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 In the day-ahead dispatching of network-constrained electricity markets, 

renewable energy and distributed resources are dispatched together with 

conventional generation. The uncertainty and volatility associated to 

renewable resources represents a new paradigm to be faced for power system 

operation. Moreover, in various electricity markets there are mechanisms to 

allow the demand participation through demand response (DR) strategies. 

Under operational and economic restrictions, the operator each day, or even 

in intra-day markets, dispatchs an optimal power flow to find a feasible state 

of operation. The operation decisions in power markets use an optimal power 

flow considering unit commitment to dispatch economically generation and 

DR resources under security restrictions. This paper constructs a model to 

include demand response in the optimal power flow under wind power 

uncertainty. The model is formulated as a mixed-integer linear quadratic 

problem and evaluated through Monte-Carlo simulations. A large number of 

scenarios around a trajectory bid captures the uncertainty in wind power 

forecasting. The proposed integrated OPF model is tested on the standard 

IEEE 39-bus system. 
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1. INTRODUCTION 

Nowadays, the power system operation involves the competitive participation of renewable 

generation and DR resources. Wind power generators are participating in electricity markets under different 

incentives and the power system operator faces an important challenge related with the wind power 

intermittency and unpredictability [1-3]. In this context, the integration of demand response resources 

represents a new resource to be allocated in the power system operation [4]. The integration of DR resources 

in the markets leads to technical and economic challenges associated with the integration of DR resources into 

the reserve markets. The focus of this paper is on the formulation of an integrated model to dispatch 

economically a power system under wind power integration and DR participation.  

This paper provides a day-ahead dispatching framework including the integration of wind power 

generation and demand response resources in the OPF formulation. Specifically, the model proposed in this 

paper is formulated as a mixed-integer linear quadratic optimization problem, and the evaluation is performed 

through Monte-Carlo simulations to capture the uncertainty related with the wind power generation. 

DR resources are modeled as dispatchable loads, which indicates the demand tendency to shed its 

consumption at determined price.   

The wind power output has an intermittent nature, so, the integration of wind power generation 

requires ancillary services such as regulation, contingency reserve and others to compensate wind power 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An integrated OPF dispatching model with wind power and demand response for day ... (Ricardo Moreno) 

2795 

ramps. The generation system reliability of the system may be reduced in case of unpredicted decreases in 

wind power because the available ramping capability of the system may not be sufficient to accommodate 

those changes. The day-ahead dispatching with wind power has been addressed widely. The optimal power 

flow (OPF) formulation have been extended to account for the variable nature of wind power generation. 

For instance, in [5-8], the intermittent nature of wind power generation is captured using probabilistic 

techniques. A stochastic unit commitment model is presented in [9], where authors propose a framework to 

quantify the impact of large-scale wind power integration into power systems. The uncertainty in the wind 

generation is addressed by means of scenarios and demands are considered to be fixed. Others authors have 

suggested stochastic optimization (SO) based on scenarios to cope with wind power uncertainty in the unit 

commitment problem [10-12]. SO employs several scenarios along with their associated probabilities to 

simulate possible uncertainties during the period. In [13], an optimal generation scheduling method including 

renewable energy, distributed resorues and storage systems is solved using a particle swan optimization 

algorithm. In addition, in [14], the auhors propose an enhanced genetic algorithm to solve the optimal power 

flow.  

On the other hand, the integration of demand side resources into electricity markets has drawn a lot of 

attention. DR is a strategy to utilize electricity demand as a distributed resource with real possibilities to 

improve efficiency and reliability of electricity networks. Usually, the demand in power system is considered 

inelastic to the prices. However, a substantial amount of electricity demand is elastic such as plug-in electric 

vehicle (PEV) [15] charging batteries, heating ventilation, air conditioning, and this report [16] indicates that 

one third of residential demand in U.S. is flexible.   

Several studies are researching about the participation of demand side resources in the procurement of 

energy and reserve services. Seminal studies [17-19] have developed pool based market structures considering 

the participation of demand side resources into the energy and reserve markets. The demand side resources 

(i.e., DR resources) are technically capable of providing ancillary services given the flexibility and 

the possibility to alleviate large and unexpected wind ramp events [20, 21]. Distribution companies or 

aggregators usually manage DR resources [22]. The aggregators represent technically and financially various 

users in order to bid DR reductions in electricity markets. This paper addresses the day-ahead dispatching 

including wind power bids and DR bids.  

The paper is organized as follows. The problem formulation is presented in Section II. In Section III, 

the proposed procedure is tested using the IEEE 39-bus test system. The results are analyzed and discussed. 

Section IV provides some concluding remarks. 

 

 

2. PROBLEM FORMULATION 

The notation for the OPF dispatching model including wind power generations and DR resources is 

expressed in terms of power generation for each unit, the load following reserves and the binary commitment 

variable for thermal units. The complete set of variables are described as follows: 

 

2.1. Notation 

t  Index over time periods. 

T   Set of indices of time periods in the planning horizon, typically  1 ... tn . 

i   Index over injections (generation units, dispatchable or curtailable loads). 

j   Index over scenarios. 

tI   Indices of all units (generators) available for dispatch in any time t . 

f   Index of wind farms. 

FN   Set of indices of all units (wind farms and generators) available for dispatch in any time t  

 b   Index of loads. 

MAXDP  Max., power demand for unit i  at time t . 

BN   Set of indices of all loads at time t . 

tiF   Load flexibility of demand for unit i  at time t . 
tijp   Active injection for unit i  of scenario j at time t . 

tf
wp   Wind power forecast as offered in the market for unit f at time t  

ti
DP  Real power demand for unit i  of scenario j at time t . 

 ti
PC    Cost function for active injection i  at time t . 

 ti
DC    Cost function of upward and downward regulation of the demand from unit i  at time t . 

tbD   Demand power at time t . 
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,ti ti    Upward/downward load-following ramping reserves needed from unit i  at time t  for transition to 

time 1t  . 

 tiC   ,  tiC   Cost of upward and downward load-following ramp. Reserve for unit i  at time t . 

tij
MINP , tij

MAXP  Limits on active injection for unit i  in the scenario j at time t . 

MAX

i


,
MAX

i

Upward/downward load-following ramping reserve limits for unit i . 

tiu   Binary commitment state for unit i  in period t . 

,ti tiv w   Binary startup and shutdown states for unit i  in period t . 

,ti ti
v wC C  Startup and shutdown costs for unit i  at time t   

 ,ti ti
   Startup and shutdown costs for unit i  at time t 

 

2.2. Formulation 

The problem formulation is expressed as a mixed-integer linear quadratic optimization problem 

(MILP), where the optimization variable x  is comprised of all the ,p  ,ti  - ,ti  ,u  v  and w  variables 

corresponding to power generation for each unit, the load following reserves and the binary commitment 

variable for thermal units. 

Objective Function: The objective is expressed as the minimization ( )f x
 

 

min  ( )
x

f x
 (1) 

 

Subject to 

 

( )  0g x 
 (2) 

 

( )  0h x 
 (3) 

 

min max        x x x   (4) 

 

where ( )f x  is comprised of three components. 

 

( )  ( )  ( , )  ( , )  ( , )p lf uc drf x f p f f u w f u w     
 (5) 

 

Cost of active power dispatch 

 

 ( )     (  )
t

ti tij
p P

t T i I

f p C p
 

  
 (6) 

 

Cost of load-following ramp reserves 

 

    ( , )       
t

ti ti ti ti
lf

t T i I

f C C   
 

       
 (7) 

 

Startup and shutdown cost 

 

 ( , )         
t

ti titi ti
uc v w

t T i I

f v w C v C w
 

  
 (8) 

 

Cost of demand response 

 

 ( , )      
t

tijti
dr D D

t T i I

f v w C P
 

    
 (9) 

 

This minimization is subject to the following constraints, for all:  all  and all  :T tt T j J i I  
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Constraints: 

Power balance constraints,

   

          
T T F B

tij tfjtij tb
wD

i I i I f N b N

p P p D
   

     
 (10) 

 

Nonlinear transmission flow and voltage limits as inequality constraints, 

 

  (  ,  )    0tj tj tjh V p 
 (11) 

 

Load-following ramping limits and reserves, 

 

max0       ti ti
     (12) 

 

max0        titi
     (13) 

 

Injection limits and commitments, 

 

maxmin            tij tijti tij tiu P p u P 
 (14) 

 

Startup and shutdown events, 

 
( 1)            ti t i ti tiu u v w    (15) 

 

Integer constraints, 

 

      0,1 ,    0,1 ,    0,1ti ti tiu v w  
 (16) 

 

Flexibility interval of the demand 

 

max0        ti DF P   (17) 

 

 

3. SIMULATIONS RESULTS 

The IEEE 39-bus test system is examined in this section to test the integrated model that considers 

wind power generation DR resources. The day-ahead dispatching framework proposed as a MILP problem is 

solved using GUROBI 7.5.1 [23] under the Matpower platform [24]. The case IEEE 39-bus test system 

includes 10 generators; the data is listed in Table 1. The cost data are equal to report in [25] and [26]. Table 2 

lists the quadratic cost functions for each generator in the IEEE 39-bus system according to [27]. The system 

daily load curve is shown in Figure 1 with a maximum peak of 4531 MW at hour 20 and a minimum of 1840 

at hour 3. 

 

 

Table 1. Generator data for the IEEE 39 bus system 
Gen. 

# 
C   C   vC  wC  minP  maxP  

1 6.9 6.9 920 736 0 250 

2 6.9 6.9 920 736 0 678 

3 6.9 6.9 920 736 0 650 

4 6.9 6.9 920 736 0 632 

5 6.9 6.9 920 736 0 508 

6 6.9 6.9 920 736 0 650 

7 6.9 6.9 920 736 0 560 

8 6.9 6.9 920 736 0 540 

9 6.9 6.9 920 736 0 830 

10 6.9 6.9 920 736 0 1000 
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Table 2. Cost functions 
Gen. Cost Function [$] 

1 2
1 0.00194 7.85 310C P P    

2 2
2 0.0035 8.5 260C P P    

3 2
3 0.00482 7 78C P P    

4 2
4 0.00128 6.4 459C P P    

5 2
5 0.0024 6 80C P P    

6 2
6 0.0032 5.8 400C P P    

7 2
7 0.0053 6.24 120C P P    

8 2
8 0.00185 8.4 60C P P    

9 2
9 0.0025 5.75 450C P P    

10 2
10 0.00142 8.2 510C P P    

 

 

 
 

Figure 1. System daily load curve 

 

 

This model considers a wind power integration level of 20% with respect to the peak load level. 

A large number of scenarios around a trajectory bid captures the uncertainty in wind power forecasting by 

the wind power generator as shown in Figure 2. 

 

 

 
 

Figure 2. Wind power generation profile 

 

 

DR offers incentives designed to induce lower electricity use at times of high market price. For this 

simulation, four loads provide demand response services, and the power quantity, which they are willing to 

reduce in a certain time, is 1295 MW. The incentives represented as cost functions are shown in Table 3. 

 

 

Table 3. Load data for the demand response 

Load Bus Demand Power [MW] Cost Function [$] 

1 8 522 2
1 0.00128 6.4 459C P P    

2 15 320 2
2 0.00128 6.4 459C P P    

3 23 247.5 2
3 0.00128 6.4 459C P P    

4 28 206 2
4 0.00128 6.4 459C P P    
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For five hundred (500) scenarios, this paper quantifies the demand response frequency and  

he magnitude in MW for each load. Each scenario runs over 24 hours according to the system daily load and it 

considers a forecasted trajectory for the wind integration. In Figure 3, can observe the frequency and quantity 

of flexibility for the load in the bus 8. It is obeserved the demand response is maximum all the time. Each time 

that this load is shed, it is shed at 522 MW. While that for the load in the bus 15, Figure 4 shows sometimes 

the quantity of DR required is around 270 MW, 295 MW, and 305 MW, although the 75% of time the DR 

required is at the maximum value. The results for demand response in the bus 23, see Figure 5, are similar to 

the results in the Figure 4, almost all the time the DR is dispatched at maximum. In Figure 6, the load in 

the bus 28 exhibit a similar dispatching to the loads in the buses 15 and 23. 

 

 

 
 

Figure 3. Demand response in the bus 8 

 

 

 
 

Figure 4. Demand response in the bus 15 

 

 

 
 

Figure 5. Demand response in the bus 23 

 
 

Figure 6. Demand response in the bus 28 

 

 

Now, in Figure 7 shows the percentage of DR with respect to the available capacity. It is observed 

that in the hour 3, 13, 16 and 17 for the 24 horizon planning, the DR is not dispatched at maximum. 

For instance, in the hour 13, the load in the 28 responds at 40% for the maximum value available. At the peak 

demand for the system, at hour 20, all loads are dispatched as DR resources.  

 

 

 
 

Figure 7. Demand response for all loads in the power system 

 

 

In order to quantify the benefits for DR participation in the power system operation, the probability 

density function for the power generation cost is calculated in the 24-hour horizon. The realizations correspond 

to the trajectories generated around the bid made by the wind power generator. Figure 8 shows the power 

generation cost under 500 scenarios with DR available for dispatching while the Figure 9 shows the power 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 :  2794 - 2802 

2800 

generation cost without DR available. In order to compare the results for both cases, mean and standard 

deviation for each case are calculated. The savings for the power generation cost is $8271. The result 

represents the savings can be made in the power generation cost if the demand is flexible. Table 4 compares 

the mean and variance parameters for both cases, with DR and without DR. 

 

 

 
 

Figure 8. Cost objective function with DR 

 
 

Figure 9. Cost objective function without DR 

 

 

Table 4. Gaussian parameters for the cost objective function with DR and without DR 

Parameter 
Estimate 

without DR 

Estimate 

with DR 
Difference 

Mean $577,400 $569,120 $8,271 
standard deviation $3,190 $3,360 - 

 

 

In order to quantify DR benefits, others cost functions are set up to provide insight about 

the dispatching cost. Table 5 provides six cost functions for demand response. This cost functions represents 

the willing of each load to provide DR. The plot for those cost functions are shown in Figure 10.  

 

 

Table 5. Incentive based demand response 
Ref. Cost Function [$] 

A 20.000128 1.4 439AC P P    

B 20.00248 2.4 449BC P P    

C 20.00128 6.4 459CC P P    

D 20.00528 6.4 469DC P P    

E 20.00928 6.4 479EC P P    

F 20.015221 6.4 489FC P P    

 

 

 
 

Figure 10. Cost functions for demand response 

 

 

The power generation cost varies according to different incentives for DR as shown in Figure 11. 

For instance, the case F, in Figure 10, shows a cost function with high bid for DR. The case A corresponeds to 

a situation with a lower cost function, however, the dispatching is not the lower. For the cases evaluated, 

the optimal solution corresponds to the case C, the cost function C is between the cases A and F. 
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Figure 11. Cost objective function for different incentives to DR 

 

 

4. CONCLUSION 

In this paper, presented an integrated OPF model that explicitly includes wind power generation and 

demand response resources for day-ahead dispatching in constrained electricity markets. Demand response is 

integrated into the model as flexible loads with willing to bid day-ahead. Observed that considerable savings in 

power generation cost could be achieved if the demand participates in the markets. The numerical results show 

that the wind power uncertainty can be captured using trajectories from a Monte-Carlo simulation.  
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