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 Predicting electricity power is an important task, which helps power utilities 

in improving their systems’ performance in terms of effectiveness, 

productivity, management and control. Several researches had introduced 

this task using three main models: engineering, statistical and artificial 

intelligence. Based on the experiments, which used artificial intelligence 

models, multilayer neural networks model has proven its success in 

predicting many evaluation datasets. However, the performance of this model 

depends mainly on the type of activation function. Therefore, this paper 

introduces an experimental study for investigating the performance of  

the multilayer neural networks model with respect to different activation 

functions and different depths of hidden layers. The experiments in this paper 

cover the comparison among eleven activation functions using four 

benchmark electricity datasets. The activation functions under examination 

are sigmoid, hyperbolic tangent, SoftSign, SoftPlus, ReLU, Leak ReLU, 

Gaussian, ELU, SELU, Swish and Adjust-Swish. Experimental results show 

that ReLU and Leak ReLU activation functions outperform their counterparts 

in all datasets. 
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1. INTRODUCTION 

Electrical power is produced from different sources, some of them are renewables and others are 

non-renewables. Nowadays, consumers can become producers if they have other power resources, especially 

renewable such as solar or wind power, and this turned to be difficult to control. Due to that, the need for  

a stable system to manage this new attitude emerged. This system is standing for what we have and what we 

need. Many organizations are using information system to help their jobs by storing information and use that 

information to help in making decisions in the future. Planning by forecasting is to analyze historical data to 

save energy a usage [1]. This data had been collected over the time of the progress. This data is formatted 

minutely, hourly, daily, weekly, monthly, quarterly, or yearly. Also, it consists of univariate or multivariate 

depending on the input variables that affect electricity. Due to the complication of prediction, several models 

have been proposed. These models include engineering, statistical and artificial intelligence [2]. The most 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.thesaurus.com/browse/complication
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used model is artificial neural network (ANN). Fully connected supervised network with back propagation 

learning rule is the most often used.  

This type of ANN is excellent at prediction. To predict one or more values from the input variables 

is the aim of supervised learning. Regression that depends on example pairs of data is a form of supervised 

learning. This type of network is a fully interconnected neurons in different layers, the input layer, the output 

layer, and the hidden layers which have at least on hidden layer [3]. The hidden layer connect the input and 

the output layers. The input layer receives data that the neural network learns from and the output layer 

provides response to the input data. There is no exact role to determine the number of hidden layers and  

the number of neurons in the hidden layer and there were many studies that tried to figure these numbers.  

The neural network is learned by algorithms. There are many learning algorithms in the neural network but 

the most commonly used is back propagation of error. The error in prediction is fed backwards through  

the network during training to adjust the weights and minimize the error. This step is repeated until achieving 

the minimum error or reaching the specific number of epochs [4]. In the center of network stands  

the activation function. In theory, any function can be utilized as an activation function. However,  

the activation function have a linear and nonlinear character. Nonlinear activation is important in order to be 

capable to distinguish the complex relationships which exist in the feature space [5]. Whereas linear 

functions are particularly used in output layers especially for regression, non-linear activation functions can 

be utilized in hidden layer. Also non-linear can be used in output layers especially for classification [6]. 

Moreover, derivative of activation function is involved in the calculation for error which effects on weights 

of neuron connections. 

We organized the rest of this paper as follows: Section 2 presents activation functions in 

comparison. In section 3 we present data sets description and methodology that used in this work in  

section 4. Experiments and their results covered in Section 5 Finally, Section 6 concludes the paper. 

 

 

2. ACTIVATION FUNCTIONS IN COMPARISON 

The choice of activation functions strongly influences the performance of neural networks. In this 

session, we describe the most used activation functions. Sigmoid [7] is a widely used activation function.  

The output values are between zero and one. Its equation is: 

 

 
(1) 

 

Due to simplicity of sigmoid derivative, Sigmoid is fast to execute. But its problem is that gradient 

approaches to zero and the learning of network becomes difficult. The hyperbolic tangent function [8] is zero 

centered and its output between -1 and 1, 

 

 
(2) 

 

SoftSign [8] function is closely related to hyperbolic tangent. SoftSign converges polynomially 

whereas hyperbolic tangent converges exponentially. SoftSign defined as 

 

 

(3) 

 

Rectified linear unit (ReLU) [9] defined as positive part of x: 

 

 
(4) 

 

It is simple, and fast. In addition, it rectifies vanishing gradient problem. The most aspect of ReLU 

is dead neurons which mean it is never been activated when x is less than zero. In [10], authors defined  

a leak rectified linear unit (LReLU) as, 

 

 

(5) 

https://serengil.wordpress.com/2017/01/21/the-math-behind-backpropagation/
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It is similar to ReLU. The only difference is that LReLU flows when x<0 and that solves the dead 

neurons of ReLU from the author's point of view. 

SoftPlus [11]: 

 

 
(6) 

 

SoftPlus is just a smooth approximation to the LReLU but it is positive. Figure 1 shows  

the difference between among Sigmoid, Tanh and SoftSign, ReLU, Leak ReLU and SoftPlus. 

 

 

 
 

Figure. 1. Sigmoid, Tanh, SoftSign, Leak ReLU, ReLU and SoftPlus activation functions 

 

 

Gaussian activation function [12], defined as, 

 

 
(7) 

 

Exponential linear unit (ELU) [13] is like ReLU and leaky ReLU for avoiding a vanishing gradient 

by the identity of positive values, 

 

 

(8) 

 

where α=1.0  

Scaled exponential linear unit (SELU) [14] which is a modified type of ELU with two fixed 

parameters. It is defined as, 

 

 

(9) 

 

where α ≈ 1.6733 and γ ≈ 1.0507 

Google Brain introduces a new activation function which is called Swish [15] 

 

 

(10) 

 

Adjusted swish (E-Swish) [16] is a modified type of Swish and is defined as 

 

 

(11) 
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The difference between Swish and E-Swish is the position of constant β. The similarities and 

differences between them shown above in Figure 2. Swish and E-Swish activation functions are equal when 

β=1. According to [15, 16] papers, they performed a good result in image classification and never examines 

before in regression. In this work we set β=1 for Swish activation function as the best achieved result in  

the original paper and β=1.5 in the E-Swish activation function for the same reason. 

 

 

 
 

Figure. 2. ELU, SELU, gaussian, swish and E-swish activation functions 

 

 

2.1.  Dataset description 

In this paper we try to cover different types of data sets which are related to electricity. The variety in 

the quality of the data set is used. Consumption, production, multivariate and univariate are considered.  

Also, some of them depends on date and time. Moreover, we consider the relationships between the input and 

output variables. 

 

2.2.  Combined cycle power plant 

Combined cycle power plant data set consists of four input variables temperature, ambient pressure, 

relative humidity and exhaust vacuum. Those input variables are used to predict electrical energy output.  

The data set was collected over six years (2006-2011) and contains 9568 data points [17]. There is no missed 

data in this dataset. Figure 3 below shows the relationship between energy and its factors. 

 

 

 
 

Figure 3. Scatter diagram of electrical energy output vs temperature, pressure, humidity and exhaust vacuum 
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2.3.  Energy efficiency dataset 

the dataset consist of eight input attributes relative compactness (comp), surface area (sa), wall Area 

(WA), roof area (RA), overall height (OH), orientation (Orie), glazing area (GA), glazing area distribution 

(GAD) which are the building design parameters. The responses outcomes are heating load (HL) and cooling 

load (CL) which are power consumption [18]. 

 

2.4.  Appliances energy prediction dataset 

It consists of 19735 instances of 28 attributes. Those attributes are related to temperature, humidity, 

pressure, wind speed, days of week and day status [19]. It does not containe any missing values. 

 

2.5.  Individual household electric power consumption dataset 

This dataset is time series which measures an electric power consumption in one household for  

a single residential customer. It contains the consumption power record that is taken in each minute over  

a period of four years between December 2006 and November 2010. The original dataset contains nine 

attributes but we focused on the datetime as a time series and the household global minute-averaged active 

power. There are missing values of data and we fill them by using the values that come before [20].  

Table 1 shows the properties of data set. 

 

 

Table 1. Individual household electric power consumption properties 
Propertiy Value 

Count 2,075,259 

Max 11.120 
Min 0.076 

Mean 1.086 

Median 0.598 
STD 1.053 

Missing values 25,979 

 

 

3. METHODOLOGY 

We use neural network with different depth of hidden layers to examine the most accurate activation 

function. Many studies tried to define the number of hidden layers and the number of neurons in each hidden 

layer but we know that no exact role can define that. In this paper, we concentrate on the activation function 

and we do not focus on the structure of neural network. Therefore, we defined four models of multilayer 

neural networks with different depth. The first model is sample with one hidden layer and different number 

of neurons according to the four different datasets. We specified the number of neurons by function [2]. 

 

𝑁ℎ = 𝑁 + 1 (12) 

 

where N is the number of input data 

The other models are defined with more hidden layers. Model 2 consists of two hidden layers with 

30 and 20 neurons in each layer. The third is deeper than previous models with 9 hidden layers with 240, 

200, 160, 120, 80, 60, 40, 30, 20 neurons in hidden layer respectively. The last model is designed with 11 

hidden layers with 320,280,240, 200, 160, 120, 80, 60, 40, 30, 20 neurons. We tried to go deeper to 

determine the ability of activation function in deep neural network. We implement the stochastic gradient 

descent (SGD) [21] as the optimizer. The number of epochs is enough to reach the best solution. The initial 

learning rate is set to 0.1 and we reduced it by multipleying it by 0.2 at 40, 80, 120, 160 epochs. 

The initialization of training is Glorot uniform initialization [8]. We utilized no dropout and  

0.9 momentum. The parameters that used in the four models are equal for the all data sets except for  

the individual household electric power consumption data set because it has huge number of data and needs 

long time of execution. So, the number of epochs is reduced to 40 with Adam optimizer [22] as it considers 

faster than others. We use root mean squared error (RMSE)  [32 ] which is one of quantitive approaches of 

model performace evaluation. It compares predicted values to the actual values 
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where Xobs is predocted values and Xmodel is actual values 
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To train the neural network efficiently [24], we perform data preprocessing to transform input data 

into better form. The transformation was used by Min-Max normalization [25] which is one of the most used 

techniques and it is accomplished by: 

 

𝑋 =
x−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (14) 

 

 

4. EXPERIMENTS AND RESULT 

In order to evaluate the activation function with the four models and datasets, all datasets divide into 

train set and test set. Each model trains by using 75% of the data and the rest for testing which are unseen 

values. The test set is usually used to gage the models but also training set shows the ability of learning.  

We compare the median of 9 runs in all execution models of datasets except for the Individual household 

electric power consumption dataset.  

As shown in Table 2 that ReLU activation gets best result in model II, III and IV for training and 

testing set of combined cycle power plant data set. In addition, SELU gets best performance for training and 

testing set in model I. Table 3 shows that ReLU and Leak ReLU get the best performance in all models for 

energy efficiency dataset. The minimum train errors in model II, III, IV and the minimum test error in model 

II is gotten by ReLU. Leak ReLU achieves the minimum errors in the rest. 

 

 

Table 2. RMSE comparison of activation function in 4 models for combined cycle power plant dataset 
Activation MODEL I MODEL II MODEL III MODEL IV 

Train Test Train Test Train Test Train Test 

Sigmoid 4.421 4.619 4.501 4.707 4.182 4.365 4.125 4.310 

Tanh 4.251 4.442 4.130 4.326 3.978 4.228 3.927 4.204 

SoftSign 4.251 4.451 4.132 4.325 4.039 4.265 3.742 4.102 

SoftPlus 4.303 4.404 4.236 4.419 4.150 4.323 4.155 4.340 

ReLU 4.218 4.413 3.856 4.141 3.214 3.845 3.126 3.860 

LReLU 4.212 4.409 3.915 4.173 3.438 3.939 3.383 3.943 
Gaussian 4.223 4.394 4.153 4.328 17.07 17.04 17.07 17.04 

ELU 4.383 4.451 4.158 4.337 4.055 4.273 3.949 4.200 

SELU 4.187 4.383 4.138 4.334 3.753 4.091 3.809 4.200 
Swish 4.239 4.424 4.233 4.413 4.071 4.273 3.945 4.187 

E-Swish 4.239 4.426 4.214 4.397 3.991 4.207 3.936 4.186 

 

 

Table 3. RMSE comparison of activation function in 4 models for energy efficiency (heating load) dataset 
Activation MODEL I MODEL II MODEL III MODEL IV 

Train Test Train Test Train Test Train Test 

Sigmoid 2.927 3.140 2.928 3.127 2.675 3.530 2.357 3.977 
Tanh 2.921 3.137 2.969 3.227 2.636 2.773 1.021 1.467 

SoftSign 2.614 2.464 3.031 3.171 0.724 2.195 0.906 1.276 

SoftPlus 2.860 2.984 2.724 2.599 1.990 2.863 1.021 1.531 
ReLU 2.130 2.189 0.446 0.679 0.385 1.002 0.398 1.248 

LReLU 2.021 2.057 0.652 0.783 0.462 0.918 0.451 1.044 

Gaussian 2.457 3.235 2.797 3.425 2.476 2.717 2.665 3.506 
ELU 2.752 2.669 2.766 2.809 1.797 2.035 1.612 2.190 

SELU 2.265 2.400 2.857 2.991 0.477 1.165 0.439 1.062 

Swish 2.734 2.651 2.656 3.085 0.885 1.548 0.808 1.074 
E-Swish 2.725 2.639 2.704 2.729 1.370 1.759 0.833 1.135 

 

 

The performance of ReLU and Leak ReLU also outperform the other activation functions. Table 3 

and 4 present the prediction of the same dataset. The only difference is that Table 3 presents the prediction of 

heating load response variable and Table 4 shows the prediction of cooling load response variable. 

The correlation among variables in appliances energy is obviously clear that the relationships 

between input and output of the appliances energy prediction dataset are weak. The error is large compared to 

other datasets. In the original paper [19], multiple linear regression model gets (RMSE=93.21) for training 

set and (RMSE=93.18) for testing set. It is seen in Table 5 below that SELU achieves best result in Model I.  

In addition, ReLU and Leak ReLU still outperform other activation functions in Model II, Model III  

and Model IV. 
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Table 4. RMSE comparison of activation function in 4 models for energy efficiency (cooling load) dataset 
Activation MODEL I MODEL II MODEL III MODEL IV 

Train Test Train Test Train Test Train Test 

Sigmoid 3.195 3.284 3.193 3.272 3.069 3.347 2.597 3.092 

Tanh 3.189 3.276 3.243 3.460 2.492 2.945 1.197 2.152 
SoftSign 3.037 3.006 3.036 3.077 2.794 3.058 0.758 2.060 

SoftPlus 3.169 3.222 3.133 3.113 2.155 2.545 1.686 2.003 

ReLU 2.698 2.789 1.009 1.362 0.404 1.149 0.396 1.429 
LReLU 2.693 2.746 1.404 1.859 0.477 1.225 0.460 1.203 

Gaussian 2.864 2.927 2.404 2.440 2.376 3.264 2.665 3.924 

ELU 3.133 3.150 3.118 3.036 2.989 3.032 2.420 2.521 
SELU 2.855 2.906 3.081 3.171 0.755 1.429 0.632 1.469 

Swish 3.135 3.134 3.084 2.040 1.225 1.924 1.171 1.619 

E-Swish 3.126 3.138 2.929 3.004 1.300 1.788 1.102 1.464 

 

 

Table 5. RMSE comparison of activation function in 4 models for appliances energy prediction dataset 
Activation MODEL I MODEL II MODEL III MODEL IV 

Train Test Train Test Train Test Train Test 

Sigmoid 93.47 93.71 93.46 93.70 81.64 85.10 73.99 81.82 

Tanh 93.46 93.69 86.92 88.81 59.60 76.52 54.75 74.60 

SoftSign 89.27 90.11 81.66 85.20 50.54 73.43 44.36 72.71 
SoftPlus 93.43 93.67 92.20 92.60 69.92 81.43 63.81 78.63 

ReLU 84.77 86.82 77.44 82.42 37.77 72.86 36.56 72.26 

LReLU 84.57 86.62 74.93 81.66 43.47 72.27 39.27 71.31 

Gaussian 85.37 87.20 78.71 83.09 57.41 77.08 70.97 80.88 

ELU 92.68 92.99 86.53 87.80 63.91 76.92 58.28 76.34 

SELU 84.50 86.50 79.85 83.82 52.39 74.68 48.03 73.99 
Swish 91.10 91.67 88.01 88.95 57.53 75.69 50.22 73.82 

E-Swish 91.51 91.97 86.79 88.33 57.31 77.42 50.03 74.51 

  

 

Individual household electric power consumption dataset needs long time to execute due to its huge 

size. Therefore, we reduced the epoch number to 40 instead of 200. In addition, the number of 

implementations is reduced to three instead of nine. Moreover, we just tested Model I and Model II due to  

the same reason. Table 6 shows that ReLU Activation function outperforms its counterparts. Table 7 

summarizes the results of all expermints. It shows that ReLU and LReLU outperform the other activation 

functions. In addition, we can observe that ReLU learn in train data better than others do. 

 

 

Table 6. RMSE comparison of activation function in 4 models for  

individual household electric power consumption dataset 
Activation MODEL I MODEL II 

 Train Test Train Test 

Sigmoid 0.277 0.228 0.544 0.517 

Tanh 0.298 0.250 0.275 0.225 

SoftSign 0.283 0.234 0.623 0.606 
SoftPlus 0.278 0.228 0.346 0.306 

ReLU 0.276 0.225 0.274 0.224 

LReLU 0.278 0.227 0.278 0.227 
Gaussian 0.285 0.237 0.285 0.237 

ELU 0.279 0.230 0.279 0.231 

SELU 0.287 0.239 0.285 0.236 
Swish 0.292 0.244 0.282 0.234 

E-Swish 0.321 0.278 0.334 0.296 

 

 

Table 7. Best performance of activation functions for all data sets 

Dataset Train Test 

Combined cycle power plant ReLU ReLU 

Energy efficiency (Heating Load) ReLU ReLU 

Energy efficiency (Cooling Load) ReLU ReLU 

Appliances energy prediction ReLU Leak ReLU 

Individual household electric power consumption ReLU ReLU 
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5. CONCLUSION 

Prediction of power consumption and production is an important step to manage and control power 

utilities. This prediction helps the utilities to figure the quantity of consumed and produced electricity. There 

are many models designed for that purpose. Nowadays, artificial intelligence models such as neural networks 

(Feedforword neural network) proved its efficiency. Building strong model for prediction using multilayer 

neural network needs several important things one of them is choosing suitable activation function.  

We compare the most used activation functions on data sets related to electrical power. We present that 

ReLU and Leak ReLU outperform other activation function. ReLU activation achieves 13 over 18 of train set 

and 8 over 18 of testing sets and Leak ReLU achieves 3 over 18 in training sets and 8 over 18 in testing sets. 

ReLU achieves the smallest error in training set in all datasets. ReLU in combined cycle power plant, energy 

efficiency (Heating Load) and energy efficiency (Cooling Load) and individual household electric power 

consumption datasets performs the minimum RMSE in test set. In the other hand, Leak ReLU achieves  

the minimum test set error in appliances energy prediction dataset. 
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