Homogeneous components of a CDH fuzzy space

Samer Al Ghour

Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan

Article Info

ABSTRACT

Article history:

Received Jul 30, 2018 Revised Mar 6, 2019 Accepted Mar 8, 2019 We prove that fuzzy homogeneous components of a CDH fuzzy topological space (X, \Im) are clopen and also they are CDH topological subspaces of its 0-cut topological space (X, \Im_0).

Keywords:

CDH fuzzy topological spaces Homogeneous components CDH topological spaces Fuzzy homogeneous components

Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:

Samer Al Ghour, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan. Email: algore@just.edu.jo

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we follow the notions and terminologies as they appeared in [1]. As defined in [2], the notion of a fuzzy set in a set X is a function from X into the closed interval [0,1]. Accordingly, Chang [3] introduced the notion of a fuzzy topological space on a non-empty set X as a collection of fuzzy sets on X, closed under arbitrary suprema and finite infima and containing the constant fuzzy sets 0 and 1. Mathematicians extended many topological concepts to include fuzzy topological spaces such as: separation axioms, connectedness, compactness and metrizability, see [4]-[9]. Several fuzzy homogeneity concepts were discussed in [1, 10-17].

A separable topological space (X, τ) is countable dense homogeneous (CDH) [18] if given any two countable dense subsets *A* and *B* of (X, τ) there is a homeomorphism $f: (X, \tau) \to (X, \tau)$ such that f(A) = B. Recently, authors in [1] extended CDH topological property to include fuzzy topological spaces. They proved that their extension is a good extension in the sense of Lowen, and proved that a-cut topological space (X, \mathfrak{I}_a) of a CDH fuzzy topological space (X, \mathfrak{I}) is CDH in general only for a = 0.

In the present work, we show that fuzzy homogeneous components of a CDH fuzzy topological space are clopen and also they are CDH in its 0-cut topological space (X, \mathfrak{I}_0) . Given a topological space (X, τ) , the relation τ , defined as for $x, y \in X, x \tau y$ iff there exists a homeomorphism $h: (X, \tau) \to (X, \tau)$ such that h(x) = y, turns out to be an equivalence relation on X. The equivalence class of x under it is denoted as C_x^{τ} and is called the homogeneous component of (X, τ) at x. Analogously, we define the fuzzy homogeneous component $C_x^{\mathfrak{I}}$ of x, for a fuzzy topological space (X, \mathfrak{I}) (with homeomorphism). The following propositions will be used in the sequel:

a. Proposition 1.1.

Let (X, \mathfrak{J}) be a fuzzy topological space. If $C_x^{\mathfrak{J}}$ is a fuzzy homogeneous component of (X, \mathfrak{J}) and U is a non-empty open subset of (X, \mathfrak{J}_a) with $U \subseteq C_x^{\mathfrak{J}}$, then $C_x^{\mathfrak{J}} \in \mathfrak{J}_a$ [11].

b. Proposition 1.2.

Let (X, \mathfrak{I}) be a fuzzy topological space. Let A be a subset of X and let P be a collection of fuzzy points of X. Then we have the following [1]:

i. If A is dense in (X, \mathfrak{I}_0) , then $\mathbb{Q}(A)$ is dense(I) in (X, \mathfrak{I}) .

ii. If P is dense(I) in (X, \mathfrak{I}) , then S(P) is dense in (X, \mathfrak{I}_0) .

c. Proposition 1.3.

If (X,\mathfrak{J}) is a fuzzy topological space and $C_x^{\mathfrak{J}}$ is a fuzzy homogeneous component of (X,\mathfrak{J}) , then for any fuzzy homeomorphism $h: (X,\mathfrak{J}) \to (X,\mathfrak{J}), \ h(C_x^{\mathfrak{J}}) = C_x^{\mathfrak{J}}$ [11].

- d. Proposition 1.4.
 - If (X, \mathfrak{F}) is a CDH fuzzy topological space, then (X, \mathfrak{F}_0) is CDH [1].

e. Proposition 1.5.

Let (X,\mathfrak{J}) be a fuzzy topological space and let $f:(X,\mathfrak{J}) \to (X,\mathfrak{J})$ be a fuzzy continuous (homeomorphism) map. Then $f:(X,\mathfrak{J}_a) \to (X,\mathfrak{J}_a)$ is continuous (homeomorphism) for all $a \in [0,1)$ [19].

2. **RESULTS**

a. Theorem 2.1.

Let (X, τ) be a CDH topological space. Then every homogeneous component C_x^{τ} is clopen. In this paper, we will mainly obtain a fuzzy version of Theorem 2.1. This fuzzy version is as follows [20]: b. Theorem 2.2.

If (X, \mathfrak{I}) is a CDH fuzzy topological space, then every fuzzy homogeneous component $C_x^{\mathfrak{I}}$ of (X, \mathfrak{I}) is clopen in (X, \mathfrak{I}_0) . For any fuzzy topological space (X, \mathfrak{I}) and any $x \in X$, author in [11] proved that $C_x^{\mathfrak{I}} \subseteq C_x^{\mathfrak{I}_0}$. If for all $x \in X$, $C_x^{\mathfrak{I}} = C_x^{\mathfrak{I}_0}$, then Theorem 2.2 follows obviously using Theorem 2.1. Therefore, the following question is important:

- c. Question 2.3. Let (X, \mathfrak{I}) be a CDH fuzzy topological space. Is it true that $C_x^{\mathfrak{I}} = C_x^{\mathfrak{I}_0}$ for all $x \in X$. The following example gives a negative answer of Question 2.3:
- d. Example 2.4. For fixed 0 < a < 1, let $X = \{x, y\}$ and define $\mathfrak{T} = \{0, 1, x_{\frac{a}{2}}, y_{\frac{a}{4}}, x_{\frac{a}{2}} \cup y_{\frac{a}{4}}\}$. Then (X, \mathfrak{T}) is CDH and $C_x^{\mathfrak{T}} = \{x\}$ but $C_x^{\mathfrak{T}_0} = X$ for all $x \in X$.

The following two lemmas will be used in the following main result:

e. Lemma 2.5. Let (X, \mathfrak{I}) be a fuzzy topological space and let $C_x^{\mathfrak{I}}$ be a fuzzy homogeneous component of (X, \mathfrak{I}) with $C_x^{\mathfrak{I}} \notin \mathfrak{I}_0$. Then $X - C_x^{\mathfrak{I}}$ is dense in (X, \mathfrak{I}_0) .

Proof. Assume on the contrary that $X - C_x^{\mathfrak{I}}$ is not dense in (X, \mathfrak{I}_0) . Then there exists a non-empty set $U \in \mathfrak{I}_0$ such that $U \cap (X - C_x^{\mathfrak{I}}) = \emptyset$. Thus $U \subseteq C_x^{\mathfrak{I}}$ and by Proposition 1.1 we have $C_x^{\mathfrak{I}} \in \mathfrak{I}_0$, a contradiction.

f. Lemma 2.6. Let (X,\mathfrak{F}) be a CDH fuzzy topological space. Suppose that there exists a fuzzy homogeneous component $C_x^{\mathfrak{F}}$ of (X,\mathfrak{F}) with $C_x^{\mathfrak{F}} \notin \mathfrak{F}_0$. Let S be a countable dense subset of (X,\mathfrak{F}_0) . Let

$$D = X - Cl(S \cap (X - C_x^{\mathfrak{I}}))$$

and

$$T = ((D \cap S) \cup (S \cap (X - C_x^{\Im}))) - Bd(D)$$

where the closure and the boundary are taking in (X, \mathfrak{I}_0) . Then

i. $D \cap S \subseteq C_x^{\mathfrak{I}}$ ii. $(X - Cl(D)) \cap T \subseteq X - C_x^{\mathfrak{I}}$, iii. $D \neq \emptyset$.

iv. T is dense in
$$(X, \mathfrak{I}_0)$$
.

- Proof. i) Since $S \cap (X C_x^{\mathfrak{I}}) \subseteq Cl(S \cap (X C_x^{\mathfrak{I}}), \text{ then } D \subseteq X (S \cap (X C_x^{\mathfrak{I}})) \subseteq (X S) \cup C_x^{\mathfrak{I}}.$ Thus $D \cap S \subseteq \emptyset \cup (C_x^{\mathfrak{I}} \cap S) \subseteq C_x^{\mathfrak{I}}.$
 - ii) Let $t \in (X Cl(D)) \cap T$. Since $t \in X Cl(D)$, then $t \notin D$. Since $t \in T$, then $t \in S \cap (X C_x^{\mathfrak{I}}) \subseteq X C_x^{\mathfrak{I}}$.
 - iii) Suppose on the contrary that $D = \emptyset$. Then $Cl(S \cap (X C_x^{\mathfrak{I}})) = X$. Let $A = S \cap (X C_x^{\mathfrak{I}})$ and $B = A \cup \{x\}$. Then A, B are both dense in (X, \mathfrak{I}_0) and by Proposition 1.2 (i), $\mathbb{Q}(A)$ and $\mathbb{Q}(B)$ are both dense(I) in (X, \mathfrak{I}) . Since (X, \mathfrak{I}) is CDH, then there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$

such that $h(S(\mathbb{Q}(B))) = S(\mathbb{Q}(A))$. So h(B) = A. Since $x \in C_x^{\mathfrak{I}}$, then $h(x) \in h(C_x^{\mathfrak{I}})$. By Proposition 1.3, $h(C_x^{\mathfrak{I}}) = C_x^{\mathfrak{I}}$ and so $h(x) \in C_x^{\mathfrak{I}}$. On the other hand, $h(x) \in A$, that is $h(x) \notin C_x^{\mathfrak{I}}$, a contradiction. iv) It is sufficient to show that $Cl(D) \subseteq Cl(T)$ and $X - Cl(D) \subseteq Cl(T)$.

To see that $Cl(D) \subseteq Cl(T)$, let $a \in Cl(D)$ and $U \in \mathfrak{I}_0$ with $a \in U$. Then $U \cap D \neq \emptyset$. Since S is dense in (X,\mathfrak{I}_0) and $D \in \mathfrak{I}_0$, we have $U \cap (D \cap S) \neq \emptyset$. Since $D \in \mathfrak{I}_0$, then $D \cap Bd(D) = \emptyset$. Choose $b \in U \cap (D \cap S)$. If $b \notin T$, then $b \in D \cap Bd(D) = \emptyset$ and thus $b \in U \cap T$. Therefore, $a \in Cl(T)$.

To see that $X - Cl(D) \subseteq Cl(T)$, let $a \in X - Cl(D)$ and $U \in \mathfrak{I}_0$ with $a \in U$. Since $a \in X - Cl(D)$, then there is $V \in \mathfrak{I}_0$ such that $a \in V$ and $V \cap D = \emptyset$. On the other hand, $a \notin Cl(D)$ implies $a \notin D$ and hence $a \in Cl(S \cap (X - C_x^{\mathfrak{I}}))$. Thus, we have

$$(U \cap V) \cap (S \cap (X - C_x^{\Im})) \neq \emptyset.$$

Choose $b \in (U \cap V) \cap (S \cap (X - C_x^{\Im}))$. Since $b \in V$ and $V \cap D = \emptyset$, then $b \notin Bd(D)$ and hence $b \in U \cap T$. Therefore, $a \in Cl(T)$.

The following is the main result of this paper:

g. Theorem 2.7. If (X, \mathfrak{F}) is a CDH fuzzy topological space, then every fuzzy homogeneous component $C_x^{\mathfrak{F}}$ of (X, \mathfrak{F}) is open in (X, \mathfrak{F}_0) .

Proof. Suppose on the contrary that for some $x \in X, C_x^{\mathfrak{I}} \notin \mathfrak{I}_0$. Since (X, \mathfrak{I}) is CDH, then by Proposition 1.4, (X, \mathfrak{I}_0) is CDH. Choose a countable dense set *S* of (X, \mathfrak{I}_0) . Let

$$D = X - Cl(S \cap (X - C_x^{\mathfrak{I}}))$$

and

$$T = ((D \cap S) \cup (S \cap (X - C_x^{\mathfrak{I}}))) - Bd(D).$$

By Lemma 2.5, $C_x^{\mathfrak{I}}$ is dense in (X, \mathfrak{I}_0) . Since $D \in \mathfrak{I}_0$ and by Lemma 2.6 (iii) $D \neq \emptyset$, then $D \cap (X - C_x^{\mathfrak{I}}) \neq \emptyset$. Choose $y \in D \cap (X - C_x^{\mathfrak{I}})$ and let

$$M = T \cup \{y\}.$$

Since $T \subseteq S$, then *T* and *M* are both countable. Also, by Lemma 2.6 (iv) *T* and *M* are dense in (X, \mathfrak{I}_0) . Then by Proposition 1.2 (i), $\mathbb{Q}(T)$ and $\mathbb{Q}(M)$ are two countable dense of the CDH fuzzy topological space (X, \mathfrak{I}) . Thus there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that $h(S(\mathbb{Q}(M))) = S(\mathbb{Q}(T))$. So h(M) = T. Since $y \in X - C_x^{\mathfrak{I}}$, then by Proposition 1.3, $h(y) \in X - C_x^{\mathfrak{I}}$. Since $h(y) \in T \subseteq S$, then $h(y) \in S \cap (X - C_x^{\mathfrak{I}}) \subseteq Cl(S \cap (X - C_x^{\mathfrak{I}}))$ and so $h(y) \in X - D = Cl(X - D)$. Since $h(y) \in T$, then $h(y) \in X - Bd(D)$. Therefore, $h(y) \in X - Cl(D)$. Set $O = h^{-1}(X - Cl(D))$. By Proposition 1.5, $h: (X, \mathfrak{I}_0) \to (X, \mathfrak{I}_0)$ is continuous at *y* and so there exists $O \in \mathfrak{I}_0$ such that $y \in O$ and $h(O) \subseteq X - Cl(D)$. Since $y \in D \cap O \in \mathfrak{I}_0$ and *T* is dense in (X, \mathfrak{I}_0) , then there exists $z \in D \cap O \cap T \subseteq D \cap S$. By Lemma 2.6 (i), we have $z \in C_x^{\mathfrak{I}}$ and by Proposition 1.3 $h(z) \in C_x^{\mathfrak{I}}$. Since $z \in O$, $h(z) \in h(O) \subseteq X - Cl(D)$. Also, since $z \in T \subseteq M$, $h(z) \in h(M) = T$. Therefore, $h(z) \in (X - Cl(D)) \cap T$ and by Lemma 2.6 (ii), $h(z) \in X - C_x^{\mathfrak{I}}$, a contradiction.

h. Corollary 2.8. If (X, \mathfrak{T}) is a CDH fuzzy topological space, then every fuzzy homogeneous component $C_x^{\mathfrak{T}}$ of (X, \mathfrak{T}) is clopen in (X, \mathfrak{T}_0) .

Recall that a fuzzy topological space (X, \mathfrak{F}) is said to be homogeneous [16] if for any two points x_1, x_2 in X, there exists a fuzzy homeomorphism $h: (X, \mathfrak{F}) \to (X, \mathfrak{F})$ such that $h(x_1) = x_2$. A fuzzy topological space (X, \mathfrak{F}) is homogeneous iff $C_x^{\mathfrak{F}} = X$ for all $x \in X$.

i. Corollary 2.9. If (X,\mathfrak{F}) is a CDH fuzzy topological space and (X,\mathfrak{F}_0) is connected, then (X,\mathfrak{F}) is homogeneous.

Proof. Let $x \in X$. According to Corollary 2.8, $C_x^{\mathfrak{I}}$ is clopen in (X, \mathfrak{I}_0) , and since (X, \mathfrak{I}_0) is connected, then $C_x^{\mathfrak{I}} = X$.

j. Lemma 2.10. Let (X, τ) be a topological space and let C be a non-empty clopen subset of X. If D is a dense subset of (X, τ) and A is a dense subset of the subspace (C, τ_C) , then $A \cup (D - C)$ is dense in (X, τ) .

Proof. Suppose on the contrary that there is $U \in \tau - \{\emptyset\}$ such that $U \cap (D - C) = U \cap (X - C) \cap D = \emptyset$ and $U \cap A = \emptyset$. Since $U \cap (X - C) \in \tau$ and D is a dense in (X, τ) , then $U \cap (X - C) = \emptyset$ and $U \subseteq C$. It follows that $U \in \tau_C - \{\emptyset\}$. Since A is a dense subset of (C, τ_C) , then $U \cap A \neq \emptyset$, a contradiction.

k. Theorem 2.11. If (X,\mathfrak{F}) is a CDH fuzzy topological space and $C_x^{\mathfrak{F}}$ is a fuzzy homogeneous component of (X,\mathfrak{F}) , then $(C_x^{\mathfrak{F}},(\mathfrak{F}_0)_{C_x^{\mathfrak{F}}})$ is a CDH topological space.

Proof. According to Corollary 2.8, $C_x^{\mathfrak{I}}$ is clopen in (X,\mathfrak{I}_0) and hence $(C_x^{\mathfrak{I}}, (\mathfrak{I}_0)_{c_x^{\mathfrak{I}}})$ is separable. Let *A* and *B* be any two countable dense subsets of $(C_x^{\mathfrak{I}}, (\mathfrak{I}_0)_{c_x^{\mathfrak{I}}})$ and let *P* be a countable dense(I) collection of fuzzy points of (X,\mathfrak{I}) . Let $A_1 = A \cup (S(P) - C_x^{\mathfrak{I}})$ and $B_1 = B \cup (S(P) - C_x^{\mathfrak{I}})$. By Proposition 1.2 (ii) S(P) is dense in (X,\mathfrak{I}_0) . Thus by Lemma 2.10, A_1 and B_1 are dense subsets of (X,\mathfrak{I}_0) . By Proposition 1.2 (i) $\mathbb{Q}(A_1)$ and $\mathbb{Q}(B_1)$ are dense(I) in (X,\mathfrak{I}) . Since $\mathbb{Q}(A_1)$ and $\mathbb{Q}(B_1)$ are clearly countable, there is a fuzzy homeomorphism $h: (X,\mathfrak{I}) \to (X,\mathfrak{I})$ such that $h(A_1) = B_1$. Applying Proposition 1.3 to conclude that h(A) = B. By Proposition 1.5, $h: (X,\mathfrak{I}_0) \to (X,\mathfrak{I})$ is a homeomorphism. Define $g: (C_x^{\mathfrak{I}}, (\mathfrak{I}_0)_{c_x^{\mathfrak{I}}}) \to (C_x^{\mathfrak{I}}, (\mathfrak{I}_0)_{c_x^{\mathfrak{I}}})$ to be the restriction of h on $C_x^{\mathfrak{I}}$. Then g is a homeomorphism with g(A) = h(A) = B.

REFERENCES

- [1] S. A. Ghour and A. Fora, "On CDH fuzzy spaces," *Journal of Intelligent & Fuzzy Systems*, vol. 30, pp. 935-941, 2016.
- [2] L. A. Zadeh, "Fuzzy Sets," Inform and control, vol. 8, pp. 338-353, 1965.
- [3] C. L. Chang, "Fuzzy Topological Spaces," *Journal of Mathematical Analysis and Applications*, vol. 24, pp. 182-190, 1968.
- [4] C. K. Wong, "Covering properties of fuzzy topological spaces," *Journal of Mathematical Analysis and Its Applications*, vol. 43, pp. 697-704, 1973.
- [5] C. K. Wong, "Fuzzy points and local properties of fuzzy topology," *Journal of Mathematical Analysis and Its Applications*, vol. 46, pp. 316-328, 1974.
- [6] R. Lowen, "A comparison of different compactness notions in fuzzy topological spaces," *Journal of Mathematical Analysis and Its Applications*, vol. 64, pp. 446-454, 1978.
- [7] M. H. Ghanim, *et al.*, "Separation axioms, subspaces and sums in fuzzy topology," *Journal of Mathematical Analysis and Its Applications*, vol. 102, pp. 189-202, 1984.
- [8] A. A. Fora, "Separation axioms for fuzzy spaces," Fuzzy sets and systems, vol. 33, pp. 59-75, 1989.
- [9] P. A. Saha, "Coupled coincidence point theorem in a G-complete fuzzy metric space," *Journal of Physical Sciences*, vol. 19 pp. 23-28, 2014.
- [10] S. A. Ghour, "Homogeneity in fuzzy spaces and their induced spaces," *Questions and Answers in General Topology*, vol. 21, pp. 185-195, 2003.
- [11] S. A. Ghour, "SLH fuzzy spaces," African Diaspora Journal of Mathematics, vol. 2, pp. 61-67, 2004.
- [12] S. A. Ghour and A. Fora, "Minimality and Homogeneity in Fuzzy Spaces," *Journal of Fuzzy Mathematics*, vol. 12, pp. 725--737, 2004.
- [13] S. A. Ghour, "Local homogeneity in fuzzy topological spaces," International Journal of Mathematics and Mathematical Sciences, Art. ID 81497, vol. 14, 2006.
- [14] S. A. Ghour, "Some Generalizations of Minimal Fuzzy Open Sets," Acta Mathematica Universitatis Comenianae, vol. 75, pp. 107-117, 2006.
- [15] S. A. Ghour and K. A. Zoubi, "On some ordinary and fuzzy homogeneity types," Acta Mathematica Universitatis Comenianae, vol. 77, pp. 199-208, 2008.
- [16] A. Fora and S. A. Ghour, "Homogeneity in Fuzzy Spaces," *Questions and Answers in General Topology*, vol. 19, pp. 159-164, 2001.
- [17] S. A. Ghour and A. Azaizeh, "Fuzzy Homogeneous Bitopological Spaces," International Journal of Electrical and Computer Engineering, vol. 8, pp. 2088-8708, 2018.
- [18] R. Bennett, "Countable dense homogeneous spaces," Fundamenta Mathematicae, vol. 74, pp. 189-194, 1972.
- [19] G. J. Wang, "Theory of L-fuzzy topological space," Shanxi Normal University Press, Xian, (in Chinese), 1988.
- [20] B. Fitzpatrick and H. X. Zhou, "Countable dense homogeneity and the Baire property," *Topology and Its Applications*, vol. 43, pp. 1-14, 1992.