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 This paper presents the implementation of a DAG-CNN which aims to 

classify and verify the authenticity of the offline signatures of 3 users, using 

the writer-independent method. In order to develop this work, 2 databases 

(training/validation and testing) were built manually, i.e. the manual 

collection of the signatures of the 3 users as well as forged signatures made 

by people not belonging to the base and altered by the same users were done, 

and signatures of another 115 people were used to create the category of non-

members. Once the network is trained, its validation and subsequent testing 

is performed, obtaining overall accuracies of 99.4% and 99.3%, respectively, 

showing the features learned by the network and verifying the ability of this 

configuration of neural network to be used in applications for identification 

and verification of offline signatures. 
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1. INTRODUCTION  

Signatures, apart from biometric identifications such as fingerprints, are person authentication 

systems that are currently accepted in most social contexts as a means of identifying and validating identity. 

However, the forgeries of signatures is a problem immersed in this system that represents a big problem 

which has been tried to solve or mitigate in different ways, using different methods of verification of the 

authenticity of a signature. In the first place, it must be taken into account that there are 2 ways of obtaining 

data from a signature, where the first one is offline, signatures that are obtained from documents already 

signed, which are scanned in order to acquire a digitalization of the same [1], either by passing the image in 

gray scale or by binarization. While the second is online, where data is acquired during the process of making 

the signature [2, 3], taking information such as the start and end position, number of times the pen is lifted, 

speed, pressure, etc. Comparing the use of online or offline signatures, in general, the use of online methods 

has a greater degree of accuracy, however, their problem is that the data can only be obtained through special 

devices and at the time of signing, so it can be a problem when they are signatures already made in 

documents or bank checks, for this reason, the use of methods with offline signatures that validate them, 

is necessary. 

One of the most important causes for the methods of verification of offline signatures does not have 

the degree of accuracy of online, is the loss of dynamic information, which makes the problem more difficult 

[4]. On the other hand, within offline systems, there are two methods, writer-dependent (WD), which is to 

perform a verification system for each user individually, and writer-independent (WI), where a single system 

covers the verification of all registered users [5], nevertheless, a WI system represents a greater challenge, 

since it is possible not to focus the system on recognizing the specific details of a user, but to generalize 

characteristics [6], as well as erroneously to say that the signature of one user belongs to another. 
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Due to the above, several techniques have been implemented for the offline signature verification, 

such as the one presented in [7], in which both the WI and WD methods are used to generate a hybrid 

classifier, reaching accuracies from 86.04% up to 94.62%. Likewise, thanks to the high performance of 

neural networks in the classification of users using handwritings employing the WI method, as can be seen 

in [8] and [9] with accuracies of up to 99%, have begun to be used to implement systems for verifying offline 

signatures. An example of this is described in [10], where it is built a neural network architecture which, after 

being trained with a database of 111 users, obtained a 96.3% in its overall accuracy. 

With the rise of the Deep Learning techniques [11], more robust networks, such as Convolutional 

Neural Networks (CNN) [12], have been started to be used in recognition of patterns in images. 

Those networks are able to extract higher level features, allowing its use in complex developments related to 

letters and words, such as in the recognition of license plates of cars [13] and word spotting 

applications [14, 15], among others. The CNN has also demonstrated to have better performance than the 

common artificial neural networks, surpassing the accuracy in more than 10% [16]. The advantage that the 

CNNs have is that they does not only focus their learning on finer details but on general appearance of the 

signatures [17]. This capability has given the possibility of applying them in works like the one developed in 

[18], where a Deep CNN is used in order to discriminate which signatures belonged to which user using the 

WI method, and then move on to another phase, where WD is used to classify the signature as genuine or not. 

Other similar work is described in [19], where a hybrid WI-WD model is implemented, using a 2-channel 

CNN with a channel for a query signature and other for a reference signature, additionally, adding an WD 

stage with a support vector machine (SVM) trained with the CNN features of the last downsampling layer.  

In [20], in contrast to the aforementioned works, the authors propose 3 stages, that were called 

“feature learning”, where a pre-trained residual CNN was used to learn the characteristics of the signatures, 

then, 2 additional stages “active learning” and “final verification” are implemented with SMV, the first one to 

finally separate the genuine signature from the forgeries, and the other to finally verify the authenticity. 

However, those development needs at least 2 stages to finally verify if the signature is genuine or not, hence, 

the idea of our work is to combine the two stage in only one network capable of identify an user signature 

and verify its authenticity and also discard the signatures no belonging to the users registered. A similar 

approach to our work is presented in [21], where the WI and WD stages are combined into only one Siamese 

CNN, nevertheless, it need to compare the similarity between a pair of signatures, i.e. a sample of a genuine 

signature is needed. In our work, no sample to compare is needed in order to verify the signature entered to 

the network. 

In order to advance in the development of the techniques used for offline signature verification, 

this work presents the use of a DAG-CNN, a network that consists of a CNN configured with a structure type 

Directed Acyclic Graph (DAG) Network [22], which has as advantage over a CNN configured in a linear 

way the use of multiple paths or branches in order to allow the network to increase its depth (number of 

convolution layers used) without having to make it longer. Also, each path can be configured in different 

ways, providing the network with the possibility to learn different features directly from the original input. 

With this network, we seek to verify the authenticity of different signatures using the WI method for an 

application where a registration of 3 users is done, which are accepted by means of their signature, 

additionally, the network must be able to know if the signature that is made belongs or not to the people 

in registered. 

This work is divided into 5 sections, where section 2 describes the database built for the 

implementation. Section 3 presents the proposed architecture together with its respective training and 

validation. Section 4 presents the results obtained through a new database and the analysis of the behavior of 

the network. Finally, section 5 gives the conclusions reached. 

 

 

2. METHODOLOGY 

2.1.  Database 

Because this work is focused on the verification of a group of 3 specific users, we built our own 

database. This database consists of 339 genuine signatures and 260 forgeries made manually by users, 

additionally, as it is required that if another person signs with their own signature is not recognized within the 

users, an additional category is added with 1 signature of 115 different users, which were obtained from the 

UTSig Dataset [23]. 

 

2.1.1. Database collection 

The collection of the genuine signatures is done with each of the users, writing it on a white sheet, 

without restriction of size and direction, i.e. as the person does not always sign in the same way, the signature 

can be made larger or smaller, just as it may have variations in its inclination. In addition to this, 
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the collection of all the signatures is done in a single day, in other words, people start with the rested hand, 

but while they advance in the writing, they are going to feel annoyance or fatigue when writing, doing that 

they have majors variations in the elaboration of the signature, this to have major variation in the genuine 

signatures. In total, 339 genuine signatures are obtained. The forgeries consist of 2 types, some elaborated by 

the same user, so that he makes slight variations where he/she is able to identify that is not his/her signature, 

and made by third parties (people not belonging to the database), collecting a total of 260 forged signatures. 

A sample of the database can be seen in Figure 1. 
 

 

 
 

Figure 1. Samples of each user 
 

 

2.1.2.  Preprocessing 

Two phases of preprocessing were carried out: the first phase was done manually, where each of the 

signatures was digitalized with a scanner of 300 dpi resolution, saved in JPG format, followed by this, each 

of the signatures was cut to a predefined size, taking into account the largest signature, which was  

570×920 px, without scaling, i.e. with its original digitization size, and finally, the residues not belonging to 

the signatures, such as stains or dirt, were eliminated. In the second phase, the improvement of the image is 

performed, which consists of passing it to grayscale and making a contrast adjustment to highlight the details 

of the signatures using (1). 
 

𝐼𝑂𝑈𝑇𝑖,𝑗
= 𝑙𝑜𝑤𝑜𝑢𝑡 + (ℎ𝑖𝑔ℎ𝑜𝑢𝑡 − 𝑙𝑜𝑤𝑜𝑢𝑡) (

𝐼′𝐼𝑁𝑖,𝑗

ℎ𝑖𝑔ℎ𝑖𝑛 − 𝑙𝑜𝑤𝑖𝑛
)

𝑔

, 

 

𝑤ℎ𝑒𝑟𝑒: 𝐼′𝐼𝑁𝑖,𝑗
= {

0    𝑖𝑓 (𝐼𝐼𝑁𝑖,𝑗
− 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑖𝑛) ∗ 𝑙𝑜𝑤𝑖𝑛) − 𝑙𝑜𝑤𝑖𝑛 ≤ 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝐼𝐼𝑁𝑖,𝑗
− 𝑎𝑟𝑔𝑚𝑎𝑥(𝐼𝑖𝑛) ∗ 𝑙𝑜𝑤𝑖𝑛) − 𝑙𝑜𝑤𝑖𝑛

 

(1) 

 

Where 𝐼𝑂𝑈𝑇𝑖,𝑗
 is the output pixel at the position (i,j) of the processed image and 𝐼𝐼𝑁𝑖,𝑗

 the input pixel, 

𝑙𝑜𝑤𝑜𝑢𝑡 and ℎ𝑖𝑔ℎ𝑜𝑢𝑡 are the upper and lower limits of scaling of the processed image, 𝑙𝑜𝑤𝑖𝑛 and ℎ𝑖𝑔ℎ𝑖𝑛 are the 

upper and lower limits of scaling of the input image, and 𝑔 is gamma, variable that modifies the mapping 

curve between input and output. For this case, 𝑙𝑜𝑤𝑜𝑢𝑡 = 0, ℎ𝑖𝑔ℎ𝑜𝑢𝑡 = 1, 𝑙𝑜𝑤𝑖𝑛 = 0.5059, ℎ𝑖𝑔ℎ𝑖𝑛 = 1 and 𝑔 =  1. 

 

2.1.3.  Data augmentation 

To increase the database without needing to require more signatures of the users and in turn to make 

changes in the positions of the signatures, it is decided to carry out a data augmentation. In order to do this 

augmentation, a location algorithm is applied using morphological operations [24] and a conditional  

of area, i.e. the image is binarized with a fixed threshold, where pixels with values greater than 252  

become 1, otherwise, become 0, to then applying a close operation (dilation followed by erosion) followed by 

an open operation (erosion followed by dilation), in order to eliminated the noise that was not erased in the 

first phase of the preprocessing. With this, a conditional is applied over the remaining areas, where if they 

have less than 500 px, they are erased, in order to avoid taking into account residual stains, since the resulting 

areas are used to generate the bounding box that will contain the signature. To the bounding box, 20 px are 

added to each side, in order to cover possible parts of the traces that might be out from it, and then, the box is 

located on the original image. This process can be seen in Figure 2. 
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Figure 2. Process to locate the region of interest of the signature in the image 
 
 

In this way, the region of interest of each signature is found, from which the values of location of 

the vertices of the bounding box are obtained, comparing what vertex is more separated from the edge of the 

image. Taking into account this separation, a signature shift is performed, whose value is random between 

the point of the vertex and half the distance from the farthest edge, both in the height and in the width of the 

image. This process is performed at least 4 times in each category, resulting in a total of 1356 genuine and 

1381 forgeries, adding 461 signatures not belonging to the 3 users. From that database, 50 are randomly 

extracted from each category to carry out the validation of the network, obtaining a dataset of 2,848 

signatures for training and 350 for validation. 

 

2.2.    DAG-CNN 

2.2.1. Architecture 

To perform the verification of each signature, a DAG-CNN with its own bilinear architecture is 

used, in such a way that a very deep CNN can be achieved but divided into two sections focused on learning 

different characteristics. As shown in Table 1, each division consists of a different configuration, where  

path 1, by the sizes of its filters, is focused on learning details of the signatures, for this reason, it also 

consists of a large number of filters in all layers to be able to learn enough features. On the other hand, path 2 

has fewer filters with larger sizes in each layer, which allows this division to learn more general 

characteristics of the signatures, such as its dimensions and sections by larger details. Due to the original size 

of the images of the dataset, the computational cost would be very large, for this reason, when entering the 

network, it was reduced to a size where the characteristics of the signature were not lost, being resized to 

30% of its size, remaining with dimensions of 171×276 px at the entrance of the network. In general, 

the architecture must be able to classify 7 different categories, of which are: a category of genuine signatures 

and one of forgeries for each user, having 6 categories in total, plus an additional one of signatures not 

belonging to the database. 
 

 

Table 1. DAG-CNN Architecture proposed. In the configuration of the layers, F is the amount of filters,  

S represents the Stride and P the zero padding. In the layers, BN and FC are the Batch Normalization  

and Fully Connected layers, respectively 
Input 171x276 

Path 1 Path 2 

Convolution 

(ReLU + BN) 

16x16 F = 32 

S = 3 / P = 2 

Convolution 

(ReLU + BN) 

30x30 F = 16 

S = 1 / P = 0 

Convolution 
(ReLU + BN) 

5x5 F = 64 
S = 1 / P = 2 

Convolution 
(ReLU + BN) 

20x20 F = 16 
S = 1 / P = 0 

MaxPooling 2x3 S = 2 

P = 1x0 

MaxPooling 3x2 S = 2 

P = 0 
Convolution 

(ReLU + BN) 

4x4 F = 96 

S = 1 / P = 1 

Convolution 

(ReLU + BN) 

10x10 F = 32 

S = 1 / P = 2 
Convolution 

(ReLU + BN) 

4x4 F = 128 

S = 1 / P = 1 

MaxPooling 2x3 S = 2 

P = 0 

MaxPooling 2x2 S = 2 
P = 0 

Convolution 
(ReLU + BN) 

9x9 F = 32 
S = 1 / P = 2 

Convolution 

(ReLU + BN) 

4x4 F = 256 

S = 1 / P = 0 

MaxPooling 2x2 S = 2 

P = 0 
Convolution 

(ReLU + BN) 

4x4 F = 64 

S = 1 / P = 2 

MaxPooling 2x2 S = 2 
P = 0 

MaxPooling 2x3 S = 2 
P = 0 

FC (ReLU + 

Dropout) 

1024 FC (ReLU + 

Dropout) 

256 

FC (ReLU + 

Dropout) 

2048 FC (ReLU + 

Dropout) 

2048 

FC 7 
SoftMax 

Classification 
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2.2.2.  Training process 

For the execution of the training, batches of 32 signatures were used per iteration, in other words, to 

complete an epoch, 89 iterations were needed, since if a larger amount of data were used per batch, 

the computational cost would be very high. Due to this, we chose to use a learning rate of 10-4 for the 

network to be able to learn the characteristics more generally and prevent the network from falling into a 

state of overfitting, in addition, the order of the signatures changes randomly in each epoch, in order not to 

bias the network to learn data sorted in a specific order. With these parameters, the DAG-CNN was trained 

for 60 epochs, showing the behavior of Figure 3, obtaining an accuracy of 100% with the training dataset and 

99.43% with the validation, which is a very reliable accuracy in terms of identification of forgeries, i.e. of the 

350 validation signatures, it only had misclassification in 2 signatures, one given as genuine when it was 

forgery for user 1, and one recognized as forgery when it was genuine for user 3, as shown in the confusion 

matrix of Figure 4. Likewise, all the signatures of the 115 users not belonging to the verifiable ones were 

correctly classified. 
 

 

 
(a) 

 
(b) 

 

Figure 3. Training and validation behavior of the DAG-CNN, a) Accuracy, b) Loss 
 
 

 
 

Figure 4. Confusion Matrix of the last epoch trained of the network using the Validation Dataset 

F are the Forgery and G are the Genuine Signatures 

 

 

3. RESULTS AND DISCUSSIONS 

To test the network, an additional database is built, called Test dataset, which consists of 23 genuine 

signatures and 23 forgeries of each user to which a data augmentation was performed with changes of 

random position, i.e. in the same way to the augmentation done in section 2, obtaining a total of 345 

signatures per category (2415 in total of the database). For the category of others, the 115 users of the UTSig 

Dataset were used, but choosing 3 different samples to those already used in the previous databases. 
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This database is entered to the trained network to perform the test, in which 99.3% of overall 

accuracy is obtained, as shown in Figure 5, where it can be seen that the genuine signatures of all users were 

recognized with percentages greater than 98%. However, some forgeries managed to pass as genuine, but 

their correct classification was higher than 98.5% in all cases, demonstrating the effectiveness of the network 

in verifying the users registered, even having forgeries with great similarity (those elaborated by the same 

user with slight changes). 

 

 

 
 

Figure 5. Confusion Matrix using the Test Dataset 

 

 

To understand the internal operation of the network, the strongest activations of each convolution 

are extracted after the application of ReLU (Rectified Linear Unit, whose function is to eliminate the 

negative values of the output volume), in such a way that it can be observed how the network behaves with 

the image through it. In Figure 6, it can see the different activations of the two divisions of the network.  

Path 1 shows activations mainly focused on the internal details of the signature, contour and shape in the last 

two convolutions, while path 2 focuses largely on the general form of the signature, empty sections within 

the contour and the boundaries of possible signature location (convolution 2).  

In a more detailed way to visualize the activations over the signature, heat maps overlapped on the 

original image are used. In those maps, the strongest activations are represented by red color and the weakest 

ones by dark blue. For this, the best seven activations obtained in the first layer of each path are shown in 

Figure 7. Within the path 1, the filters were able to learn finer details of the signature, not only related to the 

shape but of different key parts, such as the first letter of the signature, as can be seen in the last activation of 

the bottom, and specific traces that can differentiate a forgery from a genuine, such as the third activation at 

the top and the bottom. On the other hand, in path 2, as expected, generalize the “appearance” of the 

signature, activating independently the lower, center and top part of the signature, also it activates empty 

regions as in the second convolution layer, as shown in Figure 6. The above shows that the proposed 

architecture obtained the behavior that was desired, described in section 3. 

 

 

 
 

Figure 6. Activations of each convolution. At the top, the path 1; at the bottom, the path 2. 

The convolutions are sorter from left (convolution 1) to right (convolution 5) 
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(a) 

 

 
(b) 

 

Figure 7. Activations of the first convolution layer using overlapped heat maps, a) Path 1, b) Path 2 

 

 

4. CONCLUSIONS 

This paper presented the application of a DAG-CNN focused on the offline signature verification, as 

an advance in the use of Deep Learning pattern recognition techniques in this type of task, giving a network 

capable of classifying and authenticate at the same time, showing the performance of this type of network. 

Using a DAG-CNN allowed it to learn different characteristics of the signatures, as shown in Figure 6 and 

Figure 7, where, depending on the type of configuration that is set in each branch, the network focused on 

certain sections and details of the signature in order to be able to differentiate, first, whether it belonged or 

not to registered users, and then verify the genuineness of it. The results obtained and the analysis of the 

behavior of the trained network, where an accuracy greater than 99% was obtained, allow us to verify the 

efficiency of the CNN, in this case of a DAG-CNN, for the recognition of the genuineness of signatures 

offline. On the other hand, to achieve even a higher percentage, it can be added online data collection 

methods and analysis of these, making real-time verification much more reliable, i.e. at the time of signing, 

however, it requires the use of specialized devices to perform said data acquisition, which can be applied in 

future work. 
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