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 Generally, for remote places extension of grid is uneconomical and difficult. 

Off-grid hybrid power systems (OGHPS) has renewable energy sources 

integrated with conventional sources. OGHPS is very significant as it is 

the only source of electric supply for remote areas. OGHPS under study has 

Induction generator (IG) for wind power generation, Photo-Voltaic source 

with inverter, Synchronous generator (SG) for Diesel Engine (DE) and load. 

Over-rated PV-inverter has capacity to supply reactive power. SG of DE has 

Automatic voltage regulator for excitation control to regulate terminal 

voltage. Load and IG demands reactive power, causes reactive power 

imbalance hence voltage fluctuations in OGHPS. To manage reactive power 

for voltage control, two control structures with Proportional–Integral 

controller (PI), to control inverter reactive power and SG excitation by 

automatic voltage regulator are incorporated. Improper tuning of controllers 

lead to oscillatory and sluggish response. Hence in this test system both 

controllers need to be tune optimally. This paper proposes novel intelligent 

computing algorithm, Enhanced Bacterial forging algorithm (EBFA) for 

optimal reactive power controller for voltage control in OGHPS. Small signal 

model of OGHPS with proposed controller is tested for different 

disturbances. Simulation results are compared with conventional method, 

proved the effectiveness of EBFA. 
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1. INTRODUCTION 

The remote villages and small islands where it is difficult to have a connection from the central 

public utility, it is essential to have them energy solution which is cost efficient and environment friendly. 

Presence of large quantity of wind and solar energy observed in remote territories makes possible to utilize 

them to fulfill their energy requirement [1-2]. Remote area power supply system using mix of different 

renewable energy sources with conventional sources is called as off-grid hybrid power system (OGHPS). 

OGHPS is very significant as it is the only source of electric supply for isolated/remote area.The concern 

with renewable sources is that they are undependable, to realize dependable and quality power supply 

requires suitable and efficient control techniques. 

 The test system of OGHPS has power generation from Diesel, PV and Wind. The isolated power 

systems similar to test system have been already present in several small islands/ isolated communities [3]. 

Excitation system is employed for SG coupled to Diesel engine and the IG is used for wind power 

generation. An IG needs reactive power for its excitation. The reactive power absorbed by the IG during its 

operation varies with slip (wind speed). In OGHPS load and IG demand the reactive power. Deficient 
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reactive power can cause severe fluctuations in system voltage; results in poor voltage profile stability. 

If voltage variation may go outside the tolerable limits, condition of power supply will not be acceptable for 

consumers. For reactive power management and voltage control, reactive power is needed to be balanced 

under all operating conditions .Hence, it is obligatory to have a sufficient capacity of reactive power source 

to be present in the OGHPS. 

The earlier works reported in [4-10] for voltage and reactive power control of the wind diesel hybrid 

Power System are based on Static VAR Compensator (SVC) and Static synchronous compensator 

(STATCOM)] with load either static (exponential type) or static plus dynamic. Some good works have been 

reported, but, the parameters of the SVC/STATCOM controllers were optimized while controller parameters 

of automatic voltage regulator (AVR) of SG excitation control were fixed, hence cannot assure the efficient 

co-operative control. The work in [11] proposed voltage control of wind diesel hybrid power system based on 

H∞ loop shaping control of SVC and AVR with static load only. In their work, SVC and AVR controller 

gains were optimally tuned at the same time and performed agreeably. However the gains of the SVC and 

AVR controllers were optimized for arbitrary load change with a fixed reactive power request by the IG, 

which isn't reasonable. The work in [12] investigated the application of the model predictive control of SVC 

and AVR for voltage profile stability of the islanded hybrid wind–diesel power system with static load model 

only, not considered dynamic load. The work in [13] investigated artificial bee colony and gray wolf 

algorithm for optimization for reactive power control in hybrid power system with static load .In this work 

STATCOM and AVR controller are optimally tuned for step load change and performed very agreeably with 

static load model. However this work only considered static load as well as step load condition, which is not 

reasonable, in practical situation .From above discussion on reactive power control in off-grid hybrid power 

system , there is need for optimized coordinate control of reactive power sources (inverter and SG) under 

changing load (composite load- realistic load ) and wind power condition . 

A PV inverter can control the active and non-active power within the bounds obliged by its apparent 

power [14] , is a fast acting, has superior transient performance, put off the need of a separate reactive power 

compensator, extra investment , PV-inverter is a convincing answer to address voltage regulation problem in 

OGHPS. PV inverter with surplus VAR capacity as a reactive power compensator for voltage control in 

OGHPS is proposed by author in previous work [15].  

This paper presents coordinate control of PV inverter and AVR to control voltage and reactive 

power of OGHPS considering detailed composite load. Two control structure are incorporated, the first 

control structure objective is to control reactive power of inverter, and the second control is for controlling 

the SG excitation by AVR. The both control structures have PI controllers with a single input. To incorporate 

realistic features in this study, both controller parameters have been optimized at the same time. If controller 

parameters are not tuned effectively, may lead to oscillatory, sluggish control response and in the worst-case 

situation would result in collapse of system operation. There are many conventional methods and some 

methods based on minimizing performance index criteria available in the literature for controller tuning, 

but these methods do not give acceptable result when the condition is to optimize several gains of 

the controllers under varying operating conditions [16-18]. In the recent years, optimal tuning of controller 

parameters using intelligent swarm based computing techniques such as the Bacterial Foraging Algorithm 

(BFA) has grabbed attention of researcher [19, 20]. Enhanced version of BFA (EBFA) is a novel method 

suggested in this work for optimal tuning controllers simultaneously. Optimal PI controller designing is 

mainly the outcome of minimizing a mathematical function (fitness function), which decides necessary 

control action. 

In the view of the above discussion, this work focuses on voltage control of OGHPS considering 

the composite load model, with control parameters of the inverter and AVR tuned in coordination using 

EBFA when the system is subjected to varying disturbances  

 

 

2. Off-grid hybrid power system configurations (OGHPS)  

The OGHPS considered for the study is illustrated in Figure 1, of SG (Diesel Engine) with an 

excitation system with PI controller, IG (variable wind speed turbine), PV system interfaced with an inverter 

(PI controller) and a fixed capacitor bank (FC) to supply reactive power to IG at steady state. In this test 

system, power sources and load are assumed to close to each other. 
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Figure 1. Test system (OGHPS) 
 

 

3. VOLTAGE - REACTIVE POWER EQUATION  

When the system is in a steady state condition, the power balance equation will be governed by  

 

𝑄𝑆𝐺  + 𝑄𝐼𝑁 + 𝑄𝐶𝑃 = 𝑄𝐿 + 𝑄𝐼𝐺   (1) 

 

When reactive power load demand (∆𝑄𝐿) increases, and/or change in wind power input, the system generates 

reactive power is equal to ∆𝑄𝑆𝐺  + ∆𝑄𝐼𝑁 due to the inverter and AVR of SG. The reactive power required for 

the system will also change due to change in voltage by ΔV. Then, the surplus reactive power in the system 

can be expressed as 

 

𝛥𝑄𝑁 = 𝛥𝑄𝑆𝐺  + 𝛥𝑄𝐼𝑁 + 𝛥𝑄𝐶𝑃  – 𝛥𝑄𝐿 − 𝛥𝑄𝐼𝐺  (2) 

 

The ΔQN  net surplus reactive power ,which due increase in electromagnetic energy absorption (Em) 

of the induction generator by 
dEm

dt
and increase in reactive load consumption, results in an increase of the 

system voltage, can be expanded as [4, 8, 11] 

 

𝛥𝑄𝑁 = 
𝑑𝐸𝑚

𝑑𝑡
 + 𝐷𝑙𝑣𝑞  𝛥𝑉(𝑠)  (3) 

 

Where the 𝐷𝑙𝑣𝑞  (Composite load transfer function from the change in voltage to change in reactive power).  

In power system dynamic load models are essential for examining the effect of non- linear loads in 

dynamic studies [21, 22]. The composite load provides a much more accurate representation of load response 

to voltage [23]. It represents the combined effect of aggregate of static and dynamic load (Induction motor) is 

shown in Figure 2. The participation ratio of static to dynamic load in composite load presentation for 

remotely located OGHPS is suggested as 4:1 in literature [24-26]. The OGHPS test system has a generation 

capacity of 400KW with composite loads of 300KW. Composite load of 300KW has a static load of 240KW 

(80% of total load) and dynamic load of 60KW (20% of total load). 60KW dynamic load is modelled as an 

aggregate dynamic load model. The aggregate dynamic load of 60KW is developed considering set of seven 

Induction motor, of ratings ranging from 4KW to 20 KW, connected to same load bus. 
 

 

 
 

Figure 2. Composite load structure of OGHPS 
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To take account the effect of the composite load in the system voltage- reactive power equation, 

the 𝐷𝑙𝑣𝑞  from (3), is expressed as  
 

𝐷𝑙𝑣𝑞 =  𝐷𝑙𝑣𝑞−𝑠𝑡 + 𝐷𝑙𝑣𝑞−𝑑𝑦   (4) 
 

Where 𝐷𝑙𝑣𝑞−𝑠𝑡  is static load transfer function and Dlvq−dy  is dynamic load transfer function. 

From [4, 19], we can write as 
 

𝐷𝑙𝑣𝑞−𝑠𝑡  =  𝑞(𝑄𝐿𝑠𝑡 /𝑉) (5) 
 

Where 𝑞 is static load exponent and 𝑄𝐿𝑠𝑡  static reactive power load. 

Mathematical model of IM is represented by following five differential Equation of IM d-q axis, 

in the synchronous rotating frame [27]. 
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 (6) 

 
𝑑𝜔𝑟

𝑑𝑡
 = 

𝜔𝑏

2𝐻
 (𝑇𝐸𝐿 − 𝑇𝐿) (7) 

 

Using (6) and (7), the transfer function of dynamic load Dlvq−dy  of 60 KW IM load is developed 
 

 𝐷𝑙𝑣𝑞−𝑑𝑦  =  
(0.0129𝑆5+169𝑠4+6.86e04 𝑆3 + 2.9e08 𝑆2+ 2.174𝑒10 𝑆+ 1.7e11  )

(𝑆5+1.326𝑒4𝑠4+ 3.81 𝑒6𝑆3+1.568𝑒9𝑆2+ 1.88𝑒11𝑠 + 3.88 𝑒12) 
  (8) 

 

Using (3), (4), (5) and (8) in (2), reactive power-voltage balance equation of OGHPS with the composite load 

model can be expanded as 
 

∆𝑄𝑆𝐺  + ∆𝑄𝐼𝑁 + ∆𝑄𝐶𝑃  – ∆𝑄𝐿 − ∆𝑄𝐼𝐺 = ∆𝑉(𝑠)( (
𝑉

𝜔𝑋𝑚
) + (𝐷𝑙𝑣𝑞−𝑠𝑡 +  𝐷𝑙𝑣𝑞−𝑑𝑦) ) (9) 

 

Small signal equation of reactive power of SG, IG and FC and exciter voltage of SG are available in 

articles [4, 5, 8, 11, 12, 28]. The incremental change in reactive power ∆𝑄𝐼𝑁  of PV inverter [15] is used in 

this work for modelling OGHPS. The simulation block diagram of OGHPS is shown in Figure 3  
 

 

 
Figure 3. Small signal model of OGHPS 
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4. PI CONTROLLER PARAMETER OPTIMIZATION  

For coordinated voltage control, PI controller gain parameters (KP and Ki) of inverter and AVR, 

are to be optimized simultaneously. The two gain parameter of each controller formulates four dimensional 

optimization problem. The optimization task is to minimize the objective function. The objective function 

considered is an Integral of Time multiplied squared Error (ITSE), as given below. 

  

Min (OB) = Min (ITSE) = 𝑀𝑖𝑛  ∫ (
∞

0
t ∆V(t)2) (10) 

 

Subjected to: 𝑘𝑝
𝑚𝑖𝑛 ≤ Kp ≤ 𝑘𝑝

𝑚𝑎𝑥  ; 

 

𝑘𝑖
𝑚𝑖𝑛  ≤ Ki ≤ 𝑘𝑖

𝑚𝑎𝑥    (11) 

 

In this work conventional method of PI tuning is based on ITSE is employed due to its advantage 

that it penalizes less to initial errors to support rapid settling of the controlled output [29]. Figure 4 shows 

the optimal tuning of PI Controllers using EBFA. 

 

 

 
 

Figure 4. Optimal tuning of PI Controllers using EBFA 

 

 

The control output from PI controller shown in Figure 4, is given by  
 

U = KP ∆V + KI  ∫ ∆V dt (12) 
 

Stepwise procedure of the performance index method of tuning controller parameters is as follows 

Step 1. For a particular value of Ki, evaluate ITSE, over a range of values of Kp, and obtain optimum value 

of Kp for ITSE = min (ITSE) 

Step 2. For optimum value of Kp obtained in step 1, evaluate ITSE, over a range of values of Ki and obtain 

value of Ki for ITSE =min(ITSE )  

Step 3. Kp and Ki obtained for other controller gains can be obtained by repeating the above steps. 

This above procedure has been implemented sequentially in MATLAB, at a time one controller 

parameter is tuned while other controller parameters are kept constant. EBFA is applied to solve for 

optimization problem described in (10) for the constraints in (11). The constraints in (11), are chosen from 

the earlier work [15]. 
 

 

5. ENHANCED BACTRIA FORAGING ALGORITHM (EBFA) FOR OPTIMAL TUNING OF 

CONTROLLER PARAMETERS  

BFA is a social system-based algorithm, based on foraging technique of E. coli bacteria [30]. 

BFA is proposed by [31], for optimization is called as original BFA. Foraging property of bacteria is 

modelled as optimization process. From the optimization point of view, in BFA, optimal value is the place, 

having highest food concentration [32].The random walk of bacteria with chemotactic step size in original 

BFA has disadvantages that, it may fail to converge to the global optimum, Hence there is a need to improve 

basic BFA to accelerate the convergence and better global optimum value. Several variants of the BFA have 

been developed to improve its optimum performance [33, 34], one of the ways to improve basic BFA is to 

combine BFA and Particle Swarm optimization (PSO) algorithm, called as EBFA. This hybrid algorithm 

merges the aptitude of BFA to obtain a new solution due to dispersion process and the parallel search 

capability of PSO. In this algorithm, the velocity equation used in PSO, is used to update direction in 
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the chemotaxis steps of bacteria. The movement of bacterium in the original BFA is random, hence need 

more chemotactic step to search for global optimum point. While in EBFA the random biased walk of 

bacterium is guided according to the global and the best positions based on PSO [35]. In PSO, velocity of 

particles is the due to the effect of their social interactions and local information. Incorporation of PSO is to 

improve search efficiency, solution accuracy and convergence speed. 

In EBFA, at the starting of the search process, bacteria are randomly dispersed throughout 

the optimization domain, since the bacterial movement is not started, the local best position is its current 

position. The initial global best objective function value is the minimum value of objective function acquired 

by any of the bacterium in the population. The bacterium moves during chemotaxis process with a velocity 

updated using the velocity equation in PSO. The objective function of each bacterium is calculated after each 

step. During the process of searching for a global optimum point, bacterial undergoes reproduction and 

elimination–dispersal phenomenon. In the reproduction process, half population of bacteria having higher 

value of the objective function (ITSE) is eliminated, while the remaining half is split into two. To mimic 

the elimination–dispersal phenomenon, bacterium having small probability value is eliminated. To maintain 

the population, the replacements are initialized for eliminating bacterium. After completing sufficient 

chemotactic steps in the feasible domain, bacterium reaches to the point of highest food concentration  

(global optimum).  

The computation procedure for EBFA to solve the optimization problem of finding optimal 

controller parameter is explained as  

Step 1. Initialize the parameters, (Number of bacteria (Nb), Chemotactic steps (NCh), Limit of a swim 

(Nsw), Reproduction steps (NRp), Elimination-dispersal events ( NELD),), the probability that each 

bacteria will be eliminated/dispersed (PELD), PSO parametrs are C1 , C2  and ωmin ,ωmax . 

Step 2. Elimination-dispersal loop for Ed=1 to 𝑁𝐸𝐿𝐷  

Step 3. Reproduction loop for R =1 to NRP ,  

Step 4. Chemotactic loop counter for J =1 to NCh  

Step 5. For I = 1 to Nb,  

a. Compute the objective function, ITSE(I, J, R, Ed) for every bacterium, save as ITSElast = ITSE 

(I, J, R, Ed), ( compares other best values which may found during a run )  

b. Tumble- Generate a random vector ∆(I) ∈  ℛ𝑎 , in the a dimensional search space (a = 4), for 

each element to be optimized ∆k(I), k = 1, 2, 3,4 .compute the position of Ith bacterium in 

the direction of the tumble as P(I,J+1,K,Ed) = P(I,J,R,Ed)+S (I)) ∆ (I). The step size ‘S’  

value is fixed. 

c. Compute ITSE (I, J+1, R, Ed) for every bacterium for new position P (I, J+1, R, Ed),  

d. Initialize swim loop counter m= 0  

- While m < 𝑁𝑆𝑊  

If ITSE (I, J+1, R, Ed) < ITSElast (bacterium moving in the right the direction) then 

ITSElast = ITSE(I,J+1,R, Ed), calculate the position of bacterium as  

 P(I,J+1,R,Ed) = P(I,J+1,R,Ed)+ S (I)∆(I).  
- Else, m= NSW (End of loop) 

e. If I ≠ Nb to step 4b for a next bacterium (I = I+1) 

Step 6. Calculate the local best position and global best position for each bacterium 

Step 7. Update each bacterium velocity using equation of PSO as 
𝜗 (J+1) = ω 𝜗 (J) + 𝐶1 𝑅1(𝑙𝑜𝑐𝑎𝑙𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 𝐶2 𝑅2(𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) , updated velocity of each bacterium is the value of vector∆(I) for next chemotactic 

step. 

Step 8. If J < 𝑁𝐶ℎ, go to step 4 

Step 9. Reproduction 

- Calculate the health of the each bacterium after completing NCh, chemotactic steps. 

ITSEhealth
I = ∑ ITSE(I, J, R, Ed)

NCh+1 
J=1  . Sort ITSEhealth

I  in ascending order. The bacteria with 

the higher  ITSEhealth
I  value , will die and other healthy bacteria go through the process of 

reproduction to the maintain population. 

Step 10. If R < 𝑁𝑅𝑃 then go to step (2), 

Step 11. Elimination-dispersal: For I = 1 to Nb, bacterium having probability value less than 𝑃𝐸𝐷  , 

get eliminated and dispersed to a random position in the search space and other bacterium maintain 

their position 

Step 12. If Ed < 𝑁𝐸𝐿𝐷 , go to step 2, else end 

Based on the above steps of EBFA, a program is written in MATLAB for optimal controller 

parameters. The parameter of EBFA is given in Appendix 1. 
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6. SIMULATION RESULTS AND DISCUSSION 

The mathematical model of components of OGHPS based on the reactive power balance equation, 

is build in simulink and simulated in Simulnik with PI controller parameters of PV inverter and AVR are 

optimally tuned using EBFA and conventional method. OGHPS simulation model is tested under different 

disturbance cases. (Step change and random change in load plus wind power) .Transient responses of state 

variables for different disturbance conditions are presented in this section as follows, 

a. Case 1. Transient performance of the system for step disturbance of 5% of reactive load demand QL  

The time responses of deviation in state variable such as load voltage, inverter reactive power, 

SG reactive power and IG for a 5% step increase in reactive load at t= 0 Sec, at the constant wind power 

input to the IG and 1% increase in PV irradiance and temperature are illustrated in Figure 10 (a)-(d). 

The system is in steady state, prior to change in reactive load demand. From the Figure 10 (a)-(d), 

it is observed that inverter provides dynamic support of reactive power to mitigate the load disturbance, 

while the AVR of synchronous generator initially support by taking action to maintain voltage following 

the disturbance. From the responses shown in Figure 10 (a)-(d), it is evident that control characteristics such 

as Peak value, Oscillation and settling of state variables are improved considerably in case of EBFA based 

Optimal PI controllers. 

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 10 (a). Transient response of ΔV, (b) Transient response of ΔQIN, 

(c) Transient response of ΔQSG, (d) Transient response of ΔQIG 

 

 

b. Case 2. Transient performance of the system for 10% Step disturbances in reactive load demand as well as 

wind power 

The time domain response of deviation in system state variable such as voltage and reactive power 

of the inverter, SG and IG for the step increase of 0.1 p.u. (10% from the initial steady state value) in both 

reactive power loading and wind power, with 1% increase in PV irradiance and temperature at t=0 Sec, 

is illustrated in Figure 11 (a)-(d). As wind speed fluctuates, mechanical wind power input to IG changes, 

slip changes, hence reactive power demand of IG changes. The increase in the reactive power of demand is 

ΔQIG+ΔQL. Due to inverter and AVR, the reactive power generated in the system varies to fulfil the demand, 

to suppress the voltage deviation.  
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From Figure 11 (a)-(d), it is observed that state variables regained steady state condition quickly 

with EBFA control compared to Conventional method. The response of the state variables ∆V and ∆QSG, 

becomes zero are as shown in Figure 11 (a) and (c). The Peak value and Oscillation of state variables are 

reduced considerably in the case of EBFA. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 11 (a). Transient response of ΔV, (b) Transient response of ΔQIN, 

(c) Transient response of ΔQSG, (d) Transient response of ΔQIG 

 

 

c. Case 3. Transient performance of the system for random disturbance in reactive load demand as well as 

wind power input to IG. 

In OGHPS system, the load is largely residential and commercial type. The load is fluctuating and 

random. Wind power is intermittent in nature due to fluctuating wind speed. The random variation in load 

and wind power is as shown in Figure 12 (a) and (b).This case also considers a 1 % increase in PV irradiance 

and temperature the transient responses of state variable for random variation in reactive load and wind 

power are illustrated in Figure 12 (c)-(f). The voltage deviation due to random disturbances is suppressed by 

the action of inverter and AVR, by generating required reactive power to balance system reactive power. 

In this system, as the PV inverter is oversized to increase its reactive power capacity, supports the system for 

reactive power even when there is change in PV real power from the PV array.  

It is clear from Figure 12(c)-(f), that co-ordinately optimized PI controllers by EBFA methods, 

exhibited better dynamic reactive power control outcome compared to conventional tuning the PI controller 

under random disturbance condition. The optimal values of controller parameters obtained by EBFA for 

the case 2 are given in the Table 1. The maximum voltage deviation (p.u) for 10% reactive loading plus 10% 

wind power change (case 2) for EBFA control and conventional control is presented in Table 2. Comparison 

of OGHPS system state variables performance for EBFA tuned controllers (Inverter and AVR) with 

conventional method tuned controllers (Inverter and AVR) in terms of settling time is presented in Figure 13. 
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(a) (b) 

 

 

 

 
(c) (d) 

 

 

 

 
(e) (f) 

 

Figure 12 (a). Random disturbance in reactive power load, (b) Random deviation in wind power input to IG, 

(c) Transient response of ΔV, (d) Transient response of ΔQIN, (e) Transient response of ΔQSG, 

(f) Transient response of ΔQIG 
 

 

Table 1. Inverter and AVR controller parameters for case 2 
Optimization method  Inverter AVR 

Kp Ki Kp Ki 

EBFA 21.417 5552.176 25.97 50 
Conventional 13.5 4800 10 30 

 

 

Table 2. Maximum voltage deviation in p.u for case 2  
Disturbance condition EBFA  Conventional  

Case1  0.000223 0.00082 

Case2 0.0006731 0.002436 
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Figure 13. Settling time for state variables of the OGHPS (case 2) 

 

 

7. CONCLUSION 

Voltage /VAR control of OGHPS considering a composite load model with optimally designed 

controllers, for the inverter and AVR is investigated for the small signal voltage profile stability. The system 

model based on reactive power – voltage characteristics OGHPS considering a composite load model is build 

in Simulnik. In order to have coordinated control inverter and AVR controller parameters are optimized 

simultaneously using EBFA.  

Simulation is carried out under step change in load disturbances of different magnitude. Simulation 

is also carried out for realistic change in load and wind power i.e randomly changing reactive load demand 

and wind power, to study the dynamic performance of the system with EBFA based optimal tuned controllers 

of inverter and AVR. From the simulation results presented in above section, it is observed that the dynamic 

performance of system state variables is improved for EBFA optimized controllers as compared to 

conventional method. The response of EBFA optimized controllers is enhanced in terms of peak deviation 

and settling time for all system state variables. 

 From this work, it can be concluded that EBFA tuned PI controller of inverter and AVR have  

a better control effect to suppress voltage fluctuation by balancing system reactive power. EBFA controlled 

OGHPS worked robust even under arbitrary varying disturbance condition, hence dynamic performance of 

OGHPS is enhanced. The main contribution of work presented in this paper are: 

- Consideration of composite load as realistic load in OGHPS  

- Coordinated reactive power control of PV inverter and AVR 

- Design of optimal controller of PV inverter and AVR for step change as well as random change in 

composite load.  

This work has opened a research area for reactive control to maintain the voltage by optimum control of PV 

inverter and AVR of SG in a small off-grid hybrid power system having composite load.  
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Appendix 1 

Test system data: Base quantities - 400 KVA, Voltage = 400V, Frequency= 50 Hz, 

Wind Generation capacity = 150KW;  

Diesel Generation capacity =150KW; 

PV generation system = 100 KW,  

Load = 300KW, Load Power Factor = 0.9, Residential load -240 KW (static load) Industrial load - 60 KW 

(dynamic load) 

PV- % Over-sizing factor (of) for inverter sizing = 40%, Ki = 1; T = 0.002 sec;  

Induction motor (60KW); Rs= 0.573 Ω, Xs=1.324 Ω, Rr = 0.628 Ω, Xr=1.324 Ω, Xm = 62.53 Ω 

EBFA parameter: Nb =6; Nch =25; Nsw= 5; NRP= 4; NELD=2; PED = 0.25; C1 = C2 =1, wmin =0.4, wmax = 0.9 

 

Appendix 2 

Reactive power equation of Synchronous generator  

 

QSGD  =    
(Eq
′  V cosδS− V

2)

Xsd
′  (A2.1) 
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Reactive power equation of Induction Generator   

 

QIG
  =     [    xe

[  
rr
′

sl
 − (2rr

′+rs) ]
2+xe

2

  ] V2 (A2.2) 

 

Reactive power equation of Inverter 

 

QINV   =    
  VINV

2− VINV V Cosδ

Xc
 (A2.3) 

 

Nomenclature 
VAR Volt-Ampere reactive PIN ,  QIN Inverter active and reactive power 

EBFA Enhanced Bacteria foraging algorithm   

V,VIN Load  and inverter voltage QSG, QIG SG & IG  reactive power    

ẟ phase angle ∆ Small change in variable 

QCP Reactive power of capacitor bank, Xm Magnetizing reactance of IG 
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