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 The optimal sizing of analog circuits is one of the most complicated 

processes, because of the number of variables taken into, to the number of 

required objectives to be optimized and to the constraint functions 

restrictions. The aim is to automate this activity in order to accelerate  

the circuits design and sizing. In this paper, we deal with the optimization of 

the three stage bipolar transistor amplifier performances namely the voltage 

gain (AV), the input impedance (ZIN), the output impedance (ZOUT),  

the power consumption (P) and the low and the high cutoff frequency 

(FL,FH), through the Genetic Algorithm (GA). The presented optimization 

problem is of multi-dimensional parameters, and the trade-off of all 

parameters. In fact, the passive components (Resistors and Capacitors) are 

selected from manufactured constant values (E12, E24, E48, E96, E192) for 

the purpose of reduce the cost of design; also, the intrinsic parameters of 

transistors (hybrid parameters and the junction capacitances) are considered 

variables in order not to be limited in design. SPICE simulation is used to 

validate the obtained result/performances. 
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1. INTRODUCTION 

Despite the strong trend towards integrated circuits, discrete components are still used in analog 

design especially for circuits that are not produced in large quantities. Discrete components such as  

Resistors (R) and Capacitors (C) are produced according to the industrial series such as E12, E24, E48, E96 

or E192. To reduce costs and make the design faster, discrete components are selected according to values 

constants of the previous series. An exhaustive search of all possible combinations of values for selection of 

an optimized design is not always feasible.  

On other hand, almost all the design of analog circuits has been oriented towards MOS transistor-

based circuits mainly due to their low power consumption. Studies that address the sizing of circuits based on 

bipolar transistors remain very scarce although they have better speed (switching times) and wider 

bandwidths [1]. In addition, these studies deal with design considering the intrinsic parameters of  

bipolar transistors as fixed, such as the works [2, 3] where an usual analog circuits are sized in which  

the current gain (β) and the base- emitter and base-collector junction capacitances (Cπ) and (Cµ) are 

considered as fixed which limits the design and subsequently reduces the performance of these circuits. 

In order to overcome the aforementioned difficulties and limitations, an intelligent and efficient 

optimization technique requires short computation time with high accuracy, must be used. Methods based on 

the use of Meta-heuristics appeared then to resolve complex optimization problems, they always offer 
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approximate solutions for optimization problems at a very reasonable times [4]. They are used in many 

engineering problems such as Scheduling Problem [5], Vehicle Routing Problem [6], Language Recognition 

System [7] etc.  

Some Meta-heuristics are used by the analog designers to solve the design problems of integrated 

circuits and also of discrete component systems, such as Simulated Annealing (SA) [8], Genetic Algorithms 

(GA) [9], Tabu Search (TS) [10], Particle Swarm Optimization (PSO) [11], Ant Colony Optimization  

(ACO) [12-14] and Artificial Bee Colony (ABC) [15-17]. 

In this work, we propose the use of the Genetic Algorithm (GA), known by its effectiveness of 

optimization, for the optimal sizing of three stages bipolar transistor amplifier. SPICE simulations are given 

to show the validity of obtained results. The rest of the paper is organized as follows: The second part gives 

an overview on the principle of the genetic algorithm. The third part deals with the application of 

the proposed algorithm to the optimal design of a three stages bipolar transistor amplifier. The fourth part 

shows the results of the optimal sizing. Finally, the fifth section, followed by a conclusion, presents how to 

set SPICE parameters and shows the simulation results. 

 

 

2. GENETIC ALGORITHM 

The GA find their origins in the biological processes of survival and adaptation. Its principle 

consists of sampling a population of potential solutions. A population of individuals is, initially, randomly 

generated. The GA performs then operations of selection, crossover and mutation on the individuals, 

corresponding respectively to the principal of survival of the fittest, recombination of genetic material and 

random mutation observed in nature [18]. The optimization process is carried out through the generation of 

successive populations until a stop criterion is met. The flowchart in Figure 1 provides an overview of a GA 

procedure [18]. 

 

 

 
 

Figure 1. Flowchart of a GA 

 

 

There are therefore 6 elements necessary for the running of the GA [18]: 

1. We begin the process of fitting the problem to a GA by defining a chromosome as an array of variable 

values to be optimized. 

2. The user must fix a priori the sizing parameters of the algorithm, in particular the size of the population 

and the number of generations (which is very often used as a condition for stopping the algorithm). 
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3. Then the Generation of the initial population (set of possible solutions) can be random or from known 

approximate solution(s). 

4. Each chromosome has a cost found by evaluating the cost function f at the variables. The higher this cost, 

the greater is the chance of an individual (solution) being selected for reproduction. 

5. Now is the time to decide which chromosomes in the initial population are fit enough to survive and 

possibly reproduce offspring in the next generation, the costs and associated chromosomes are ranked 

from lowest cost to highest cost .The rest die off.  

6. Then recombination/reproduction is achieved through two genetic operators, namely crossover and 

mutation. 

 Crossover that combines (mates) two chromosomes (parents) to produce a new chromosome 

(offspring). The idea behind crossover is that the new chromosome may be better than both of  

the parents if it takes the best characteristics from each of the parents. 

 Mutation is usually considered as an auxiliary operator to extend the search space and causes release 

from a local optimum when used cautiously with the selection and crossover systems. 

Operations of selection, crossover, and mutation are repeated until a favorable number of 

individuals for the new generation is created, and the objective function is calculated again for all of  

the individuals in the new generation. The best individual in the new generation according to its fitness is 

kept to continue to the next generation. Thus, the fitness of the entire population will be decreased with  

the reproduction of the generation. 

In the literature, the number of application studies of the GA technique is uncountable and the fields 

of application are very diverse. These include for example: Power Supply System [19], Electric  

Vehicles [20], Traffic Light Signal Parameters Optimization [21], Dynamic Optimization Problems [22], 

Resolution university course schedules [23], Power factor improvement in the industry [24], etc.  

In the following, we present an application of the GA to the optimal design of a three-stage amplifier. 

 

 

3. APPLICATION: THREE-STAGE BIPOLAR TRANSISTOR AMPLIFIER CIRCUIT 

We propose in this section, the optimal sizing of three stage bipolar transistor amplifier.  

The schematic of this amplifier is given in Figure 2. 

 

 

 
 

Figure 2. The three-stage amplifier 

 

 

According to the study of the equivalent circuit of this amplifier in small signals in the mid band 

where all the capacitances are neglected, we have obtained the following equations for AV, ZIN and ZOUT: 

The voltage gain:  
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With: 

 

43B2 RRR    (2) 

 

65B3 RRR    (3) 
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3B2Ith2 RRR    (9) 

 

h11, ρ, β1 are the hybrid parameters for the first transistor, h’11, ρ’ , β2 for the second transistor and 

h”11, ρ” , β3 for the third transistor. 

The input impedance: 
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With: 
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The output impedance: 
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With: 
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An estimate for the lower cutoff frequency for an amplifier with multiple coupling and bypass 

capacitors is given by the sum of the reciprocals of the "short-circuit" time constants: 
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Where RiS is the resistance at the terminals of the i
th

 capacitor with all the other capacitors are shorted, in our 

case we have: 
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With: 
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The small signal equivalent circuit at high frequencies is as bellow in Figure 3: 

 

 

 
 

Figure 3. Equivalent circuit of a transistor at high frequencies 

 

 

At high frequencies, impedances of coupling and bypass capacitors are small enough to be 

considered short circuits. Open-circuit time constants associated with impedances of device capacitances are 

considered instead. 

The higher cutoff frequency: 
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Where Rio is resistance at terminals of ith capacitor Ci with all other capacitors open-circuited, for our circuit 

we have: 
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With: 
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To have a maximum excursion of the output signal, we should check the following constraint for all 

the transistors and the power consumption equation is expressed in (31). 
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The decision variables are the resistors, the capacitors, the hybrid parameters of the transistors and 

the supply voltage VCC, they present the chromosome of our GA, and the discrete components must have  

a value of the standard series (E12, E24, E48, E96, and E192). 

 

 

4. RESULT AND DISCUSSION  

The collector current at the Q-point IC is fixed at 0.5mA. The studied algorithm parameters are given 

in Table 1. The optimization technique works on MATLAB codes and the circuit is simulated in SPICE to 

obtained frequency response. 

 

 

Table 1. GA parameters 
Population size Selection Probability Mutation Probability Generation 

900 0.5 0.0001 1000 

 

 

The serial components values are calculated as follows: 

 

Ω10100pR iq
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Where [p, q, r, s] are real numbers that are the design variables for each i
th

 component. 

The following two tables present the different optimal values given by the application of the genetic 

algorithm. The Table 2 presents the optimal values of the hybrid parameters and the supply voltage.  

The Table 3 presents the optimal values, linear and those following the different series, of resistors and 

capacitors forming the studied amplifier. The Table 4 gives the corresponding performances to optimal 

values presented in the Table 2 and Table 3. According to the results in Table 4, we notice that the 

performances are almost the same for all series with a slight advantage for the series E192 which presents the 

best gain Av and the best higher cutoff frequency FH. 

 

 

Table 2. Optimal values for hybrid parameters 
 β1 β2 β3 ρ(Ω) ρ’ (Ω) ρ” (Ω) h11 (Ω) h'11 (Ω) h"11 (Ω) VCC(V) 

Linear values 300 103 192.41 1038 1085.88 1623.55 1516.66 1856.58 1435.28 5 
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Table 3. Optimal values of R and C 
 Linear values E12 E24 E48 E96 E192 

R1 (KΩ) 44.85 47 43 44.2 45.3 44.8 

R2 (KΩ) 68.87 68 68 68.1 68.1 69 

R3 (KΩ) 45.50 47 47 46.4 45.3 45.3 
R4 (KΩ) 72.10 68 75 71.5 71.5 72.3 

R5 (KΩ) 41.30 39 43 42.2 41.2 41.2 

R6 (KΩ) 85.73 82 82 86.6 86.6 85.6 
RC2 (KΩ) 1.01 1 1 1 1 1 

RE1 (KΩ) 5.38 5.6 5.6 5.36 5.36 5.36 

RE2 (KΩ) 5.91 5.6 6.2 5.9 5.9 5.9 
RE3 (KΩ) 5.52 5.6 5.6 5.62 5.49 5.49 

RL (KΩ) 142.07 150 150 140 143 142 

C1 (µF) 23.00 22 22 22.6 23.2 22.9 
C2 (µF) 64.12 68 62 64.9 63.4 64.2 

C3 (µF) 80.24 82 82 78.7 80.6 80.6 

C4 (µF) 12.55 12 13 12.7 12.4 12.6 
C5 (µF) 69.38 68 68 68.1 69.8 69 

rx1 (Ω) 15.02 15 15 14.7 15 15 

rx2 (Ω) 11.92 12 12 12.1 11.8 12 
rx3 (Ω) 11.54 12 12 11.5 11.5 11.5 

Cµ1 (pF) 3.08 3.3 3 3.01 3.09 3.09 

Cµ2 (pF) 2.85 2.7 2.7 2.87 2.87 2.84 
Cµ3 (pF) 5.21 5.6 5.1 5.11 5.23 5.23 

Cπ1 (pF) 9.95 8.2 9.1 9.53 9.76 9.88 

Cπ2 (pF) 6.40 6.8 6.2 6.49 6.34 6.42 
Cπ3 (pF) 16.35 15 16 16.2 16.2 16.4 

 

 

Table 4. Performances associated to the optimal values 

 AV (dB) ZIN (KΩ) ZOUT (Ω) FL (Hz) FH (MHz) P (mW) 

Linear values 44.85 47 43 44.2 45.3 44.8 

E12 68.87 68 68 68.1 68.1 69.0 
E24 45.50 47 47 46.4 45.3 45.3 

E48 72.10 68 75 71.5 71.5 72.3 

E96 41.30 39 43 42.2 41.2 41.2 
E192 85.73 82 82 86.6 86.6 85.6 

 

 

5. COMPUTING SPICE PARAMETERS AND SIMULATION 

5.1.  Computing SPICE parameters  

The following step-by-step procedure leads to the required spice parameters, indicated by boldface 

characters in the equations [25]. 

a. Compute the “transport saturation current” using:  
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Where: 
q
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b. The ideal “maximum forward beta” without correction for Early effect is given by: 

 
βBF  (35) 

 

c. Compute h11 from:  

 

C

T
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I
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h    (36) 

 

d. Compute the “forward Early voltage” using: 

 

CIρVAF   (37) 

 

Where IC, is the bias current at which the h-parameters were measured. 
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e. Compute the value of the “zero-bias base resistance” using: 

 

xrRB   (38) 

 

f. Determining CJC: 

For Cµ, SPICE determines collector-base capacitance from: 
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VCB is the Q-point collector-base voltage that SPICE will determine during the dc analysis.  

We need to specify MJC, VJC, and CJC so that when SPICE runs a simulation, the resulting Cµ will match 

the desired value.  

Reasonable values for MJC and VJC are MJC = 0.5, VJC =0.7 V. 

To find CJC the “base-collector zero-bias depletion capacitance”, the value of Cµ, will be given as 

well as the voltage, VCB, at which the measurement was made. 

g. Determining CJE: 

For Cπ, SPICE determines the base-emitter junction capacitance Cje and the diffusion capacitance Cb 

and add these: 

 

bjeπ CCC     (40) 

 

TFCJE
11

π
h

β
2C    (41) 

 

Here TF is the forward transit time. We need to specify CJE and TF, so that when SPICE runs a simulation, 

the resulting Cπ will match the desired value. To find CJE, we set TF = 0s, and modeling Cπ by the junction 

capacitance alone.  

 

CJE 2Cπ  (42) 

 

5.2.  Simulation 

For our simulation we use the 2N2222A NPN BJT, the data sheet of the transistor contain  

the information needed to find IS, below is a plot of VBE vs. IC for the used transistor [26]. Figure 4 shows  

the Base − emitter voltage. 

 

 

 
 

Figure 4. Base − emitter voltage 

 

 

From the plot above, for IC= 0.5mA we have VBE = 0.62 V at 25°C, and VT = 26mV at  

the same temperature. From (34), IS= 22 × 10
-15

A. The following Table 5 presents VAF calculated from (37) 

corresponds to each transistor. 
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Table 5. Values of VAF 
 Transistor 1 Transistor 2 Transistor 3 

VAF (V) 0.52 0.54 0.81 

 

 

A DC analysis reveals that VCB for the circuit is 1.56 V, from (39) and (42), we find CJC and CJE 

correspond to the three transistors, as shown in Table 6. After setting SPICE parameters, we simulate 

the three-stage amplifier and we have the frequency response curve of the voltage gain for E12 as shown in 

Figure 5, we notice that the mid-band gain is 19.12 dB, the upper cutoff frequency is 14.11 MHz and 

the lower cutoff frequency is 33.56 Hz, that we give a mid-band equal to 14.10MHz. 

 

 

Table 6. Values of CJC and CJE for E12 
 Transistor 1 Transistor 2 Transistor 3 

CJC (pF) 6.33 5.18 10.75 
CJE (pF) 4.10 3.40 7.50 

 

 

 
 

Figure 5. Frequency response curve of the voltage gain for the three-stage amplifier 

 

 

6. CONCLUSION 

In this paper, we have presented an application of the Genetic Algorithm for the optimal design of 

three-stage bipolar transistor amplifier. We selected the optimal values of discrete components from different 

manufactured series and we gave the optimal values for the hybrid parameters of the transistors. The design 

of the amplifier with the targeted performances is successfully realized by using the GA method, validity of 

the proposed technique was proved via SPICE simulation. 
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