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1. INTRODUCTION 

As defined in [1], the notion of a fuzzy set in a set X is a function from X into the closed  

interval [0,1]. Accordingly, Chang [2] introduced the notion of a fuzzy topological space on a non-empty set 

X as a collection of fuzzy sets on X, closed under arbitrary suprema and finite infima and containing the 

constant fuzzy sets 0 and 1. Mathematicians extended many topological concepts to include fuzzy 

topological spaces such as: separation axioms, connectedness, compactness and metrizability. Several fuzzy 

homogeneity concepts were discussed in [3-11]. A separable topological space (X, τ) is countable dense 

homogeneous (CDH) [12] if given any two countable dense subsets A and B of (X, τ) there is a 

homeomorphism f: (X, τ) → (X, τ) such that f(A) = B.  

The study of CDH topological spaces and their related concepts is still a hot area of research, as 

appears in [13-20] and other papers. Recently, authors in [9] extended CDH topological property to include 

fuzzy topological spaces. They proved that their extension is a good extension in the sense of Lowen, and 

proved that a-cut topological space (X, ℑa) of a CDH fuzzy topological space (X, ℑ) is CDH in general only 

for a = 0. For the purpose of dealing with non-separable topological spaces, authors in [21] modified the 

definition of CDH topological spaces as follows: A subset A of a topological space (X, τ) is called 

a σ-discrete set if it is the union of countably many sets, each with the relative topology, being a discrete 

topological space. A topological space (X, τ) is densely homogeneous (DH) provided (X, τ) has a σ-discrete 

subset which is dense in (X, τ) and if A and B are two such σ-discrete subsets of (X, τ) there is a 

homeomorphism f: (X, τ) → (X, τ) such that f(A) = B. It is known that CDH and DH topological concepts are 

independent. The study of DH topological spaces is continued in [22-28] and other papers. As a main goal of 

the present work we will show how the definition of DH topological spaces can be modified in order to 

define a good extension of it in fuzzy topological spaces. We will give relationships between CDH 

and DH fuzzy. 
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Throughout this paper, if 𝑋 is a set, then |𝑋| = 𝐶𝑎𝑟𝑑 𝑋 will denote its cardinality. We write  

ℚ (resp. ℕ) to denote the set of all rational numbers (resp. natural numbers). The closure of a fuzzy set 𝜆 in a 

fuzzy topological space (𝑋, ℑ) will be denoted by 𝐶𝑙(𝜆). Associated with a given topological space (𝑋, 𝜏) 

and arbitrary subset 𝐴 of 𝑋, we denote the relative topology on 𝐴 by τ𝐴, the closure of 𝐴 by 𝐶𝑙(𝐴) and the 

boundary of 𝐴 by 𝐵𝑑(𝐴).topological spaces as well as we will deal with cut topological spaces. 

 

 

2. PRELIMINARIES 

In this paper we shall follow the notations and definitions of [29] and [30]. If (X, τ) is a topological 

space, then the class of all lower semi-continuous functions from (𝑋, 𝜏) to ([0,1], 𝜏𝑢), where 𝜏𝑢 is the usual 

Euclidean topology on [0,1], is a fuzzy topology on 𝑋. This fuzzy topology is denoted by 𝜔(𝜏). 

The following definitions and propositions will be used in the sequel: 

Definition 2.1. [9] Let 𝑋 be a non-empty set, 𝐴 be a non-empty subset of 𝑋 and 𝑃 be a collection of 

fuzzy points in 𝑋. Then 

 ℚ(𝐴) will denote the set 

ℚ(𝐴) = {𝑥𝑟: 𝑥𝑟  is a fuzzy point with 𝑥 ∈ 𝐴 and r ∈  ℚ ∩ (0,1)}. 

 The support of 𝑃, denoted by 𝑆(𝑃), is defined by  

𝑆(𝑃) = {𝑥: 𝑥𝑎 ∈ 𝑃 for some 𝑎}. 

Definition 2.2. [21] A subset 𝐴 of a topological space (𝑋, 𝜏) is called a 𝜎-discrete set if it is the 

union of countably many sets, each with the relative topology, being a discrete topological space.  
Definition 2.3. [21] A topological space (𝑋, 𝜏) is called densely homogeneous (DH) iff  
 𝑋 has a σ-discrete dense subset. 

 If 𝐴 and 𝐵 are two 𝜎-discrete dense subsets of 𝑋, then there is a homeomorphism ℎ: (𝑋, 𝜏) →  (𝑋, 𝜏) such 

that ℎ(𝐴) = 𝐵. 

Definition 2.4. [31] Associated with a given fuzzy topological space (X, ℑ) and arbitrary subset 𝑀 of 

𝑋, we define the induced fuzzy topology on 𝑀 or the relative topology on 𝑀 by  

 

ℑ𝑀 = {𝜆 ∣ 𝑀: λ ∈ ℑ}. 
 

Definition 2.5. [9] A fuzzy topological space (X, ℑ) is said to be semi-discrete iff for any x ∈  X, 

there exists a fuzzy point or a fuzzy crisp point 𝑥𝑎 for some a with 𝑥𝑎 ∈ ℑ. Definition 2.6. [32] Let (X, ℑ)  

be a fuzzy topological space and let 𝑃 be a collection of fuzzy points of 𝑋. Then 𝑃 is said to be 

 Dense(I) if for every non-zero fuzzy open set λ there exists 𝑝 ∈  𝑃 such that 𝑝 ∈ 𝜆. 
 Dense(II) if 𝐶𝑙(⋃ 𝑝𝑝∈𝑃 ) = 1. 

Definition 2.7. [9] A fuzzy topological space (𝑋, ℑ) is called separable iff there exists a countable 

dense(I) collection of fuzzy points of 𝑋. Definition 2.8. [33] A property Ƥ𝑓 of a fuzzy topological space is 

said to be a good extension of the property Ƥ in classical topology iff whenever the fuzzy topological space is 

topologically generated, say by (𝑋, 𝜏), then (𝑋, 𝜔(𝜏)) has property Ƥ𝑓 iff (𝑋, 𝜏) has property Ƥ. 

Definition 2.9. [34] Let (X, ℑ) be a fuzzy topological space and 𝑎 ∈ [0,1). The topology 

{𝜆⁻¹(𝑎, 1]: 𝜆 ∈ ℑ} on X is called 𝑎-cut topological space of (𝑋, ℑ) and will be denoted by ℑ𝑎.  

The topological space (X, ℑ𝑎) will be called 𝑎-cut topological space of (𝑋, ℑ). Definition 2.10. [9] A fuzzy 

topological space (𝑋, ℑ) is said to be countable dense homogeneous; denoted CDH; iff 

 (𝑋, ℑ) is separable. 

 If 𝑃 and 𝑊 are two countable dense(I) collections of fuzzy points of 𝑋, then there is a fuzzy 

homeomorphism ℎ: (𝑋, ℑ) →  (𝑋, ℑ) such that ℎ(𝑆(𝑃))  = 𝑆(𝑊). 

Proposition 2.11. [9] Let (X, ℑ) be a fuzzy topological space and let 𝑃 be a collection of fuzzy  

points of X. Then we have the following 

 If 𝑃 is dense (I), then ℚ(S(𝑃)) is dense(II). 

 If 𝑃 is dense (II), then ℚ(S(𝑃)) is dense(I).   

Proposition 2.12. [9] Let (𝑋, 𝜏) be a topological space, 𝐴 ⊆ 𝑋, and 𝑃 be a collection of fuzzy points 

of 𝑋. Then we have the following 

 If 𝐴 is dense in (𝑋, 𝜏), then ℚ(𝐴) is dense(I) in (𝑋, 𝜔(𝜏 )). 

 If 𝑃 is dense(I) in (𝑋, 𝜔(𝜏)), then 𝑆(𝑃) is dense in (𝑋, 𝜏).  

Proposition 2.13. [35] Let (𝑋, 𝜏₁) and (𝑌, 𝜏₂) be two topological spaces. Then 𝑓: (𝑋, 𝜏₁)  →  (𝑌, 𝜏₂) 

is continuous iff 𝑓: (𝑋, 𝜔(𝜏₁))  → (𝑌, 𝜔(𝜏₂)) is fuzzy continuous. Proposition 2.14. [9] 

Let 𝑓: (𝑋, ℑ₁) → (𝑌, ℑ₂) be a fuzzy homeomorphism map and 𝑃 be a collection of fuzzy points of 𝑋. 

Then we have the following 
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 𝑆(𝑓(𝑃)) = 𝑓(𝑆(𝑃)). 

 If 𝑃 is dense (I) in (𝑋, ℑ₁), then 𝑓(𝑃) is dense(I) in (𝑌, ℑ₂).  

Proposition 2.15. [9] Let (X, ℑ) be a semi-discrete fuzzy topological space. Then we have the 

following 

 If 𝑃 is countable dense (I) in (𝑋, ℑ), then 𝑆(𝑃) = 𝑋. 

 (X, ℑ) is separable iff 𝑋 is countable. 

Proposition 2.16. [9] Let 𝑋 be a countable set and let (𝑋, ℑ) be a fuzzy topological space.  

Then (𝑋, ℑ) is CDH iff (𝑋, ℑ) is a semi-discrete fuzzy topological space. Proposition 2.17. [34] Let (X, ℑ) be 

a fuzzy topological space and let 𝑓: (𝑋, ℑ) → (𝑋, ℑ) be a fuzzy continuous (homeomorphism) map.  

Then 𝑓: (𝑋, ℑ𝑎) → (𝑋, ℑ𝑎) is continuous (homeomorphism) for all 𝑎 ∈ [0,1). Proposition 2.18. [9] Let 

(𝑋, ℑ) be a fuzzy topological space. Let 𝐴 be a subset of 𝑋 and let 𝑃 be a collection of fuzzy points of 𝑋. 

Then we have the following 

 If 𝐴 is dense in (𝑋, ℑ₀), then ℚ(𝐴) is dense(I) in (𝑋, ℑ). 

 If 𝑃 is dense(I) in (𝑋, ℑ), then 𝑆(𝑃) is dense in (𝑋, ℑ₀). 
 

 

3. DH FUZZY TOPOLOGICAL SPACES 

In this section, we will define DH fuzzy topological spaces. We will prove that our new concept is a 

fuzzy topological property and a good extension of DH topological property in the sense of Lowen. 

Definition 3.1. A collection 𝑃 of fuzzy points of a fuzzy topological space (𝑋, ℑ) is said to be 

 𝜎-semi-discrete iff 𝑆(𝑃) = ⋃ 𝐴𝑛
∞
𝑛=1  with (𝐴𝑛, ℑ𝐴𝑛

) is semi-discrete for all 𝑛 ∈ ℕ. 

 𝜎-semi-discrete dense (I) iff 𝑃 is σ-semi-discrete and 𝑃 is dense (I). 

 𝜎-semi-discrete dense (II) iff 𝑃 is σ-semi-discrete and 𝑃 is dense (II). 

Definition 3.2. A fuzzy topological space (X, ℑ) is said to be densely homogeneous (DH) iff 

 (𝑋, ℑ) has a 𝜎-semi-discrete dense(I) collection of fuzzy points. 

 If 𝑃 and 𝑊 are two 𝜎-semi-discrete dense (I) collections of fuzzy points of (𝑋, ℑ), then there is a fuzzy 

homeomorphism ℎ: (𝑋, ℑ) → (𝑋, ℑ) such that ℎ(𝑆(𝑃)) = 𝑆(𝑊). 

Lemma 3.3. Let (𝑋, ℑ) be a fuzzy topological space and 𝑃 be a 𝜎-semi-discrete collection of fuzzy 

points of 𝑋. Then ℚ(𝑆(𝑃)) is a 𝜎-semi-discrete collection of fuzzy points of (𝑋, ℑ). Proof. It is easy to see 

that 𝑆(𝑃) = 𝑆(ℚ(𝑆(𝑃))) and hence the result is obvious. Theorem 3.4. A fuzzy topological space (X, ℑ)  

is DH iff 

 (𝑋, ℑ) has a σ-semi-discrete dense(II) collection of fuzzy points. 

 If 𝑃 and 𝑊 are two 𝜎-semi-discrete dense (II) collections of fuzzy points of (𝑋, ℑ), then there is a fuzzy 

homeomorphism ℎ: (𝑋, ℑ) → (𝑋, ℑ) such that ℎ(𝑆(𝑃)) = 𝑆(𝑊). 

Proof. If (𝑋, ℑ) is DH, then (𝑋, ℑ) has a 𝜎-semi-discrete dense (I) collection of fuzzy points 𝑃.  

By Proposition 2.11 (i), ℚ(𝑆(𝑃)) is dense (II) and by Lemma 3.3, ℚ(𝑆(𝑃)) is 𝜎-semi-discrete. Let 𝑃 and 𝑊 

be any two 𝜎-semi-discrete dense (II) collections of fuzzy points of (𝑋, ℑ). Then by Proposition 2.11 (ii) and 

Lemma 3.3, ℚ(𝑆(𝑃)) and ℚ(𝑆(𝑊)) are both 𝜎-semi-discrete dense (I) collections of fuzzy points of (𝑋, ℑ). 

Then there is a fuzzy homeomorphism ℎ: (𝑋, ℑ) →  (𝑋, ℑ) such that ℎ(𝑆(ℚ(𝑆(𝑃)))) = 𝑆(ℚ(𝑆(𝑊))).  

Thus, ℎ(𝑆(𝑃)) = 𝑆(𝑊). The proof of the other direction of this theorem is similar to the above one.  

Lemma 3.5. Let (X, τ) be a topological space. Let A be a non-empty subset of 𝑋 and 𝑃 be a collection of 

fuzzy points of 𝑋. Then 

 τ𝐴 is the discrete topology iff (𝐴, 𝜔(𝜏)𝐴) is semi-discrete. 

 If 𝐴 is 𝜎-discrete in (𝑋, 𝜏), then ℚ(𝐴) is 𝜎-semi-discrete in (𝑋, 𝜔(𝜏)). 

 If 𝑃 is 𝜎-semi-discrete in (𝑋, 𝜔(𝜏)), then 𝑆(𝑃) is 𝜎-discrete in (𝑋, 𝜏). 

Proof. (i) Suppose that τ𝐴 is the discrete topology and let 𝑥 ∈ 𝐴. Then there exists 𝑈 ∈ 𝜏 such that 

{𝑥} = 𝑈 ∩ 𝐴. So, 𝒳𝑈 ∩ 𝒳𝐴 = 𝒳𝑈∩𝐴 = 𝒳{𝑥} ∈ 𝜔(𝜏)𝐴. But clearly 𝜔(𝜏)𝐴 is the crisp point with support 𝑥. 

Conversely, suppose that (𝐴, 𝜔(𝜏)𝐴) is a semi-discrete fuzzy topological space and let 𝑥 ∈ 𝐴. Then there 

exists a fuzzy point or a fuzzy crisp point 𝑥𝑎 such that 𝑥𝑎 ∈ 𝜔(𝜏)𝐴. Choose 𝜆 ∈ 𝜔(𝜏) such that 𝑥𝑎 = 𝜆 ∩ 𝒳𝐴. 

Thus, {𝑥} = 𝜆⁻¹(0,1] ∩ 𝐴 and hence {𝑥} ∈ τ𝐴.  
(ii) Since 𝐴 is 𝜎-discrete in (𝑋, 𝜏), then 𝐴 = ⋃ 𝐴𝑛

∞
𝑛=1  with 𝜏𝐴𝑛

 is the discrete topology for all 𝑛 ∈ ℕ. 

So, by part (i) (𝐴𝑛, 𝜔(𝜏)𝐴𝑛
) is semi-discrete for all 𝑛. Since 𝑆(ℚ(𝐴)) = 𝐴, then ℚ(𝐴) is 𝜎-semi-discrete  

in (𝑋, 𝜔(𝜏)). (iii) Since 𝑃 is 𝜎-semi-discrete in (𝑋, 𝜔(𝜏)), then 𝑆(𝑃) = ⋃ 𝐴𝑛
∞
𝑛=1  with (𝐴𝑛, 𝜔(𝜏)𝐴𝑛

) is semi-

discrete for all 𝑛 ∈ ℕ. So, by part (i) 𝜏𝐴𝑛
 is the discrete topology for all 𝑛. Therefore, 𝑆(𝑃) is 𝜎-discrete  

in (𝑋, 𝜏). 

Theorem 3.6. Let (𝑋, 𝜏) be a topological space. Then (𝑋, 𝜏) is DH iff (𝑋, 𝜔(𝜏)) is DH.  

Proof. Suppose that (𝑋, 𝜏) is DH. Then (𝑋, 𝜏) has a 𝜎-discrete dense subset 𝐴. By Lemma 3.5 (ii) and 
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Proposition 2.12 (i), ℚ(𝐴) is 𝜎-semi-discrete dense (I) in (𝑋, 𝜔(𝜏)). Let 𝑃 and 𝑊 be two 𝜎-semi-discrete 

dense(I) collections of fuzzy points of (𝑋, 𝜔(𝜏)). Then by Lemma 3.5 (iii) and Proposition 2.12 (ii), 𝑆(𝑃) 

and 𝑆(𝑊) are both 𝜎-discrete dense subsets of (𝑋, 𝜏). Thus, there is a homeomorphism ℎ: (𝑋, 𝜏)  →  (𝑋, 𝜏) 

such that ℎ(𝑆(𝑃)) = 𝑆(𝑊). Proposition 2.13 ends the proof of this direction. 

Conversely if (𝑋, 𝜔(𝜏)) is DH, then (𝑋, 𝜔(𝜏)) has a 𝜎-discrete dense (I) collection of fuzzy  

points 𝑃. By Lemma 3.5 (iii) and Proposition 2.12 (ii), 𝑆(𝑃) is 𝜎-discrete dense in (𝑋, 𝜏). Let 𝐴 and 𝐵 be two 

𝜎-discrete dense subsets of (𝑋, 𝜏). Then by Lemma 3.5 (ii) and Proposition 2.12 (i), ℚ(𝐴) and ℚ(𝐵) are both 

𝜎-semi-discrete dense (I) collections of fuzzy points of (𝑋, 𝜔(𝜏)). Thus, there is a fuzzy homeomorphism 

ℎ: (𝑋, 𝜔(𝜏))  →  (𝑋, 𝜔(𝜏)) such that ℎ(𝑆(ℚ(𝐴))) = 𝑆(ℚ(𝐴)). So, ℎ(𝐴) = 𝐵. Proposition 2.13 ends the proof 

of this direction. 

Corollary 3.7. DH in fuzzy topological spaces is a good extension of DH in topological spaces. 

Recall that a property Ƥ𝑓  of fuzzy topological spaces is called a fuzzy topological property if whenever 

(𝑋, ℑ₁) possesses Ƥ𝑓 and ℎ: (𝑋, ℑ₁)  →  (𝑌, ℑ₂) is a fuzzy homeomorphism, then (𝑌, ℑ₂) possesses Ƥ𝑓. 

Lemma 3.8. Let 𝑓: 𝑋 → 𝑌 be a bijective map. Then 

 For any two fuzzy sets 𝜆, 𝜇 in 𝑋, 𝑓(𝜆 ∩ 𝜇) = 𝑓(𝜆) ∩ 𝑓(𝜇).  

 For any 𝐴 ⊆ 𝑋, 𝑓(𝒳𝐴) = 𝒳𝑓(𝐴). 

Proof. Straightforward. Lemma 3.9. Let 𝑓: (𝑋, ℑ₁) → (𝑌, ℑ₂) be a fuzzy homeomorphism. Let 𝐴 be 

a non-empty subset of 𝑋 and 𝑃 be a collection of fuzzy points of 𝑋. Then 

 If (𝐴, (ℑ₁)𝐴) is semi-discrete, then (𝑓(𝐴), (ℑ₂)𝑓(𝐴)) is semi-discrete.  

 If 𝑃 is 𝜎-semi-discrete, then 𝑓(𝑃) is 𝜎-semi-discrete. 

Proof. (i) Let 𝑦 ∈ 𝑓(𝐴), say 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴. Since (𝐴, (ℑ₁)𝐴) is semi-discrete, there 

exists 𝑟 ∈ (0,1] such that 𝑥𝑟 ∈ (ℑ₁)𝐴. Choose 𝜆 ∈ ℑ₁ such that 𝑥𝑟 = 𝜆 ∩ 𝒳𝐴. Then by  

Lemma 3.8 𝑦𝑟 = (𝑓(𝑥))𝑟 = 𝑓(𝑥𝑟) = 𝑓(𝜆 ∩ 𝒳𝐴) = 𝑓(𝜆) ∩ 𝑓(𝒳𝐴) = 𝑓(𝜆) ∩ 𝒳𝑓(𝐴). Since 𝑓 is fuzzy open,  

it follows that 𝑦𝑟 ∈ (ℑ₂)𝑓(𝐴).  ii) Since 𝑃 is 𝜎-semi-discrete, 𝑆(𝑃) = ⋃ 𝐴𝑛
∞
𝑛=1  with (𝐴𝑛 , ℑ𝐴𝑛

) is semi-discrete 

for all 𝑛 ∈ ℕ. By Proposition 2.14 (i), 𝑆(𝑓(𝑃)) = 𝑓(𝑆(𝑃)) = 𝑓(⋃ 𝐴𝑛
∞
𝑛=1 ) = ⋃ 𝑓(𝐴𝑛

∞
𝑛=1 ). Also, by (i) we 

have (𝑓(𝐴𝑛), (ℑ₂)𝑓(𝐴𝑛)) is semi-discrete for all 𝑛 ∈ ℕ. It follows that 𝑓(𝑃) is 𝜎-semi-discrete. 

Theorem 3.10. In fuzzy topological spaces, "Being "DH" is a fuzzy topological property. Proof. 

Assume (𝑋, ℑ₁) is a DH fuzzy topological space and let 𝑓: (𝑋, ℑ₁) → (𝑌, ℑ₂) be a fuzzy homeomorphism 

where (𝑌, ℑ₂) is a fuzzy topological space. Choose a 𝜎-semi-discrete dense(I) collection of fuzzy points 𝑃 of 

(𝑋, ℑ₁). According to Lemma 3.9 (ii) and Proposition 2.14 (ii), 𝑓(𝑃) will be σ-semi-discrete dense(I) in 

(𝑌, ℑ₂). Let 𝑃 and 𝑊 be any two 𝜎-semi-discrete dense(I) collections of fuzzy points of (𝑌, ℑ₂). Then by 

Lemma 3.9 (ii) and Proposition 2.14 (ii), 𝑓⁻¹(𝑃) and 𝑓⁻¹(𝑊) are two 𝜎-semi-discrete dense(I) collections of 

fuzzy points of (𝑋, ℑ₁). Since (𝑋, ℑ₁) is DH, there is a fuzzy homeomorphism ℎ: (𝑋, ℑ₁) → (𝑋, ℑ₁) such that 

ℎ(𝑆(𝑓⁻¹(𝑃))) = 𝑆(𝑓⁻¹(𝑊)). Define 𝑔: (𝑌, ℑ₂) → (𝑌, ℑ₂) by 𝑔 = 𝑓 ∘ ℎ ∘ 𝑓⁻¹. Then 𝑔 is a fuzzy 

homeomorphism. Using Proposition 2.14 (i), we can see that 𝑔(𝑆(𝑃)) = 𝑆(𝑊). 
 

 

4. RELATIONSHIPS BETWEEN DH AND CDH FUZZY TOPOLOGICAL SPACES 

In this section, we will give some relationships between DH and CDH fuzzy topological spaces. 

The following useful lemma follows easily: Lemma 4.1. Let (X, ℑ) be a fuzzy topological space and P be a 

collection of fuzzy points of X with S(P) is countable and non-empty. Then P is σ-semi-discrete.  

Theorem 4.2. Let (X, ℑ) be a fuzzy topological space for which X is countable. Then (X, ℑ) is DH iff (X, ℑ) is 

semi-discrete. Proof. Since the result is obvious when |X| = 1, we will assume that |X|>1. Suppose that (X, ℑ) 

is DH and assume on the contrary that (X, ℑ) is not semi-discrete. Then there exists y ∈ X such that ya ∉ ℑ 

for all 0 < a ≤ 1. Set P = ℚ(X) and W = ℚ(X ∖ {y}). It is not difficult to see that P and W are dense (I). 

Also, by Lemma 4.1, P and W are σ-semi-discrete. So there is a fuzzy homeomorphism h: (X, ℑ) →  (X, ℑ) 

such that h(S(P)) =  S(W), therefore, h(X) = X ∖ {y} which is a contradiction since h is an onto map.  

Conversely, suppose that (X, ℑ) is semi-discrete. Then by Proposition 2.15 (ii), (X, ℑ) is separable. 

Choose a countable dense (I) collection of fuzzy points P. Then S(P) is countable and by Lemma 4.1, P is  

σ-semi-discrete. Let P and W be any two σ-semi-discrete dense(I) collections of fuzzy points. Then by 

Proposition 2.15 (i), S(P) =  S(W) = X and the identity fuzzy map completes the proof. Corollary 4.3. Let 

(X, ℑ) be a fuzzy topological space for which X is countable. Then (X, ℑ) is CDH iff (X, ℑ) is DH. Proof. 

Follows from Proposition 2.16 and Theorem 4.2. Theorem 4.4. If (X, ℑ) is separable and DH fuzzy 

topological space, then (X, ℑ) is CDH. Proof. Follows from the definitions and Lemma 4.1.  

Recall that a fuzzy topological space (X, ℑ) is hereditarily separable if every subspace of (X, ℑ) is 

separable. Recall that a fuzzy topological space is second countable if it has a countable base. It is well 

known that second countable fuzzy topological spaces are hereditarily separable. Lemma 4.5. If (X, ℑ) is a 

hereditarily separable fuzzy topological space and P is a σ-semi-discrete collection of fuzzy points of (X, ℑ), 
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then S(P) is countable. Proof. Since P is σ-semi-discrete, then S(P) =  ⋃ An
∞
n=1  with (An, ℑAn

) is semi-

discrete for all n ∈ ℕ. Since (X, ℑ) is hereditarily separable, then for each n ∈ ℕ, (An, ℑAn
)is separable and 

by Proposition 2.15 (ii) it follows that An is countable. Thus, S(P) is countable. 

Theorem 4.6. If (X, ℑ) is hereditarily separable and CDH fuzzy topological space, then (X, ℑ) is DH. 

Proof. Since (X, ℑ) is hereditarily separable, then it is separable. So, there exists a countable dense (I) 

collection of fuzzy points P and by Lemma 4.1, P is σ-semi-discrete. Let P and W be two σ-semi-discrete 

dense(I) collections of fuzzy points. Then by Lemma 4.5, S(P) and S(W) are countable. By Proposition 2.11, 

ℚ(S(P)) and ℚ(S(W)) are countable dense(I). Since (X, ℑ) is CDH, there is a fuzzy homeomorphism 

h: (X, ℑ) →  (X, ℑ) such that h(S(P)) = h(S(ℚ(S(P)))) =  S(ℚ(S(W))) = S(W). Corollary 4.7. Let (X, ℑ) 

be a hereditarily separable fuzzy topological space. Then (X, ℑ) is CDH iff (X, ℑ) is DH. Proof. Follows from 

Theorems 4.4 and 4.6. Corollary 4.8. Let (X, ℑ) be a second countable fuzzy topological space. Then (X, ℑ) is 

CDH iff (X, ℑ) is DH. 
 

 

5. CUT TOPOLOGICAL SPACES 

In this section we will mainly show that a-cut topological space (X, ℑa) of a fuzzy topological (X, ℑ) 

is DH in general only if a = 0. Lemma 5.1. Let (X, ℑ) be a fuzzy topological space. Let B be non-empty 

subset of X and let P be a collection of fuzzy points of X. Then 

 (𝐵, ℑ𝐵) is semi-discrete iff (ℑ₀)𝐵 is the discrete topology on 𝐵. 

 If 𝐵 is 𝜎-discrete in (𝑋, ℑ₀), then ℚ(𝐵) is 𝜎-semi-discrete in (𝑋, ℑ). 

 If 𝑃 is 𝜎-semi-discrete in (𝑋, ℑ), then 𝑆(𝑃) is 𝜎-discrete in (𝑋, ℑ₀). 

Proof. (i) Suppose that (B, ℑB) is semi-discrete and let x ∈ B. Then there exists a fuzzy point or a 

fuzzy crisp point xa for some a with xa ∈ ℑB. Choose λ ∈ ℑ such thatxa = λ ∩ 𝒳B. Then (λ ∩ 𝒳B)(x) =
min{λ(x), 𝒳B(x)} > 0 and so, {x} = λ⁻¹(0,1] ∩ B ∈ (ℑ₀)B. Conversely, suppose that (ℑ₀)B is the discrete 

topology on B and let x ∈ B. Then there exists λ ∈ ℑ such that {x} = λ⁻¹(0,1] ∩ B. Now, λ ∩ 𝒳B is the fuzzy 

or crisp point xλ(x), on the other hand, λ ∩ 𝒳B ∈ ℑB. ii) Since B is σ-discrete in (X, ℑ₀), then ⋃ Bn
∞
n=1  with 

(ℑ₀)Bn
 is the discrete topology for all n ∈ ℕ. By (i), ℑBn

 is semi-discrete for all n ∈ ℕ. Since S(ℚ(B)) = B, 

then ℚ(B) is σ-discrete in (X, ℑ). iii) Since P is σ-discrete in (X, ℑ), then S(P) = ⋃ An
∞
n=1  with ℑAn

 is semi-

discrete for all n ∈ ℕ. By (i), (ℑ₀)An
 is the discrete topology on An for all n ∈ ℕ. It follows that S(P) is σ-

discrete in (X, ℑ₀). Theorem 5.2. If (X, ℑ) is a DH fuzzy topological space, then (X,ℑ₀) is DH. 

Proof. Suppose that (X, ℑ) is DH. Then (X, ℑ) has a σ-semi-discrete dense(I) collection of fuzzy 

points P. By Lemma 5.1 (iii) and Proposition 2.18 (ii), S(P) is σ-discrete dense in (X, ℑ₀). Let A and B be any 

two σ-discrete dense sets in (X, ℑ₀). Then by Lemma 5.1 (ii) and Proposition 2.18 (i), ℚ(A) and ℚ(B) are 

 σ-semi-discrete dense (I) in (X, ℑ). Since (X, ℑ) is DH, there exists a fuzzy homeomorphism  

h: (X, ℑ) →  (X, ℑ) such that h(S(ℚ(A))) = S(ℚ((B))). By Proposition 2.17, h: (X, ℑ₀) → (X, ℑ₀) is a 

homeomorphism. On the other hand, S(ℚ(A)) = A and S(ℚ(B)) = B. Therefore, (X, ℑ₀) is DH.  

The following proposition is well known: 

Proposition 5.3. Let (𝑋, 𝜏) be a topological space with X is countable. Then the following are 

equivalent: 

 (𝑋, 𝜏) is CDH. 

  𝜏 is the discrete topology on 𝑋. 

 (𝑋, 𝜏) is DH. 

Theorem 5.4. Let X be a countable set and let (X, ℑ) be a fuzzy topological space. Then the 

following are equivalent: 

 (𝑋, ℑ) is DH. 

 (𝑋, ℑ) is CDH. 

 (𝑋, ℑ₀) is DH. 

 (𝑋, ℑ₀) is CDH.  

Proof. Follows from Theorem 4.2, Lemma 5.1 (i) and Proposition 5.3. In fact if a > 0, then (X, ℑ) 

being DH does not imply, in general, that (X, ℑa) is DH. This will be explained in the following 

counterexample: Example 5.5. For fixed 0 <  a < 1, let X = {x, y} and define ℑ = {0,1, xa/2, ya/4, xa/2 ∪

ya/4}. It is clear that (X, ℑ) is semi-discrete and so by Theorem 4.2, it is DH. On the other hand, since ℑa =

{∅, X}, then (X, ℑa) is not DH.  
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