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1. INTRODUCTION 

In practice the state vector is available for manipulation less often than the plant output. This leads 

to the use of the state value in the control law instead of the state variables received by the observers [1-4]. 

This, in return, requires that the dynamic properties of the system change accordingly. We aim to observe 

how the replacement of the state variables by state values affects the properties of the system. In the modal 

control [1, 5] case characteristic polynomials are found through output. 

The characteristic polynomial [6] of the closed-loop system with a controller that uses state values 

with an observer requires that the roots of the polynomial with a modal control be combined with the 

observer’s own number [1, 3, 6]. This way synthesizing the modal controller with the observer becomes a 

challenging task. 

The known iterative algorithms [1, 3] of separate own value control are based on the preliminary 

matrix triangularization or block-diagonalization. Notice that the control matrix is used as the nonsingular 

transition matrix in this canonical transformation, and it is defined by its own vectors in complicated 

unequivocal ways described here [6, 7]. 

The paper considers the control systems with one input and one output. To research the dynamic 

equalizer we use the Lyapunov gradient-velocity vector function [8-11]. Construction of the vector function 

is based on the gradient nature of the control systems and the parity of the vector functions with the potential 

function from the theory of catastrophe [12, 13]. Investigation of the closed-loop control system’s stability 

and solution of the problem of controller (determining the coefficient of magnitude matrix) and observer 

(calculation of the matrix elements of the observing equipment) synthesis is based on the direct methods of 
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Lyapunov [14-16]. The approach offered in this paper can be considered as a way of determining the 

parameters of the controller and observer for a closed-loop with certain transitional characteristics. 

2. RESEARCH 

Assume the control system can be described by this set of equations [1-4]: 

 

00 )(),()(),()()( xtxtCxtytButAxtx 
, (1) 

 

)(ˆ)( txKtu  , (2) 

 

00
ˆ)(ˆ),()()(ˆ)()( xtxtLytButxLCAtx 

, (3) 

 

Modify the state equation (1)-(3). For this we will use the estimation error )(ˆ)()( txtxt  . Then 

we can write is as: )()()(ˆ ttxtx  , and Equations (1)-(3) will transform to: 

 

00 )(),()()()( xtxtBKtBKxtAxtx  
, (4) 

 

00 )(),(),()(   ttLCtAt
 (5) 

 

For brevity consider the system with one input and one output, hence the system looks like:  
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The set of (4), (5) will transform into: 
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Notice that in the absence of the external impact, the process in the set (4), (5) must asymptotically 

approach the processes of a system with a controller, as if the closed-loop system  according to a state vector, 

was affected by the impact of the convergent disturbance waves. These disturbances are caused by the )(tK  

polynom in the Equation (5). The error must converge and the speed of convergence is defined during the 

synthesis of the observer. The main property of the set (4) and (5) lies in the asymptomatical stability. This 

way we found the requirement for the asymptotical stability of the system using the gradient-velocity method 

of the Lyapunov functions [8-11]. 
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From (6) we find the components of the vector gradient for the Lyapunov vector function 

:)),(),...,,(),,((),( 221  xVxVxVxV n
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From (6) we find the decomposition of the velocity vector to the coordinates ).,...,,,...,( 11 nnxx    
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To research the stability of the system (6) we use the basics of Lyapunov’s direct method [14-16]. 

For the system to achieve the asymptotical equilibrium we need to secure the existence of a positive function 

),( xV  so that its total derivative on the time axis along the state function (6) is a negative function. The 

total derivative from Lyapunov function with regard to the state Equation (6) is defined as a scalar product of 

the gradient (7) from Lyapunov and the velocity vector. (8): 
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From (9) we derive that the total time derivative of the vector function will be negative. Lyapunov function 

from (7) can be represented in the scalar view:  
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The condition for the positive certainty (10) i.e. existence of Lyapunov function will be defined: 
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The quality and the stability of the control system is dictated by the elements of the matrix of the 

closed- system. That is determining the target values of coefficients in a closed-loop system will prodivide 

smooth transitional processes in a system and result in higher quality control. The set of inequalities (11) and 

(12) serve as the necessary condition for the robust dynamic equalizer. The condition (11) allows for the 

stability in the state vector. Imagine a control system with a set of desired transition processes with one input 

and one output:  

 



























nnnnn

nn

xdxdxdxdx

xx

xx

xx

132211

1

32

21

,...,

...









 (13) 

 

Explore the system (13) with the given coefficients n),...,1i( id , using the gradient-velocity 

function [8]. From (13) we find the components of the gradient-vector function ))(),...,(()( 1 xVxVxV n
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From (13) we determine the decomposition of the velocity vector according to the coordinates: 

 
















































































n

x

n
n

x

n
n

x

n
n

x

n

n

x

n

xx

xd
dt

dx
xd

dt

dx
xd

dt

dx
xd

dt

dx

x
dt

dx
x

dt

dx
x

dt

dx

n

n

132211

1

3
2

2
1

,...,,,

;;....,;.

321

32

 (15) 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 :  2874 - 2879 

2878 

The total time derivative from the vector function is defined as a scalr product of the gradient vector 

(14) and the velocity vector (15): 
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From (16) follows that the total time derivative of the vector-gradient function is negative. The vector 

function in the scalar view from (14) can be represented as: 
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Now the task is to define the controller coefficients (the elements of the matrix K) so that they have values 
id

This way exploring the stability of the system with set coefficients 
id  will result in:  
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Equalizing the elements of the set of inequalities (11) and (18) we will receive: 
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From the set of inequalities (20) we will receive: 
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This way the Equations (4) and (5) allow us to conclude that in the absence of the external impact, 

the process in the system asymptotically approaches those in the system with a controller which state vector 

was affected by convergent disturbances. The role of the disturbances is played by the compound )(tBk in 

the equation (4). The speed of convergence of the error )(t can be determined during the synthesis of the 

observer from (21). 

 

 

3. CONCLUSION 

The known methods of synthesis of the systems with controllers that use the state value and the 

observer are based on the combination of the roots of the characteristic polynomial with a modal control with 
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the observer’s own number. This process requires substantial calculations and requires preliminary matrix  

block-diagonalization. This nonsingular matrix  in the canonical transformation is defined by its own vectors 

in. Researching the closed-loop control system using the gradient-velocity method of Lyapunov function 

gave us the opportunity to develop an approach for controller and observer parametrization that provides us 

with a system of our desire without extraneous calculations. 
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