detailed way in the subsequent sections. Besides time dispersion
characteristic, both wireless and PLC channels are time selective. Mobility (or relative motion between trans-
mitter and receiver from a broader perspective) is the main reason behind time selectivity of wireless channels,
whereas the reason for time selectivity in PLC channels is related to the varying impedance conditions in the
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PLN especially at the termination points. Time selectivity is another aspect that the study will focus on. For
digital communication systems, the most common figure of merit is the bit error rate (BER) which is directly
related to signal-to-noise ratio (SNR). Being a function of SNR, BER can be computed by only having infor-
mation regarding amplitude statistics of the received signal and the noise characteristics in the communication
channel. In this respect, amplitude statistics and the noise characteristics of wireless and PLC channels are
among issues that the study has focused on.

Power line communication characteristics such as, frequency-distance-dependent attenuation in low
voltage (LV), based on extensive measurements is defined as:

A(f,d) = exp((—ag — a1 f*)d) )]
where:
f correspond to frequency of the signal,
d is the distance covered by the signal
while ag, a; and k£ are all cable-dependent parameters extracted by empirical measurements [4, 11]

2.1.1. Multipath characteristics
A complete characterization of the PLC channel can be given by its channel frequency response (CFR)
as follows:[4, 11]

A(f,d;) exp(—j2m f;) 2

N K M
H(f) = Z [H Vik H Tim

1=0 Lk=1 m=1

given that the total number of replicas received at the receiver is considered to be limited to N [4, 11] .

where:

K and M represent the number of reflection and transmission coefficients

v correspond to the reflection coefficient along the propagation path,

T is the transmission coefficient along the propagation path

while A(f,di) corresponds to the frequency and distance-dependent attenuation derived from the
physical characteristics of the cable, and exp(j27 f7;) refers to the phase of the ith component due to the time
delay.

Finally, it is worth mentioning that multiplication of v’s and 7’s in (2) is referred as the reflection factor
(|r;|e7%) of a particular propagation path. Note thatr;, the time delay, is related to the speed of propagation
within the communication medium, power line cables in our consideration as follows:

G

Co

3)

Ti

where:

¢,- 1s the dielectric constant of the insulation material

co is the speed of light in vacuum.

The time-and frequency-varying behaviour of a power-line network is the result of variable impedance loads
connected to its terminal points. Any signal transmitted through such a network is subject to time-varying
multipath fading [12]. In addition to this basic frequency domain-based PLC multipath model, there are other
characterization approaches, such as —A matrix-based approach for the calculation of multipath components
based upon the presented model in PLC networks is given in [12, 13].

PLC channel models that are based on treating the transmission line as a two-port network are given
in [14, 15, 16]. Besides these deterministic models, some statistical PLC channel characterization efforts
regarding attenuation, multipath-related parameters, and so forth, that consider the PLN as a black box without
dealing with its attributes such as cable characteristics, network topology, and so forth are presented in [17].
Each of these channel modeling approaches has some advantages and disadvantages. For instance, all attributes
of the PLN such as the network topology, cable distance-frequency-dependent attenuation characteristics, and
termination impedance conditions must all be known prior to computation if a frequency or transmission line
theory-based approach is to be adopted. Statistical models can be employed if any information regarding the
network attributes cannot be acquired a priori. However, an extensive measurement campaign may be required
in order to draw statistically meaningful conclusions from the data sets obtained from various networks with
different topologies.
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2.2. Security threats

A threat to a Power Line communication system is any malicious occurrence that would have an unde-
sirable effect on the assets and resources associated with the power line communication. Network threats take
advantage of the distributed aspects of information transmission [18, 19] and [20]. Amoroso [21] categorized
threats to a communication system as follows:

(a) Denial of Service (DoS) threat: The DoS threat arises when access to the power line communication chan-
nel is intentionally blocked as a result of malicious actions taken by an attacker. For example, someone
could flood the data concentrators with junk commands —therefore preventing load management mes-
sages to be delivered to smart meters.

(b) Integrity threat: The integrity threat involves unauthorized change to information stored for example on
a smart meter (meter reading for billing purposes) or in transit between the data concentrator and smart
meter.

(c) Disclosure Threat: This involves the dissemination of private information. Protection of power line com-
munication system against unintended disclosure.

2.3. Risk management methods

Security risk for PLC based load management programs can be assessed using a risk management
approach [9]. This is whereby assets that need protection are identified and their sensitivity to attack analysed.
There is a need to identify a possible source, strength and intent of threats, as well as enumerating vulnera-
bilities and finally determining appropriate mitigation methods. Hence, the need for anomaly detection and
monitoring [22].

2.3.1. Potential attacks
Several attack scenarios were considered to determine vulnerabilities, assets and threats. The follow-
ing are some of the attacks on a load management system [18]:

(a) An attacker could block load reduction commands, therefore preventing the required reduction percentage.
Therefore, resulting in forced load shedding or blackouts.

(b) An attacker could broadcast incorrect synchronisation time, which can cause events to occur at wrong
times, either earlier or later than scheduled.

(c) An attacker could modify the software set-point for air-conditioning unit in the smart meter so that it
appears to be drawing less or no power. This action results in command for load reduction being ignored
by the smart meter, therefore the unit is not switched off nor have its power reduced.

(d) An attacker could switch ON all the appliances (heaters, air cons) controlled through the smart meter for
load management, causing an unexpected and excessive load, leading to possible blackouts or even grid
instability.

(e) In order to annoy the public, an attacker could switch off the air conditioning units or set temperature
thermostat to uncomfortable levels.

(f) By flooding the network with multiple requests for time synchronisation, the attacker can cause Denial-
of-Service.

In the next subsection we look at non-cryptographic and cryptographic mitigation techniques, so that we can
explore ways as to how these potential attacks could be mitigated in PLC load management system.

2.4. Mitigation techniques

The focus tends to be cryptography as the primary defence against attacks when the security of infor-
mation systems is in question. Due to the unique characteristics, constraints and design of the PLC based load
management system, it presents an opportunity to consider several non-cryptographic methods.

2.4.1. Non-cryptographic mitigation techniques
The ideologies involved in non-cryptographic mitigation techniques methods are outlined in [9] and
these include:

(a) Depending on prevention (physical barrier around smart meters) as well as detection (temper alert) mech-
anisms as deterrents. Intrusion detection system that could be employed on the network; consists of
receivers placed on strategic locations where they would compare transmitted data with data they are
receiving to identify bogus transmitters
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(b) Reducing the capability of an attacker by making the system available only at certain times or responds
to external commands after some random time. Therefore, if an attacker does something, it will only take
effect after some time. Essentially, by that time the breach would have been detected (as discussed in the
previous point) and acted upon. The capability of an intruder to do damage could be further reduced by
setting the safe set-point for devices if one is changing settings remotely via commands. For example one
cannot set the temperature to unsafe levels (too low or too high) remotely.

(c) Preventing messages that will result in load increase to be sent remotely, that is, the system must not
be able to send commands to smart meters to switch appliances on. If appliances have been remotely
switched off, the customer could manually switch them on, or have appliances fitted with a device that
is set to check the smart meters’ mode. If the demand is low, they could automatically switch on. Note
that this would be a one way communication as the smart meter would not communicate or control these
devices, the smart meter can only switch off the appliance but cannot turn it on or instruct the device to
turn the appliance on.

2.4.2. Cryptographic mitigation techniques

There are many cryptographic mitigation techniques available to secure PLC for smart meters. These
include Distributed Network Protocol (DNP3) [23], [24], X.509 [25], RSA [26], and TESLA [27]. All these
techniques have different capabilities and limitations. For example; digitally signing each packet using X.509
provides proficient data source authentication. Unfortunately, it incurs a high overhead in terms of time needed
to sign and verify and also in terms of required bandwidth. Signature verification through X.509 is compu-
tationally costly. Therefore, smart meters with their modest computation capabilities would be overwhelmed
trying to verify the signatures. For example, if an attacker floods the network with fake packets containing
theoretically a robust signature. These are some of the reasons X.509 may not ne suitable for the system.

Security provided by X.509 is also not completely infallible. Some researchers have exploited some of
its weaknesses, e.g. [26] demonstrated that two certificates containing identical signatures can be constructed
using a collision attack on the MD5 hash function.

Distributed Network Protocol (DNP) secure authentication may not be suitable for securing commu-
nication over PLC for smart meters due to its key management and specialisation even though it may be used
on smart grid [28]. Ortega et al proposed for the DNP3 over TCP/IP for smart grid application. This is not fea-
sible for PLC due the following: DNP Session Key is periodically changed and used to calculate the HMACs.
The Update key occupies the second level and is used for encryption of the Session key before it is sent to the
remote device. For load management on PLC, DNP would place a large processing overhead[29]. Another
drawback of DNP Secure Authentication if it is used on PLC network to authenticate load management mes-
sages between smart meters and data concentrators, is that when Update keys are compromised or corrupted, or
if the custodian of the key leaves the organisation, the power supplier has no choice but to dispatch personnel to
the remote devices to change the Update key. Thousands or even millions of smart meters are connected on the
grid, therefore pending remote download of Update Keys, practical systems are restricted to perhaps hundreds
of devices. DNP Secure Authentication utilises 16-bit values for addresses and user numbers, thus presenting
a scalability challenge. Challenge-Handshake Authentication Protocol (CHAP) in a smart grid system that
includes smart meters is not feasible [30].

In the next section we therefore present TESLA as the most effective scheme that may be employed to
efficiently secure PLC for load management. TESLA in its modified form can authenticate packets immediately
and due to its low computational and per-packet communication overhead.

3. TIMED EFFICIENT STREAM LOSS-TOLERANT AUTHENTICATION (TESLA)

TESLA is widely used to authenticate broadcast messages [31, 32], such as DoS attack-tolerant
TESLA-based broadcast authentication protocol in Internet of Things [33]. We first present an overview of
TESLA by outlining properties that make TESLA suitable for securing PLC for load management systems. We
then discuss threat model and security guarantee and the modification to TESLA needed to secure load man-
agement through PLC. These modifications include, using indirect time synchronisation for loose time syn-
chronisation to combat the DoS threat and instantaneous authentication to prevent delay. We selected TESLA
for securing PLC for load management based on its following properties:

Low per-packet communication overhead: The calculation of MAC utilises the n_m parameter [27],
which is the length of the truncated output of the function. The n_m values depend on the MAC function
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selected, hence, per-packet communication overhead can be as low as 80 bits.

Low computation overhead: The primary reason for the use of smart meters is to save electricity.
Smart meters have limited or low processing power which saves electricity. Hence, TESLA is ideal because of
its authentication protocol, which is not power hungry. It involves one hash computation done on the message
and one MAC function computation done on the key and message per packet. Therefore, TESLA requires
minimal computational effort, therefore can be managed by smart meters and data concentrators.

No receiver-side buffering: Every packet will be authenticated as soon as it arrives at the receiver;
therefore, there is no need for packet buffering at the receiver. Packet loss tolerance: All packets received
within their time interval will be authenticated even if the preceding packet was lost.

Superior assurance of authenticity: Providing the cryptographic and timing assumptions are enforced
as the receiver has a high pledge of authenticity, therefore, the system provides a formidable authenticity.

Scalability: There are no acknowledgements after the initial set-up connection has been established,
therefore, during normal communication data flows only from the sender to the receiver. This entails that
the sender’s authentication overhead is not dependent on the number of receivers; making the scheme very
scalable. For instance it will allow one data concentrator to communicate with many smart meters as per the
current set-up for load management were one data concentrator can have over 1000 smart meters connected to
it [34].

3.1. Threat model and security assurance
Smart meters are installed in customer homes, therefore, the owners have unlimited access to smart
meter in the privacy of their homes. In addition, customers also have unrestricted access to the PLC channel
through power points in their houses where they plug their appliances. We present a modified TESLA that is
secure against a formidable adversary who by virtue of being able to access the channel and device has the
following capabilities:
(a) The challenger has a right to use to a fast network with insignificant delay.

(b) The challenger can listen in, capture, retransmit, drop, hold-up, and modify packets thereby having full
control over the PLC channel.

(c) The challenger’s computational resources may be very formidable, but not unbounded. In particular, this
means that the adversary can perform efficient computations, such as computing a reasonable number
of pseudo-random function applications and MACs with negligible delay. Nonetheless, the adversary
cannot invert a pseudo-random function (or distinguish it from a random function) with non-negligible
probability.

3.1.1. Security assurance

The security assurance with this modified TESLA scheme is that the receiver should not accept any
message M as authentic except for when M was sent by the alleged sender. This security assurance includes
protection against message duplication through message numbering and time-stamping and we also address
denial-of-service (DoS) attacks.

4. RESEARCH METHODOLOGY
4.1. Repeated measures design

We used repeated design measures for this study because of —Reduction in the variance of results.
This allows statistical inference to be made with fewer runs and many experiments can be completed more
quickly, as fewer cases need to be trained to complete an entire experiment. This enables us to monitor how
message size change over time for both requests and response messages.

Straw-man reference design for demand response information exchange [35] is used to present a guide
to how security is provided through implementation of the proposed authentication protocol, in the enabling
services layer of the load management infrastructure. The message is sent down the stack to the security
layer which performs a hash computation on the message and key and then sends the hashed message over
the PLC network [36]. When the security layer at the receiver receives the hashed message from the PLC and
authenticates it using disclosed key or MAC ( i.e. HMAC-MDS). If authentication is successful the message is
sent up to the application layer otherwise it is discarded.

The next subsection show who modification are made on TESLA for PLC security.
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4.2. TESLA modification for PLC

The original TESLA is modified in several ways to make it efficient and practically suitable for PLC
network for Load Management via use of Data concentrators and smart meters. Smart meters are connected
to the data concentrator from different distances because some houses are close to the distribution transformer
while others are quite a distance away. Therefore, the first modification is the use of the authentication chains
with different disclosure delays to cater for the different distances of the smart meters from the data concen-
trator. Secondly, we present the technique to support Instantaneous Authentication, implying that the receiver
would be able to authenticate a packet immediately upon arrival without delay. A data concentrator can be con-
nected to many smart meters. For example, Echelon NES data concentrator [34] can connect over 1000 smart
meters, and over 4000 other devices. Therefore, there is the a need for modifications to address the scalability
issue and vulnerability, both due to time synchronisation protocol.

In the next sub-sections, the issue of smart meters being at different distances away from the data
concentrator resulting in different network delays is addressed by employing a space optimisation method
whereby the data concentrator uses several TESLA instances for one stream. To successfully address this issue
we have to look into time synchronisation and attend to the key management techniques as well as address the
vulnerability that could rise from use of these methods and techniques and how to eradicate or minimise them.

4.2.1. Optimal Disclosure Delay and Time Interval Parameters

The following parameters must be determined by the sender for optimal performance as per the re-
quirements of PLC based load management. These parameters are (77,), the interval duration which usually
ranges from 100 milliseconds to 1 second expressed in milliseconds and the key disclosure delay (dg) which
is the waiting time before the key is disclosed. A good choice of T;,: and d; is essential for the efficiency
of the scheme. For example, if the product of T;,; and dg4 is too large, it causes an excessive delay in the
process of authentication, and when it is too low, it will deny most receivers the opportunity to verify packets.
The parameters T}, and d; must not be altered throughout the duration of a session to prevent introduction of
vulnerabilities.

4.2.2. Optimal Time Interval

To determine the optimal time interval duration, the sender would divide the time into standardised
intervals of duration 7Tj;,;. The numbering for the time interval starts at 0 and incremented successively. An
unsigned 32-bit integer is used to store the interval index. Therefore, the wrapping to O can only take place
after 232 intervals thus making the system to be very scalable. For example, if: T},; = 0.5 seconds, then the
wrapping will only happen after 0.5 x 232 = 21474836485, which translates to approximately just over 68
years before wrapping to 0 can take place [27].

4.2.3. Optimal Disclosure Delay

To determine the optimal disclosure delay involves a trade-off. This is because smart meters that are
close to the data concentrator have low network delay, hence, demand short key disclosure delays because it
results in short authentication delays. Unfortunately, using a short key disclosure delay means that smart meters
that are far from the data concentrator (with long network delay) will not be accommodated because most of
their packets will arrive outside the set period hence violating the set security condition. Therefore, they will
be discarded without authentication. Employing a long key disclosure delay will result in unnecessary delay
in authentication for smart meters close to the data concentrator. It is important to note that the security aspect
of the system is not affected whether long or short key disclosure delay is used. This is mainly a performance
factor, and performance is very important for effective Load Management. How the system will perform
depends heavily on the choice of the key disclosure delay. We illustrate how to determine a key disclosure
delay (dy) for a system using indirect time synchronisation. We do that by proving that if the round trip time
(Ry¢) is a sufficient upper bound time between the smart meter and data concentrator, then the optimal choice
for dg is as follows;

D
iy — {STR“] ‘1 @)
nt

where:
Tin: 1s the duration of the interval,
Dgpg is a sufficient upper bound on network delay for packets traversing from sender
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to receiver

and € Time synchronisation error sum for both sender to receiver
To derive the disclosure delay we first have to make sure it does not make packets to violate the security
conditions. We take into account a packet P; created in the time interval J; and the key will be disclosed dg
time intervals later, when the packet P; at the receiver its local time is given as equal to I7r, thus the security
condition is that:

dy > VTRJFAT”J s (5)
Tint

where:

T:n: 1s the duration of the interval,

T, is the beginning of the nth time interval

and A Time synchronisation error sum (full round-trip time).

We use the assumption the packet P; was sent when the senders’ local time was I7g, hence:

lrs < Tint = (I; X Ting) + Ty + Tine » therefore the round trip time Ry; = Dsgr + Drs, with Drg denoting
the network delay from the receiver to the sender. Using the derivation from Perrig e. al. [37] referring to
Figure 3, Resulting ineqn Dgp = lgr + 6 — lpg. Finally we have a tight bound for d; satisfying equation 4
and this dy affords most packets the opportunity to meet the set security condition and the receiver would not
have to wait longer than necessary before authenticating the packets.

The optimal d4 does not solve the issue that smart meters are at different distances away from the data
concentrator. It is just the best time for meters at one particular distance. To address this issue, one approach
would be to use multiple TESLA instances and treat them independently each with its own key, hence dg.
Unfortunately this approach results in unmanageable communication overhead because of this multiple keys
for each instance. In the next section we present an optimisation that reduces the space overhead of multiple
instances by using the same key chain with a different key schedule for all instances [27].

Receiver Sender

Figure 3. Receiver and Sender delays [37]

4.2.4. Multiple concurrent TESLA instances

The core idea for this technique is to make use of the same key but a different schedule for all instances
as an alternative to utilising one self-determining key chain for each instance. It works as follows; all instances
for a stream share the same key chain and the same time interval period. That is each time interval I;, is
associated with the corresponding key K, in the provided key chain. Therefore, we can expect K; to be
revealed in the time interval I;. Figure 4 depicts an example of how multiple instances could be arranged to
be used for concurrent TESLA instances. In this case there are two TESLA instances, having a key disclosure
time of one interval and the other five intervals [27].
In Figure 4 the bottom row of keys shows the key revealing plan. It shows which key is revealed at which time
interval. The top and middle rows of key show the key schedule of the two instances, the latter being the first
instance while the former being the second instance. Following this method, the sender needs only to disclose
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one key chain inspite of how many instances are used concurrently. This technique allows space saving. For
example, if each key is 16 bytes long, then for a stream with n concurrent instances, this method will conserve
16(n - 1) bytes per packet and for small packets such as the ones used for PLC Load Management. This is a
significant saving. Using concurrent instances also helps in achieving scalability. One issue to consider is the
vulnerability of the TESLA due to the mechanism employed for the key chain reconstruction at the receiver.
First, the receiver must check if the key chain arrived within the stipulated time interval. If that time has expired
then the packet is discarded else the receiver will try to verify the key revealed in the packet by putting into
operation the pseudo-random function until the very last committed key chain value. This operation can be
exploited by an attacker who would timestamp their packet with a time far in the future. Therefore, when the
receiver checks if the time has expired it will find that the time is still valid and therefore attempts to verify the
key, preventing it from verifying the legitimate packets. That results in denial of service for deserving packets.
A novel approach to deal with this is to have lower and upper time limits for packets so that if a packet is sent
with future timestamp it is dropped [27].

F(K; F(K; F(K;
K,-_14 ( I) K,' < ( I+1) ” < ( I+2)
lF(Ki.z) lF(K,-) l FlKins)
K | " L K .
lis ‘ li ‘ li1 ‘ Tim'e
[P [ Pma] | P | Ppi3

Figure 4. Receiver and Sender key delays [37]

4.3. PLC TESLA instantaneous authentication

Basic TESLA requires the receiver to buffer packets before they can be authenticated. This is because
the sender sends the key required for authentication at a later stage. This delayed authentication is not suitable
for Load Management because monitoring and control command actions need to be carried out in real-time.
For example, if the grid is experiencing some instability, the information must be relayed immediately to the
control centre without delay. Also, if the load exceeds supply and needs to switch off non-critical but high
power consuming devices such as heaters, that action must happen immediately without delay or there will be
the risk of power outages while waiting for the command to switch off devices to be authenticated.

This delayed authentication also causes storage problems, requiring data concentrators and smart me-
ters to have large memories to store these packets while they are waiting to be authenticated. The other disad-
vantage of this delayed authentication is that it makes the system to be vulnerable to Denial-of-Service attack.
It is because of the reasons above that modifications to the original TESLA are required so that packets can
be authenticated instantaneously upon arrival with no delay. Therefore, this eliminates the need for buffering
at the receiver side, thus reducing the risk of DoS attack where the attacker floods the receiver with spurious
packets. As it would be seen later in this section, this modification comes at a cost of at least one extra hash per
packet and the need for buffering at the sender side. This is acceptable since it does not induce the risk of DoS
(by flooding), or introduce significant delay.

In this method, sender buffering replaces receiver buffering. The sender buffers packets during one
disclosure delay so that it can put the hash value of the data of the next packet in an earlier packet. Therefore,
the instant the earlier packet is authenticated the next packet will be authenticated as soon as it arrives at the
receiver through its hash value that was contained in the earlier packet thus achieving instant authentication
with no more delays. To simplify the illustration of how this is achieved, we assume that the sender will send
out a constant number n of packets per time interval.

Figure 5 shows how a packet for the message segment M; in the interval T is constructed. The hash
value of the next message M) .4 is appended to the current message, that is H (M ,q) is appended to M;.
The sender then calculates the MAC value over the key K; together with H (M ,q) to get M AC(K;, D;)
where D; = H(M;q)||M; (note that || means that messages are concatenated).
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Figure 5. Instantaneous Packet Authentication[36]

With reference to Figure 5, the technique for instantaneous authentication for the packet Pj,q is as
follows; P; incorporates a hash of the data M;_ .4 and this data is in P;,4 and if P; has been authenticated it
implies that H (M;1,q) is also authentic. Therefore, the message M .4 is authenticated immediately, hence
using the same technique. The next packet P;,4 would also be authenticated immediately, so will the next
packet. If a packet is lost or discarded then the next packet would not be authenticated immediately but would
be authenticated later through its MAC value. For example, if P; was lost or discarded, then P;,swould
not be authenticated immediately but will be authenticated as soon as the next packet Pj 2,4 arrives. . It
will be authenticated through its MAC value because upon arrival packets disclose the key of the previous
packet, therefore Pj 2,4 would disclose the key K4 which was used for P} ,q MAC value, therefore Pj,q
would then be authenticated. Delayed authentication can be easily be overcome by incorporating hashes of
multiple future messages. This can easily be done in PLC Load Management because all the messages and
their sequence of transmission is known. This is a technique similar to Efficient Multi-chained Stream Signature
(EMSS) [38], and the introduced message overhead is negligible. Using multiple hashes eliminates the need to
send packets at a constant rate which is difficult in a hostile environment like PLC.

4.3.1. Indirect time synchronisation for load management via PLC

Complicated time synchronisation protocols are available but they require considerable management
overhead, these are protocols such as the Network Time Protocol (NTP) [39], which have a high complexity and
attain properties electrical load management via PLC do not involve. Loose time synchronisation is an essential
component in TESLA but also a security Achilles’ heel, due to the mechanism for time synchronisation which
makes the system vulnerable to DoS through network flooding with requests for synchronisation. It is for this
reason that we present a modified TESLA time synchronisation protocol that is simple and yet secure, that will
meet the modest requirements of Load Management via smart metering through a PLC channel.

The sender (data concentrator) and each receiver (smart meter) must synchronise independently se-
curely through an external time reference, when Indirect Time Synchronisation (ITS) is used. To achieve this
synchronisation several options are available:

(a) Senders and receivers could synchronise via NTPv3, NTPv4 (Network Time Protocol version3 /4) [39] or
SNTPv4 (Simple Network Time Protocol version 4) hierarchy of servers [40]. Unfortunately, this cannot
be adopted for synchronisation of smart meters and data concentrators because for load management
via PLC the gateway for smart meters is the data concentrator; therefore, smart meters cannot have an
independent path direct to the servers.

(b) The second option which would guarantee direct access for both sender and receiver to external time
reference would be for the sender and receiver to synchronise via a GPS system or any similar device
that can provide a high precision time reference. Unfortunately, spoofing attacks on the GPS system have
been reported [41] therefore the level of security required for PLC load management cannot be guaranteed
when synchronisation is achieved through GPS.

(c) The other option, we adopt for PLC based load management system is whereby a dedicated hardware
is embedded in each receiver and the sender that provides a clock that has a time-drift that is negligible
in-terms of the time accuracy requirement for TESLA. To deal with this insignificant clock drift anyway,
the device makes it possible for the sender and receiver to have their embedded clock to be synchronised
with the official time reference periodically. This can be done during equipment servicing interval or after
a period of known maximum allowed clock drift and thereafter left to be autonomous. That is, the device
would continuously consult its internal clock which has minimal clock drift.
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One aspect is that scalability is a requirement for a PLC based load management system and it is for this reason
that we chose specialised hardware based synchronisation because it would easily meet that requirement since
synchronisation will not depend on the number of devices connected together and no delay or bandwidth will
be used for synchronisation [27].

4.3.2. Calculation of Delay Bound

This delay bound calculation is based on the assumption that the synchronisation has already been
established using the mechanism discussed in the previous section; therefore, the sender and the receivers have
a single time reference. The sender computes Dgr (delay sender time), that is the upper bound of the delay of
the senders’ clock with respect to the agreed time reference. During the bootstrapping the Dgr value is sent
to the receivers; therefore, the D g must not be altered throughout the duration of a session. Correspondingly,
the receiver calculates Drr (delay receiver time), that is the upper bound of the delay of the receivers’ clock
with respect to the agreed time reference, with respect to the clock of the sender, the overall upper bound of the
delay of the receiver is Dor = Dgsr + Dgy.

4.3.3. Resistance to Denial of Service attack

Due to the modifications we adopted for TESLA, our scheme is robust against DoS attacks as will be
seen in the next section where we investigate DoS attack against sender, receiver and the key chain. We show
how our modifications make the scheme to be resistant to these attacks [38].

4.3.4.DoS attack on the Sender
Our modified TESLA scheme uses indirect time synchronisation; therefore, a DoS attack on the sender
is not possible because the sender does not receive anything and does not perform any per-receiver operations.

4.3.5. DoS attack on the Receiver

Our scheme is robust against DoS because the receiver does not have to buffer packets before authenti-
cation because they can be authenticated immediately upon arrival. If it is not possible for them to be buffered,
a bogus packet will be discarded immediately, where one with a compromised (correct) key will be buffered
until the correct packet comes and is authenticated and then all other packets discarded for that time interval.
This is only possible if the buffer size is large enough another option would be to randomly replace packets
with new ones as they arrive. Fortunately, this flooding attack can last only one interval time duration and the
mechanism for detecting intrusion (sub section 2.4.) would pick the bogus traffic and it would be dealt with
before it could cause any noticeable disruption to performance and service.

4.3.6. DoS attack on the Key Chain

The default method of key chain construction makes the system to be vulnerable. A novel approach
to deal with this is to have lower and upper time limits for packets so that if a packet was sent from the future
is dropped (timestamp); just applying the limits makes the system robust against DoS attack [38].
The security provided by the TESLA is sufficient for securing load management messages in recognition of the
security proof as provided by [38]. We presented modifications that included, optimal disclosure delay and time
interval parameters, multiple concurrent TESLA instances, PLC TESLA instantaneous authentication, indirect
time synchronisation for load management via PLC, calculation of delay bound. These modifications provide
resistance to a denial of service attack on the sender, the receiver, and on the key chain construction. It also
provides immediate authentication for critical emergency load management.

5. PERFORMANCE ANALYSIS AND RESULTS
5.1. TESLA performance results

In this section we compare the relative performance of various security hashing options available
for source authentication by TESLA. To perform this tests, we use Microsoft Application Centre Test (ACT).
ACT allows us to build realist scenarios where the same method can be called many times with input parameters
randomised. The other useful aspect of ACT is its ability to record results which would then be used to measure
performance. Our focus is on hashing algorithms; MD5, HMACSHA1, HMACMDS5 and HMACSHAS12.
Hash algorithms plot a piece of data of random size to a small exclusive value of fixed length. We will compare
the MD5, HMAC-SHA1, HMAC-MD5and HMACSHAS12 algorithms. The performance of the sender is
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analysed independently from the receiver because their tasks are different. We first present the results from
performance analysis of the sender then the receiver.

5.1.1. Sender performance

The key chain is pre-computed, therefore, for each packet to be sent, the sender only has to compute
one HMAC for each packet per authentication chain. For the sender we look at the performance of MDS5,
HMACSHA1 and HMACMDS functions provided by [42].

We analyse the performance of our scheme by getting the number of packets per second that the sender
can generate using each of the hash functions against different message block sizes and the performance results
are displayed in Figure 6.

We also analyse the performance of the system when a different number of authentication key chains
are used against the different packet sizes. The results are shown in Figure 7. The results show that as the block
size increase the number of operations per second decrease. Figure 6 show that even with the largest block size
1024 (tested) the sender can carry out about 0.25210° operations for all the HASH functions. This is more than
sufficient for a smart meter since all it has functions in our regard is send messages with minimal computation
required. Figure 7 shows that for the largest size the sender can send 1.25210* packets per second of which is
sufficient to send a single command.
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Figure 6. The performance of Sender using Figure 7. Performance of our scheme for a
different hash functions against block size [36] varying number of authentication chains [36]

5.1.2. Receiver performance

We analyse the performance of the receiver by counting the number of packets it can authenticate per
second. This is slightly a longer process in terms of time when compared with the sender because besides to
computing the hash it also has to extract the key and then compare the hashes. We also check how long it takes
to process a request to determine if the packet is authentic or not (Response Time). For our analysis we used
different packet sizes and the function we employed are MDS5, HMACSHA 1, HMACMDS5 and HMACSHAS12.
It was important to include HMACSHAS12 because it has a longer hash. The longer the hash the higher the
security but we wanted to know at what cost this improved security would be achieved terms of performance.

We analyse the performance of our scheme by getting the number of packets per second that the
receiver can authenticate using each of the hash functions as the load is increased and the performance results
are displayed in Figures 8 and 9. This important because we wanted to see the effect of increasing the number
of smart meters on the ability of the data concentrator to authenticate their messages within a given period
of time. The first test performed used data size 8 Kb while the second test used 256 Kb; we used different
data sizes to see how the data size impacts on the performance of the system. When data size is 8 Kb, all
algorithms have similar performance as shown in Figures 8 and 9 respectively. Individually it is as follows;
SHAS512 performance’s less in terms of request per second and response time. SHA1 produces a hash of size
160 bits and its computation process is based on MD5. MDS5’s hash has 128 bits, while SHAS512 has 512
bits. The performance difference in the algorithms increases as data size is increased from 8 Kb to 256 Kb
as shown in Figure 10. With the load at 5% MDS5 is about 45% better than HMACSHA1 and HMACMDS.
The performance of HMACSHAS12 becomes degraded as the data size increases, becoming about 50% of
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HMACSHAT1 and HMACMDS, it also takes longer to respond as depict in Figure 11. The longer the hash size,
the harder it is to attack it using brute force. This means that even if the performance of HMACSHAS12 is low,

it would be harder to attack than the other algorithms.

: 120 T
! uDs
——+— HMAC-MD5
—#— HMAC-SHA1
==&~ HMAC-SHAS1Z

500 T T T

100 f

=== DS

—— HMAC-MDS |

——#-= HMAC-SHA1
HMAC-SHA512

80

60

Response Time

40

Requests per second

25014 20 -

20 3 60

0
Load (%)
Figure 9. Performance of Hash algorithms (8

KB) response [36]

30 40
Load (%)

Figure 8. Performance of Hash algorithms (8
KB) Requests per Second [36]

T 400 T
==%== 1iDS

400 --&r- Wos H
—4— HMAC-MDS 350 HMAC-MDS
ol HUAC SHAT ——4= HMAC-SHA-512

80 HWAC-SHAS12 [ | —=#-= HMAC-SHA-1

: 300

ma
5]
=]

n
=}
=)

Request per second

Response Time

I}
=)

100

30 40

20
Figure 10. Performance of Hash algorithms (256
KB) Requests per Second [36]

Load
Figure 11. Performance of Hash algorithms (256
KB) response time[36]

6. CONCLUSION
The security provided by the TESLA is adequate for securing load management messages. However,

our simulation also verifies that by using various message sizes and hash functions that the system can cope
with the number of smart meters per data concentrator. A typical load message size is about 20 bytes but the
message size that we concentrate on, in our simulation is 32 bytes (256 kb). This is because we have taken
into consideration the fact that in addition to the normal message size, we have now introduced addressing and
security components. Using a message size of 256 Kb from our simulations and the selected hash function, the
sender can perform a maximum of 120772 and a minimum of 52700 operations per second. Therefore, this
should be sufficient because for our modest data concentrator we only need about 1000 operations per second
limited by the number of smart meters that can be connected to the data concentrator [34]. The performance
at the receiver shows that the data concentrator can authenticate all the messages from the smart meters in the
required time, peaking to 350 and evening out to just above 200. Therefore, within five seconds at least 1750
messages would have been authenticated. Messages from smart meters are not as urgent as messages from the
data concentrator. Therefore, a few seconds delay on their part would not affect the performance of the system

or the bit rate [43].
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