Densely homogeneous fuzzy spaces

Samer Al Ghour

Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan

Article Info

ABSTRACT

Article history:

Received Jul 26, 2018 Revised Apr 2, 2019 Accepted Apr 11, 2019

2010

Keywords:

Cut topologies Densely homogeneous Fuzzy CDH Good extension

We extend the concept of being densely homogeneous to include fuzzy

topological spaces. We prove that our extension is a good extension in the

sense of Lowen. We prove that a-cut topological space (X, \mathfrak{I}_a) of a DH fuzzy

topological space (X, \mathfrak{I}) is DH in general only for a = 0.

Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:

Samer Al Ghour, Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan Email: algore@just.edu.jo

1. INTRODUCTION

As defined in [1], the notion of a fuzzy set in a set X is a function from X into the closed interval [0,1]. Accordingly, Chang [2] introduced the notion of a fuzzy topological space on a non-empty set X as a collection of fuzzy sets on X, closed under arbitrary suprema and finite infima and containing the constant fuzzy sets 0 and 1. Mathematicians extended many topological concepts to include fuzzy topological spaces such as: separation axioms, connectedness, compactness and metrizability. Several fuzzy homogeneity concepts were discussed in [3-11]. A separable topological space (X, τ) is countable dense homogeneous (CDH) [12] if given any two countable dense subsets A and B of (X, τ) there is a homeomorphism f: $(X, \tau) \rightarrow (X, \tau)$ such that f(A) = B.

The study of CDH topological spaces and their related concepts is still a hot area of research, as appears in [13-20] and other papers. Recently, authors in [9] extended CDH topological property to include fuzzy topological spaces. They proved that their extension is a good extension in the sense of Lowen, and proved that a-cut topological space (X, \mathfrak{I}_a) of a CDH fuzzy topological space (X, \mathfrak{I}) is CDH in general only for a = 0. For the purpose of dealing with non-separable topological spaces, authors in [21] modified the definition of CDH topological spaces as follows: A subset A of a topological space (X, τ) is called a σ -discrete set if it is the union of countably many sets, each with the relative topology, being a discrete topological space. A topological space (X, τ) is densely homogeneous (DH) provided (X, τ) has a σ -discrete subset which is dense in (X, τ) and if A and B are two such σ -discrete subsets of (X, τ) there is a homeomorphism f: $(X, \tau) \rightarrow (X, \tau)$ such that f(A) = B. It is known that CDH and DH topological concepts are independent. The study of DH topological spaces is continued in [22-28] and other papers. As a main goal of the present work we will show how the definition of DH topological spaces can be modified in order to define a good extension of it in fuzzy topological spaces. We will give relationships between CDH and DH fuzzy.

Throughout this paper, if X is a set, then |X| = Card X will denote its cardinality. We write \mathbb{Q} (resp. N) to denote the set of all rational numbers (resp. natural numbers). The closure of a fuzzy set λ in a fuzzy topological space (X, \mathfrak{I}) will be denoted by $Cl(\lambda)$. Associated with a given topological space (X, τ) and arbitrary subset A of X, we denote the relative topology on A by τ_A , the closure of A by Cl(A) and the boundary of A by Bd(A).topological spaces as well as we will deal with cut topological spaces.

2. PRELIMINARIES

In this paper we shall follow the notations and definitions of [29] and [30]. If (X, τ) is a topological space, then the class of all lower semi-continuous functions from (X, τ) to $([0,1], \tau_u)$, where τ_u is the usual Euclidean topology on [0,1], is a fuzzy topology on X. This fuzzy topology is denoted by $\omega(\tau)$. The following definitions and propositions will be used in the sequel:

Definition 2.1. [9] Let X be a non-empty set, A be a non-empty subset of X and P be a collection of fuzzy points in X. Then

- $\mathbb{Q}(A)$ will denote the set

 $\mathbb{Q}(A) = \{x_r : x_r \text{ is a fuzzy point with } x \in A \text{ and } r \in \mathbb{Q} \cap (0,1)\}.$

The support of *P*, denoted by S(P), is defined by

 $S(P) = \{x: x_a \in P \text{ for some } a\}.$

Definition 2.2. [21] A subset A of a topological space (X, τ) is called a σ -discrete set if it is the union of countably many sets, each with the relative topology, being a discrete topological space. Definition 2.3. [21] A topological space (X, τ) is called densely homogeneous (DH) iff

- X has a σ -discrete dense subset.
- If A and B are two σ -discrete dense subsets of X, then there is a homeomorphism $h: (X, \tau) \to (X, \tau)$ such that h(A) = B.

Definition 2.4. [31] Associated with a given fuzzy topological space (X, \mathfrak{J}) and arbitrary subset *M* of *X*, we define the induced fuzzy topology on *M* or the relative topology on *M* by

 $\mathfrak{I}_M=\{\lambda\mid M\colon \lambda\in\mathfrak{I}\}.$

Definition 2.5. [9] A fuzzy topological space (X, \mathfrak{F}) is said to be semi-discrete iff for any $x \in X$, there exists a fuzzy point or a fuzzy crisp point x_a for some a with $x_a \in \mathfrak{F}$. Definition 2.6. [32] Let (X, \mathfrak{F}) be a fuzzy topological space and let P be a collection of fuzzy points of X. Then P is said to be

- Dense(I) if for every non-zero fuzzy open set λ there exists $p \in P$ such that $p \in \lambda$.

- Dense(II) if $Cl(\bigcup_{p \in P} p) = 1$.

Definition 2.7. [9] A fuzzy topological space (X, \mathfrak{J}) is called separable iff there exists a countable dense(I) collection of fuzzy points of X. Definition 2.8. [33] A property P_f of a fuzzy topological space is said to be a good extension of the property P in classical topology iff whenever the fuzzy topological space is topologically generated, say by (X, τ) , then $(X, \omega(\tau))$ has property P_f iff (X, τ) has property P.

Definition 2.9. [34] Let (X, \mathfrak{I}) be a fuzzy topological space and $a \in [0,1)$. The topology $\{\lambda^{-1}(a, 1]: \lambda \in \mathfrak{I}\}$ on X is called *a*-cut topological space of (X, \mathfrak{I}) and will be denoted by \mathfrak{I}_a . The topological space (X, \mathfrak{I}_a) will be called *a*-cut topological space of (X, \mathfrak{I}) . Definition 2.10. [9] A fuzzy topological space (X, \mathfrak{I}) is said to be countable dense homogeneous; denoted CDH; iff

- (X, \mathfrak{I}) is separable.

- If P and W are two countable dense(I) collections of fuzzy points of X, then there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that h(S(P)) = S(W).

Proposition 2.11. [9] Let (X, \mathfrak{F}) be a fuzzy topological space and let *P* be a collection of fuzzy points of X. Then we have the following

- If *P* is dense (I), then $\mathbb{Q}(S(P))$ is dense(II).
- If P is dense (II), then $\mathbb{Q}(S(P))$ is dense(I).

Proposition 2.12. [9] Let (X, τ) be a topological space, $A \subseteq X$, and P be a collection of fuzzy points of X. Then we have the following

- If A is dense in (X, τ) , then $\mathbb{Q}(A)$ is dense(I) in $(X, \omega(\tau))$.

- If *P* is dense(I) in $(X, \omega(\tau))$, then S(P) is dense in (X, τ) .

Proposition 2.13. [35] Let (X, τ_1) and (Y, τ_2) be two topological spaces. Then $f: (X, \tau_1) \to (Y, \tau_2)$ is continuous iff $f: (X, \omega(\tau_1)) \to (Y, \omega(\tau_2))$ is fuzzy continuous. Proposition 2.14. [9] Let $f: (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ be a fuzzy homeomorphism map and P be a collection of fuzzy points of X. Then we have the following

- S(f(P)) = f(S(P)).

- If P is dense (I) in (X, \mathfrak{I}_1) , then f(P) is dense(I) in (Y, \mathfrak{I}_2) .

Proposition 2.15. [9] Let (X, \Im) be a semi-discrete fuzzy topological space. Then we have the following

- If *P* is countable dense (I) in (X, \mathfrak{I}) , then S(P) = X.
- (X, \mathfrak{I}) is separable iff X is countable.

Proposition 2.16. [9] Let X be a countable set and let (X,\mathfrak{J}) be a fuzzy topological space. Then (X,\mathfrak{J}) is CDH iff (X,\mathfrak{J}) is a semi-discrete fuzzy topological space. Proposition 2.17. [34] Let (X,\mathfrak{J}) be a fuzzy topological space and let $f:(X,\mathfrak{J}) \to (X,\mathfrak{J})$ be a fuzzy continuous (homeomorphism) map. Then $f:(X,\mathfrak{J}_a) \to (X,\mathfrak{J}_a)$ is continuous (homeomorphism) for all $a \in [0,1)$. Proposition 2.18. [9] Let (X,\mathfrak{J}) be a fuzzy topological space. Let A be a subset of X and let P be a collection of fuzzy points of X. Then we have the following

- If A is dense in (X, \mathfrak{I}_0) , then $\mathbb{Q}(A)$ is dense(I) in (X, \mathfrak{I}) .
- If P is dense(I) in (X, \mathfrak{I}) , then S(P) is dense in (X, \mathfrak{I}_0) .

3. DH FUZZY TOPOLOGICAL SPACES

In this section, we will define DH fuzzy topological spaces. We will prove that our new concept is a fuzzy topological property and a good extension of DH topological property in the sense of Lowen. Definition 3.1. A collection *P* of fuzzy points of a fuzzy topological space (X, \mathfrak{J}) is said to be

- σ -semi-discrete iff $S(P) = \bigcup_{n=1}^{\infty} A_n$ with $(A_n, \mathfrak{I}_{A_n})$ is semi-discrete for all $n \in \mathbb{N}$.
- σ -semi-discrete dense (I) iff *P* is σ -semi-discrete and *P* is dense (I).
- σ -semi-discrete dense (II) iff *P* is σ -semi-discrete and *P* is dense (II).
 - Definition 3.2. A fuzzy topological space (X, \mathfrak{F}) is said to be densely homogeneous (DH) iff
- (X, \Im) has a σ -semi-discrete dense(I) collection of fuzzy points.
- If *P* and *W* are two σ -semi-discrete dense (I) collections of fuzzy points of (X, \mathfrak{I}) , then there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that h(S(P)) = S(W).

Lemma 3.3. Let (X, \mathfrak{I}) be a fuzzy topological space and *P* be a σ -semi-discrete collection of fuzzy points of *X*. Then $\mathbb{Q}(S(P))$ is a σ -semi-discrete collection of fuzzy points of (X, \mathfrak{I}) . Proof. It is easy to see that $S(P) = S(\mathbb{Q}(S(P)))$ and hence the result is obvious. Theorem 3.4. A fuzzy topological space (X, \mathfrak{I}) is DH iff

- (X, \Im) has a σ -semi-discrete dense(II) collection of fuzzy points.
- If *P* and *W* are two σ -semi-discrete dense (II) collections of fuzzy points of (X, \mathfrak{I}) , then there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that h(S(P)) = S(W).

Proof. If (X, \mathfrak{I}) is DH, then (X, \mathfrak{I}) has a σ -semi-discrete dense (I) collection of fuzzy points *P*. By Proposition 2.11 (i), $\mathbb{Q}(S(P))$ is dense (II) and by Lemma 3.3, $\mathbb{Q}(S(P))$ is σ -semi-discrete. Let *P* and *W* be any two σ -semi-discrete dense (II) collections of fuzzy points of (X, \mathfrak{I}) . Then by Proposition 2.11 (ii) and Lemma 3.3, $\mathbb{Q}(S(P))$ and $\mathbb{Q}(S(W))$ are both σ -semi-discrete dense (I) collections of fuzzy points of (X, \mathfrak{I}) . Then by Proposition 2.11 (ii) and Lemma 3.3, $\mathbb{Q}(S(P))$ and $\mathbb{Q}(S(W))$ are both σ -semi-discrete dense (I) collections of fuzzy points of (X, \mathfrak{I}) . Then there is a fuzzy homeomorphism $h: (X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that $h(S(\mathbb{Q}(S(P)))) = S(\mathbb{Q}(S(W)))$. Thus, h(S(P)) = S(W). The proof of the other direction of this theorem is similar to the above one. Lemma 3.5. Let (X, τ) be a topological space. Let A be a non-empty subset of X and P be a collection of fuzzy points of X. Then

- τ_A is the discrete topology iff $(A, \omega(\tau)_A)$ is semi-discrete.
- If A is σ -discrete in (X, τ) , then $\mathbb{Q}(A)$ is σ -semi-discrete in $(X, \omega(\tau))$.
- If *P* is σ -semi-discrete in $(X, \omega(\tau))$, then S(P) is σ -discrete in (X, τ) .

Proof. (i) Suppose that τ_A is the discrete topology and let $x \in A$. Then there exists $U \in \tau$ such that $\{x\} = U \cap A$. So, $\mathcal{X}_U \cap \mathcal{X}_A = \mathcal{X}_{U \cap A} = \mathcal{X}_{\{x\}} \in \omega(\tau)_A$. But clearly $\omega(\tau)_A$ is the crisp point with support x. Conversely, suppose that $(A, \omega(\tau)_A)$ is a semi-discrete fuzzy topological space and let $x \in A$. Then there exists a fuzzy point or a fuzzy crisp point x_a such that $x_a \in \omega(\tau)_A$. Choose $\lambda \in \omega(\tau)$ such that $x_a = \lambda \cap \mathcal{X}_A$. Thus, $\{x\} = \lambda^{-1}(0,1] \cap A$ and hence $\{x\} \in \tau_A$.

(ii) Since A is σ -discrete in (X, τ) , then $A = \bigcup_{n=1}^{\infty} A_n$ with τ_{A_n} is the discrete topology for all $n \in \mathbb{N}$. So, by part (i) $(A_n, \omega(\tau)_{A_n})$ is semi-discrete for all n. Since $S(\mathbb{Q}(A)) = A$, then $\mathbb{Q}(A)$ is σ -semi-discrete in $(X, \omega(\tau))$. (iii) Since P is σ -semi-discrete in $(X, \omega(\tau))$, then $S(P) = \bigcup_{n=1}^{\infty} A_n$ with $(A_n, \omega(\tau)_{A_n})$ is semi-discrete for all $n \in \mathbb{N}$. So, by part (i) τ_{A_n} is the discrete topology for all n. Therefore, S(P) is σ -discrete in (X, τ) .

Theorem 3.6. Let (X,τ) be a topological space. Then (X,τ) is DH iff $(X,\omega(\tau))$ is DH. Proof. Suppose that (X,τ) is DH. Then (X,τ) has a σ -discrete dense subset A. By Lemma 3.5 (ii) and Proposition 2.12 (i), $\mathbb{Q}(A)$ is σ -semi-discrete dense (I) in $(X, \omega(\tau))$. Let *P* and *W* be two σ -semi-discrete dense(I) collections of fuzzy points of $(X, \omega(\tau))$. Then by Lemma 3.5 (iii) and Proposition 2.12 (ii), S(P) and S(W) are both σ -discrete dense subsets of (X, τ) . Thus, there is a homeomorphism $h: (X, \tau) \to (X, \tau)$ such that h(S(P)) = S(W). Proposition 2.13 ends the proof of this direction.

Conversely if $(X, \omega(\tau))$ is DH, then $(X, \omega(\tau))$ has a σ -discrete dense (I) collection of fuzzy points *P*. By Lemma 3.5 (iii) and Proposition 2.12 (ii), S(P) is σ -discrete dense in (X, τ) . Let *A* and *B* be two σ -discrete dense subsets of (X, τ) . Then by Lemma 3.5 (ii) and Proposition 2.12 (i), $\mathbb{Q}(A)$ and $\mathbb{Q}(B)$ are both σ -semi-discrete dense (I) collections of fuzzy points of $(X, \omega(\tau))$. Thus, there is a fuzzy homeomorphism $h: (X, \omega(\tau)) \rightarrow (X, \omega(\tau))$ such that $h(S(\mathbb{Q}(A))) = S(\mathbb{Q}(A))$. So, h(A) = B. Proposition 2.13 ends the proof of this direction.

Corollary 3.7. DH in fuzzy topological spaces is a good extension of DH in topological spaces. Recall that a property \mathbb{P}_f of fuzzy topological spaces is called a fuzzy topological property if whenever (X, \mathfrak{I}_1) possesses \mathbb{P}_f and $h: (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ is a fuzzy homeomorphism, then (Y, \mathfrak{I}_2) possesses \mathbb{P}_f . Lemma 3.8. Let $f: X \to Y$ be a bijective map. Then

- For any two fuzzy sets λ, μ in $X, f(\lambda \cap \mu) = f(\lambda) \cap f(\mu)$.
- For any $A \subseteq X$, $f(\mathcal{X}_A) = \mathcal{X}_{f(A)}$.

Proof. Straightforward. Lemma 3.9. Let $f: (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ be a fuzzy homeomorphism. Let *A* be a non-empty subset of *X* and *P* be a collection of fuzzy points of *X*. Then

- If $(A, (\mathfrak{I}_1)_A)$ is semi-discrete, then $(f(A), (\mathfrak{I}_2)_{f(A)})$ is semi-discrete.
- If P is σ -semi-discrete, then f(P) is σ -semi-discrete.

Proof. (i) Let $y \in f(A)$, say y = f(x) for some $x \in A$. Since $(A, (\mathfrak{I}_1)_A)$ is semi-discrete, there exists $r \in (0,1]$ such that $x_r \in (\mathfrak{I}_1)_A$. Choose $\lambda \in \mathfrak{I}_1$ such that $x_r = \lambda \cap \mathcal{X}_A$. Then by Lemma 3.8 $y_r = (f(x))_r = f(x_r) = f(\lambda \cap \mathcal{X}_A) = f(\lambda) \cap f(\mathcal{X}_A) = f(\lambda) \cap \mathcal{X}_{f(A)}$. Since f is fuzzy open, it follows that $y_r \in (\mathfrak{I}_2)_{f(A)}$. ii) Since P is σ -semi-discrete, $S(P) = \bigcup_{n=1}^{\infty} A_n$ with $(A_n, \mathfrak{I}_{A_n})$ is semi-discrete for all $n \in \mathbb{N}$. By Proposition 2.14 (i), $S(f(P)) = f(S(P)) = f(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f(A_n)$. Also, by (i) we have $(f(A_n), (\mathfrak{I}_2)_{f(A_n)})$ is semi-discrete for all $n \in \mathbb{N}$. It follows that f(P) is σ -semi-discrete.

Theorem 3.10. In fuzzy topological spaces, "Being "DH" is a fuzzy topological property. Proof. Assume (X, \mathfrak{I}_1) is a DH fuzzy topological space and let $f: (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ be a fuzzy homeomorphism where (Y, \mathfrak{I}_2) is a fuzzy topological space. Choose a σ -semi-discrete dense(I) collection of fuzzy points P of (X, \mathfrak{I}_1) . According to Lemma 3.9 (ii) and Proposition 2.14 (ii), f(P) will be σ -semi-discrete dense(I) in (Y, \mathfrak{I}_2) . Let P and W be any two σ -semi-discrete dense(I) collections of fuzzy points of (Y, \mathfrak{I}_2) . Then by Lemma 3.9 (ii) and Proposition 2.14 (ii), $f^{-1}(P)$ and $f^{-1}(W)$ are two σ -semi-discrete dense(I) collections of fuzzy points of (X, \mathfrak{I}_1) . Since (X, \mathfrak{I}_1) is DH, there is a fuzzy homeomorphism $h: (X, \mathfrak{I}_1) \to (X, \mathfrak{I}_1)$ such that $h(S(f^{-1}(P))) = S(f^{-1}(W))$. Define $g: (Y, \mathfrak{I}_2) \to (Y, \mathfrak{I}_2)$ by $g = f \circ h \circ f^{-1}$. Then g is a fuzzy homeomorphism. Using Proposition 2.14 (i), we can see that g(S(P)) = S(W).

4. RELATIONSHIPS BETWEEN DH AND CDH FUZZY TOPOLOGICAL SPACES

In this section, we will give some relationships between DH and CDH fuzzy topological spaces.

The following useful lemma follows easily: Lemma 4.1. Let (X, \mathfrak{I}) be a fuzzy topological space and P be a collection of fuzzy points of X with S(P) is countable and non-empty. Then P is σ -semi-discrete. Theorem 4.2. Let (X, \mathfrak{I}) be a fuzzy topological space for which X is countable. Then (X, \mathfrak{I}) is DH iff (X, \mathfrak{I}) is semi-discrete. Proof. Since the result is obvious when |X| = 1, we will assume that |X|>1. Suppose that (X, \mathfrak{I}) is DH and assume on the contrary that (X, \mathfrak{I}) is not semi-discrete. Then there exists $y \in X$ such that $y_a \notin \mathfrak{I}$ for all $0 < a \le 1$. Set $P = \mathbb{Q}(X)$ and $W = \mathbb{Q}(X \setminus \{y\})$. It is not difficult to see that P and W are dense (I). Also, by Lemma 4.1, P and W are σ -semi-discrete. So there is a fuzzy homeomorphism h: $(X, \mathfrak{I}) \to (X, \mathfrak{I})$ such that h(S(P)) = S(W), therefore, $h(X) = X \setminus \{y\}$ which is a contradiction since h is an onto map.

Conversely, suppose that (X, \mathfrak{J}) is semi-discrete. Then by Proposition 2.15 (ii), (X, \mathfrak{J}) is separable. Choose a countable dense (I) collection of fuzzy points P. Then S(P) is countable and by Lemma 4.1, P is σ -semi-discrete. Let P and W be any two σ -semi-discrete dense(I) collections of fuzzy points. Then by Proposition 2.15 (i), S(P) = S(W) = X and the identity fuzzy map completes the proof. Corollary 4.3. Let (X, \mathfrak{J}) be a fuzzy topological space for which X is countable. Then (X, \mathfrak{J}) is CDH iff (X, \mathfrak{J}) is DH. Proof. Follows from Proposition 2.16 and Theorem 4.2. Theorem 4.4. If (X, \mathfrak{J}) is separable and DH fuzzy topological space, then (X, \mathfrak{J}) is CDH. Proof. Follows from the definitions and Lemma 4.1.

Recall that a fuzzy topological space (X, \mathfrak{I}) is hereditarily separable if every subspace of (X, \mathfrak{I}) is separable. Recall that a fuzzy topological space is second countable if it has a countable base. It is well known that second countable fuzzy topological spaces are hereditarily separable. Lemma 4.5. If (X, \mathfrak{I}) is a hereditarily separable fuzzy topological space and P is a σ -semi-discrete collection of fuzzy points of (X, \mathfrak{I}) , then S(P) is countable. Proof. Since P is σ -semi-discrete, then S(P) = $\bigcup_{n=1}^{\infty} A_n$ with $(A_n, \mathfrak{J}_{A_n})$ is semidiscrete for all $n \in \mathbb{N}$. Since (X, \mathfrak{J}) is hereditarily separable, then for each $n \in \mathbb{N}$, $(A_n, \mathfrak{J}_{A_n})$ is separable and by Proposition 2.15 (ii) it follows that A_n is countable. Thus, S(P) is countable.

Theorem 4.6. If (X, \mathfrak{I}) is hereditarily separable and CDH fuzzy topological space, then (X, \mathfrak{I}) is DH. Proof. Since (X, \mathfrak{I}) is hereditarily separable, then it is separable. So, there exists a countable dense (I) collection of fuzzy points P and by Lemma 4.1, P is σ -semi-discrete. Let P and W be two σ -semi-discrete dense(I) collections of fuzzy points. Then by Lemma 4.5, S(P) and S(W) are countable. By Proposition 2.11, $\mathbb{Q}(S(P))$ and $\mathbb{Q}(S(W))$ are countable dense(I). Since (X,\mathfrak{I}) is CDH, there is a fuzzy homeomorphism h: $(X,\mathfrak{I}) \to (X,\mathfrak{I})$ such that $h(S(P)) = h(S(\mathbb{Q}(S(P)))) = S(\mathbb{Q}(S(W))) = S(W)$. Corollary 4.7. Let (X,\mathfrak{I}) be a hereditarily separable fuzzy topological space. Then (X,\mathfrak{I}) is CDH iff (X,\mathfrak{I}) is DH. Proof. Follows from Theorems 4.4 and 4.6. Corollary 4.8. Let (X,\mathfrak{I}) be a second countable fuzzy topological space. Then (X,\mathfrak{I}) is DH.

5. CUT TOPOLOGICAL SPACES

In this section we will mainly show that a-cut topological space (X, \mathfrak{I}_a) of a fuzzy topological (X, \mathfrak{I}) is DH in general only if a = 0. Lemma 5.1. Let (X, \mathfrak{I}) be a fuzzy topological space. Let B be non-empty subset of X and let P be a collection of fuzzy points of X. Then

- (B, \mathfrak{I}_B) is semi-discrete iff $(\mathfrak{I}_0)_B$ is the discrete topology on B.
- If *B* is σ -discrete in (X, \mathfrak{I}_0) , then $\mathbb{Q}(B)$ is σ -semi-discrete in (X, \mathfrak{I}) .
- If P is σ -semi-discrete in (X, \mathfrak{I}) , then S(P) is σ -discrete in (X, \mathfrak{I}_0) .

Proof. (i) Suppose that (B, \mathfrak{J}_B) is semi-discrete and let $x \in B$. Then there exists a fuzzy point or a fuzzy crisp point x_a for some a with $x_a \in \mathfrak{J}_B$. Choose $\lambda \in \mathfrak{I}$ such that $x_a = \lambda \cap \mathcal{X}_B$. Then $(\lambda \cap \mathcal{X}_B)(x) = \min\{\lambda(x), \mathcal{X}_B(x)\} > 0$ and so, $\{x\} = \lambda^{-1}(0,1] \cap B \in (\mathfrak{I}_0)_B$. Conversely, suppose that $(\mathfrak{I}_0)_B$ is the discrete topology on B and let $x \in B$. Then there exists $\lambda \in \mathfrak{I}$ such that $\{x\} = \lambda^{-1}(0,1] \cap B$. Now, $\lambda \cap \mathcal{X}_B$ is the fuzzy or crisp point $x_{\lambda(x)}$, on the other hand, $\lambda \cap \mathcal{X}_B \in \mathfrak{I}_B$. ii) Since B is σ -discrete in (X,\mathfrak{I}_0) , then $\bigcup_{n=1}^{\infty} B_n$ with $(\mathfrak{I}_0)_{B_n}$ is the discrete topology for all $n \in \mathbb{N}$. By (i), \mathfrak{I}_{B_n} is semi-discrete for all $n \in \mathbb{N}$. Since $S(\mathbb{Q}(B)) = B$, then $\mathbb{Q}(B)$ is σ -discrete in (X,\mathfrak{I}) . iii) Since P is σ -discrete in (X,\mathfrak{I}) , then $S(P) = \bigcup_{n=1}^{\infty} A_n$ with \mathfrak{I}_{A_n} is semi-discrete for all $n \in \mathbb{N}$. By (i), $(\mathfrak{I}_0)_{A_n}$ is the discrete topology on A_n for all $n \in \mathbb{N}$. It follows that S(P) is σ -discrete in (X,\mathfrak{I}_0) . Theorem 5.2. If (X,\mathfrak{I}) is a DH fuzzy topological space, then (X,\mathfrak{I}_0) is DH.

Proof. Suppose that (X, \mathfrak{J}) is DH. Then (X, \mathfrak{J}) has a σ -semi-discrete dense(I) collection of fuzzy points P. By Lemma 5.1 (iii) and Proposition 2.18 (ii), S(P) is σ -discrete dense in (X, \mathfrak{J}_0) . Let A and B be any two σ -discrete dense sets in (X, \mathfrak{J}_0) . Then by Lemma 5.1 (ii) and Proposition 2.18 (i), $\mathbb{Q}(A)$ and $\mathbb{Q}(B)$ are σ -semi-discrete dense (I) in (X, \mathfrak{J}) . Since (X, \mathfrak{J}) is DH, there exists a fuzzy homeomorphism h: $(X, \mathfrak{J}) \rightarrow (X, \mathfrak{J})$ such that h(S($\mathbb{Q}(A)$)) = S($\mathbb{Q}((B)$)). By Proposition 2.17, h: $(X, \mathfrak{J}_0) \rightarrow (X, \mathfrak{J}_0)$ is a homeomorphism. On the other hand, S($\mathbb{Q}(A)$) = A and S($\mathbb{Q}(B)$) = B. Therefore, (X, \mathfrak{J}_0) is DH. The following proposition is well known:

Proposition 5.3. Let (X, τ) be a topological space with X is countable. Then the following are equivalent:

- (X, τ) is CDH.
- τ is the discrete topology on *X*.
- (X, τ) is DH.

Theorem 5.4. Let X be a countable set and let (X, \Im) be a fuzzy topological space. Then the following are equivalent:

- $-(X,\mathfrak{J})$ is DH.
- (X, \mathfrak{I}) is CDH.
- (X, \mathfrak{I}_0) is DH.
- (X, \mathfrak{I}_0) is CDH.

Proof. Follows from Theorem 4.2, Lemma 5.1 (i) and Proposition 5.3. In fact if a > 0, then (X, \mathfrak{F}) being DH does not imply, in general, that (X, \mathfrak{F}_a) is DH. This will be explained in the following counterexample: Example 5.5. For fixed 0 < a < 1, let $X = \{x, y\}$ and define $\mathfrak{F} = \{0, 1, x_{a/2}, y_{a/4}, x_{a/2} \cup y_{a/4}\}$. It is clear that (X, \mathfrak{F}) is semi-discrete and so by Theorem 4.2, it is DH. On the other hand, since $\mathfrak{F}_a = \{\emptyset, X\}$, then (X, \mathfrak{F}_a) is not DH.

REFERENCES

- [1] L. A. Zadeh, "Fuzzy Sets," Inform and control, vol. 8, pp. 338-353, 1965.
- [2] C. L. Chang, "Fuzzy Topological Spaces," *Journal of Mathematical Analysis and Applications*, vol. 24, pp. 182-190, 1968.
- [3] S. Al Ghour, "Homogeneity in fuzzy spaces and their induced spaces," *Questions and Answers in General Topology*, vol. 21, pp. 185-195, 2003.
- [4] S. Al Ghour, "SLH fuzzy spaces," African Diaspora Journal of Mathematics, vol. 2, pp. 61-67, 2004.
- [5] S. Al Ghour, A. Fora, "Minimality and Homogeneity in Fuzzy Spaces," *Journal of Fuzzy Mathematics*, vol. 12, pp. 725--737, 2004.
- S. Al Ghour, "Local homogeneity in fuzzy topological spaces," *International Journal of Mathematics and Mathematical Sciences*, Art. ID 81497, 14 pp, 2006.
- [7] S. Al Ghour, "Some Generalizations of Minimal Fuzzy Open Sets," *Acta Mathematica Universitatis Comenianae*, vol. 75, pp. 107-117, 2006.
- [8] S. Al Ghour, K. Al-Zoubi, "On some ordinary and fuzzy homogeneity types," Acta Mathematica Universitatis Comenianae, vol. 77, pp. 199-208, 2008.
- [9] S. Al Ghour, A. Fora, "On CDH fuzzy spaces," Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 935-941, 2016.
- [10] A. Fora, S. Al Ghour, "Homogeneity in Fuzzy Spaces," *Questions and Answers in General Topology*, vol. 19, pp. 159-164, 2001.
- [11] S. Al Ghour, A. Azaizeh, "Fuzzy Homogeneous Bitopological Spaces," *International Journal of Electrical and Computer Engineering*, vol. 8, pp. 2088-8708, 2018.
- [12] R. Bennett, "Countable dense homogeneous spaces," Fundamenta Mathematicae, vol. 74, pp.189-194, 1972.
- [13] A.V. Arhangel'skii, J. van Mill, "On the cardinality of countable dense homogeneous spaces," *Proceedings of the American Mathematical Society*, vol. 141, pp. 4031-4038, 2013.
- [14] R. Hernandez-Gutiérrez, "Countable dense homogeneity and the double arrow space," *Topology and Its Applications*, vol. 160, pp. 1123-1128, 2013.
- [15] R. Hernandez-Gutiérrez, M. Hrušak, "Non-meager P-filters are countable dense homogeneous," Colloquium Mathematicum, vol. 130, pp. 281-289, 2013.
- [16] R. Hernandez-Gutiérrez, M. Hrušak, J. van Mill, "Countable dense homogeneity and λ-sets," Fundamenta Mathematicae, vol. 226, pp. 157-172, 2014.
- [17] M. Hrusak, J. van Mill, "Nearly countable dense homogeneous spaces," *Canadian Journal of Mathematics*, vol. 66, pp. 743-758, 2014.
- [18] J. van Mill, "On countable dense and n-homogeneity," *Canadian Mathematical Bulletin*, vol. 56, pp. 860-869, 2013.
- [19] J. van Mill, "Countable dense homogeneous rimcompact spaces and local connectivity," *Filomat*, vol. 29, pp. 179-182, 2015.
- [20] D. Repovš, L. Zdomskyy, S. Zhang, "Countable dense homogeneous filters and the Menger covering property," *Fundamenta Mathematicae*, vol. 224, pp. 233-240, 2014.
- [21] B. Fitzpatrick, N. F. Lauer, "Densely homogeneous spaces (I)," *Houston Journal of Mathematics*, vol. 13, pp. 19-25, 1987.
- [22] S. K. Cho, "Some results related to densely homogeneous spaces," Communications of the Korean Mathematical Society, vol. 11, pp. 1061-1066, 1996.
- [23] D. L. Fearnley, "A Moore space with a σ -discrete π -base which cannot be densely embedded in any Moore space with the Baire property," *Proceedings of the American Mathematical Society*, vol. 127, pp. 3095-3100, 1999.
- [24] B. Fitzpatrick, H. X. Zhou, "Densely homogeneous spaces. (II)," Houston Journal of Mathematics, vol. 14, pp. 57-68, 1988.
- [25] B. Fitzpatrick, H. X. Zhou, "Some open problems in densely homogeneous spaces," Open problems in topology, North-Holland, Amsterdam, pp. 251-259, 1990.
- [26] B. Fitzpatrick, J. White, H. X. Zhou, "Homogeneity and σ-discrete sets," *Topology and Its Applications*, vol. 44, pp. 143-147, 1992.
- [27] S. V. Medvedev, "Metrizable DH-spaces of the first category," *Topology and Its Applications*, vol. 179, pp. 171-178, 2015.
- [28] W. L. Saltsman, "Components of densely homogeneous spaces," *Houston Journal of Mathematics*, vol. 18, pp. 417-422, 1992.
- [29] C. K. Wong, "Fuzzy points and local properties of fuzzy topology," *Journal of Mathematical Analysis and Applications*, vol. 46, pp. 316-328, 1974.
- [30] R. Srivastava, S.N. Lal, A.K. Srivastava, "Fuzzy Hausdorff topological spaces," *Journal of Mathematical Analysis and Applications*, vol. 81, pp. 497-506, 1981.
- [31] M. H.Ghanim, E. E. Kerre, A. S. Mashhour, "Separation axioms, subspaces and sums in fuzzy topology," *Journal of Mathematical Analysis and Its Applications*, vol. 102, pp. 189-202, 1984.
- [32] A. Fora, "Separation axioms for fuzzy spaces," Fuzzy Sets and Systems, vol. 33, pp. 59-75, 1989.
- [33] R. Lowen, "A comparison of different compactness notions in fuzzy topological spaces," *Journal of Mathematical Analysis and Its Applications*, vol. 64, pp. 446-454, 1978.
- [34] G. J. Wang, "Theory of L-fuzzy topological space," Shanxi Normal University Press, Xian, (in Chinese), 1988.
- [35] A. Fora, "Separation axioms, subspaces and product spaces in fuzzy topology," Arab Gulf Journal for Scientific Research, vol. 8, pp. 1-16, 1990.