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 The sensing methods with multiple receive antennas in the Cognitive Radio 

(CR) device, provide a promising solution for reducing the error rates in the 

detection of the Primary User (PU) signal. The received Signal to Noise 

Ratio at the CR receiver is enhanced using the diversity combiners. This 

paper proposes a statistical approach based on minimum Bayes factors and p-

Values as diversity combiners in the spectrum sensing scenario. The effect of 

these statistical measures in sensing the spectrum in a CR environment is 

investigated. Through extensive Monte Carlo simulations it is shown that this 

novel statistical approach based on Bayes factors provides a promising 

solution to combine the test statistics from multiple receiver antennas and can 

be used as an alternative to the conventional hypothesis testing methods for 

spectrum sensing. The Bayesian results provide more accurate results when 

measuring the strength of the evidence against the hypothesis. 
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1. INTRODUCTION 

Spectrum sensing in Cognitive Radio (CR) is a binary hypothesis testing problem. It is the decision 

on the Signal absent, noise-only (null) hypothesis denoted by H0 and the signal-present (alternate) hypothesis 

denoted by H1. Energy Detection (ED) is a very simple technique that decides on hypothesis H0 or H1 using 

the average energy in the observations as the decision statistic. The threshold chosen for ED is dependent on 

the noise power. This makes the performance of the ED sensitive to uncertainty in the noise variance, 

especially at low Signal to Noise Ratio (SNR) [1]. Diversity techniques are employed to mitigate the effect of 

small scale fading and hence provide improvement in the received SNR to achieve higher probability of 

detection [2, 3]. 

From the studies, the maximal ratio combining (MRC), equal gain combining (EGC), and selection 

combining (SC) are the most commonly used diversity combiners. These diversity combining techniques no 

doubt provide improvement in the receive SNR but they demand the learning of the channel state information 

(CSI). Hence this increases the implementation complexity [3-7]. 

Several diversity combining techniques were proposed in the literature which would mitigate 

the impact of the channel estimation error on the performance of diversity receivers. The non-coherent 

combining schemes which do not need the CSI are investigated in [1, 7]. Under this category the square law 
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combiner (SLC) and square law selection (SLS) are studied which produces the decision statistic using 

the outputs of the square-law devices available in each of the diversity branch. In [8] the use of evolutionary 

algorithms on receiver diversity based on the imperialistic competitive algorithm (ICA) is proposed. It is 

shown that this combiner does not demand the CSI, and it provides superior performance compared to MRC. 

The Goodness of fit test based sensing (GoFT) using Anderson Darling (AD) and Jarque Bera (JB) 

tests check for the distribution of test statistic under null hypothesis and is independent of the noise 

distribution [9-11]. These statistical methods were primarily meant to measure the strength of evidence for 

drawing an accurate decision in hypothesis testing based on a sample. The use of these statistical methods in 

spectrum sensing is investigated in previous studies but the studies do not focus on receiver diversity using 

multiple antennas at the CR device.   

 In this paper two benchmarks coined as p-Value and Minimum Bayes factor (MBF) are used in 

decision making in hypothesis testing. The first metric, p-Value is viewed as an index of the “strength of 

evidence” against H0, with small p indicating an unlikely hypothesis [12] and is widely used in medical 

research and decision-making. Using the p-Value the compatibility of the data with the null hypothesis is 

measured. The second metric is the Bayes factor and is often referred to as the “strength of evidence” or 

“weight of evidence”. The Minimum Bayes factor provides the smallest amount of evidence that can be 

stated for the null hypothesis. The sound theoretical foundation of the MBF and its interpretation allows its 

usage in both inference and decision making. They have straightforward interpretation as the strength of 

the evidence in favor of H1 relative to H0 [13-16]. This work is the first of its kind in which the use of p-

values and Minimum Bayes factors are proposed in the context of spectrum sensing. The paper is organized 

as follows: Section 2 gives the overview of blind sensing schemes for primary user detection, Section 3 

discusses the proposed method, Section 4 discusses the results and Section 5 concludes the paper. 

 

 

2. SYSTEM MODEL AND PROBLEM FORMULATION 

Consider the scenario of Single Input Multiple Output (SIMO) system with one transmit antenna 

and multiple receiver antennas. Assume that each CR contains M antennas. The M diversity branches are 

assumed to be sufficiently far from each other. Hence this study takes full advantage of this assumption that 

the received signals are statistically independent and the correlation among them is considered to be 

negligible. Corresponding to the signal received in the ith antenna of the CR device the hypotheses H0 and H1 

are defined as 

 

H0: xi[k]=vi[k] 

 

H1: xi[k]=h s[k]+vi[k]                               (1) 

 

where, h is the amplitude gain of the channel, i is the antenna index (i=1,2,..M) at each CR, s[k] is 

the transmitted signal by PU and vi[k] is the AWGN noise component.  

 

2.1. Existing blind sensing methods 

2.1.1. Square law detector  

Energy detector (ED) or Square law detector is the most commonly used method for hypothesis 

testing in a CR environment. Each individual branch at the receiver is provided with an energy detector to 

provide the instantaneous individual branch energy measurements. The energy of the received signal at the ith 

branch is Yi and N is the sample size. The decision static Yi is compared against a fixed threshold λ.  

 

 𝑌𝑖 =  ∑ |𝑥𝑖[𝑘]|2𝑁
𝑘=1                (2) 

 

The simple hypothesis testing problem is formulated in Equation (3) as  

 

𝑌𝑖  

𝐻1

>
<
𝐻0

    λ                         (3)     

 

The operation in Equation (2) is executed using a square law device provided at each diversity branch of 

the CR receiver. The following conventional square law combining techniques are used to form a better estimate of 

the primary user signal [7]. 
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a. Square-law selection 

The energy vectors from M diversity branches, Y1, Y2, · · · , YM are used in SLS. The branch with 

the highest energy is chosen. The test statistic is given as 

 

𝑌𝑠𝑙𝑠 = 𝑚𝑎𝑥 (𝑌1, 𝑌2, … . . 𝑌𝑀)                                                                                                  (4) 

 

b. Square law combining 
The energy vectors from M diversity branches, Y1, Y2, · · · , YM are gathered and combined in SLC to 

make a combined decision. The test statistic is as 

 

𝑌𝑠𝑙𝑐 = ∑ 𝑌𝑖
𝑀
𝑖=1                                                                                                                            (5) 

                              

2.1.2. Goodness of fit tests based sensing 

Another blind sensing method is the goodness of fit tests (GoFT). These tests are blind non-

parametric hypothesis testing method, which decides on the null hypothesis if the received samples follow 

the noise Cumulative Distribution Function (CDF) denoted as F0. Let x[k] denote the set of N discrete time 

vector observations k=1, 2….N. Let the ith component of x[k] be denoted as xi[k], i=1, 2…M. The signal 

detection in noise is therefore given as a simple hypothesis testing problem in [9-11] and is expressed as 

 

Decide on H0: if 𝐹𝑛(𝑥) = 𝐹0(𝑥) 

 

Decide on H1: if 𝐹𝑛(𝑥) ≠ 𝐹0(𝑥) (6) 

 

where, Fn(x) is the empirical CDF of the received sample. The popular goodness of fit tests are: 

 

a. Anderson darling (AD) test 

To test the normality of a random sample x[k] the Anderson Darling test statistic formulated in [17] 

is given as: 

 

An
2 = −𝑁 −

∑ (2k−1)(ln zk−lnz(N+1−k))
𝑁

𝑘=1

𝑁
                    (7) 

 

when the mean and variance of the sample are unknown the adjusted AD statistic as given in [18]  

is 

 

A = An
2(1 +

0.75

𝑁
+

2.25

𝑁2 )                                             (8) 

  

where zk=F0(yk) is the assumed  distribution, N denotes the sample size, ln is the natural logarithm with 

 𝑦𝑘 = (𝑥𝑖 − �̆�) 𝑆⁄    where �̌� = ∑ 𝑥𝑘
𝑁⁄  and 𝑆2 = ∑ (𝑥𝑘 − �̌�)2 (𝑁 − 1)⁄ . The spectrum sensing problem is 

expressed as: 

 

H0: A ≤ λcv 

 

H1: A > λcv                                                                                                                           (9) 

 

where, λcv is a critical value. If A exceeds the critical value then H0 is rejected. A table of thresholds for 

different values of Pf is given in [19]. 

 

b. Kolmogorov-smirnov (KS) test 

In the KS test the distance between Fn (x) and F0 (x) is given by: 

 

Dn = max| 𝐹𝑛(𝑥) − 𝐹0(𝑥)|                                                                       (10) 

 

where Fn(x) is the empirical distribution. If the samples under test are coming from F0 (x), then, Dn converges 

to 0. If the value of Dn exceeds the critical value then H0 is rejected. A table of thresholds for different values 

of Pf is given in [20]. 
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 bera

The Jarque and Bera (JB) test is another goodness-of-fit test to check for normal distribution. It uses 

the skewness and kurtosis to determine whether the sample data is from a normal distribution [21]. The JB 

test statistic is the combination of the squares of normalized skewness and kurtosis and is given as follows: 

 

𝐽 =
𝑁

6
(𝛾1

2 +
(𝛾2−3)2

4
)                                                               (11) 

 

where, 𝛾1 is the skewness and 𝛾2 is the kurtosis and N is the number of samples. The critical values of the JB 

test for different sample sizes are given in [21]. The primary user signal is declared present if the Jarque Bera 

test statistic is greater than the critical value and is declared as noise otherwise. The spectrum sensing 

problem using JB test can be expressed as 

 

H0: J ≤ λcv                  

 

H1: J > λcv                                                                     (12) 

 

2.2. Significance of statistical measures 

2.2.1. p-value 

Fisher justified that the p -Value can be viewed as an index of the “strength of evidence” against H0, 

with small p indicating an unlikely hypothesis [12]. The test statistic is used to determine the p-Value using 

the formula mentioned in Table 1 as given in [18] and the interpretation of the test results are given in  

Table 2.  
 

 

Table 1. The p-value formula for Anderson darling test 
AD statistic p-Value Formula 

A >153.467 𝑝 = 0 
0.6<A ≤ 153.467 𝑝 = 𝑒(1.2937−5.709∗𝐴+0.0186𝐴2) 

0.34 < A ≤ 0.60 𝑝 = 𝑒(0.9177−4.279∗𝐴−1.38𝐴2) 
0.20 < A ≤ 0.34 𝑝 = 1 − 𝑒(−8.318+42.796∗𝐴−59.938𝐴2) 

A≤ 0.20 𝑝 = 1 − 𝑒(−13.436+101.14∗𝐴−223.73𝐴2) 

 
 

Table 2. Decision table 
Method Condition Decision 

Classical  test if( test statistic > Critical value ) H0 is rejected 
Classical  test if (test statistic < Critical value) H0 cannot be rejected 

p –Value (p -Value < α) H0 is rejected 

p-Value (p -Value > α) H0 cannot be rejected 

 
 

The steps involved in hypothesis testing using p-Values given in [12] are as follows: 

a. Define the null and alternative hypotheses. 

b. Compute the test statistic from the sample data.  

c. Determine the p-Value using the test statistic obtained from step 2. 

d. Fix the significance level α=0.05 and interpret the results using Table 2. 

 

2.2.2. Bayes factor method 

The term Bayes factor (BF) is also called as likelihood ratio. The Bayes factor is often referred to as 

the “strength of evidence” or “weight of evidence”. Bayes factors show that p-Values greatly overstate the 

evidence against the null hypothesis. The Bayes factors have direct interpretation as the strength of 

the evidence in favor of H1 relative to H0.  The use of Bayes factors can avoid the misinterpretations that arise 

from dependency on the p-Value in decisions [13, 14]. Minimum Bayes factors have the advantage that they 

do not depend on the prior probability. The proof of the minimum Bayes factor as function of the p-Value is 

given in [14]. Figure 3 shown Categorization of Bayes Factors BF<1 into levels of evidence against H0. 

 

𝑚𝑖𝑛𝐵𝐹(𝑝) = {
−𝑒𝑝𝑙𝑜𝑔𝑝 𝑓𝑜𝑟 𝑝 <

1

𝑒

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}               (13 

 

 

 

https://en.wikipedia.org/wiki/Goodness-of-fit
https://en.wikipedia.org/wiki/Normal_distribution
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Table 3. Categorization of bayes factors BF<1 into levels of evidence against H0 as given in [14] 

 

 

 

 

 

 

 

 

3. PROPOSED METHOD 

The block diagram of the proposed method is given in Figure 1. This paper adopts the following 

statistical methods to integrate the statistical measures from independent tests [22-25] to have an overall 

assessment on the detection of the primary user signal activity.  
 

 

 
 

Figure 1. Block diagram of the proposed method 
 

 

3.1. p-value based diversity combiner 

The M independent samples xi[k] i=1, 2…M   are received from M diversity branches of the CR 

receiver. The test statistics (A1,A2….AM) and its corresponding p-Values (p1,p2…..pM) are computed. This 

study adopts the following statistical methods to integrate the p -Values from independent tests [22, 23] to 

have an overall assessment on the detection of the primary user signal activity. 

 

3.1.1. Fisher’s test 
A popular method of combining the p-Values is the Fisher’s method [22]. Let p1, p2, …, pM be the 

significance probabilities of the test statistic A or J from the ith sample received from each diversity branch of 

the CR receiver. The joint assessment of the normality is based on the M values of the statistic. The different 

significance probabilities obtained from M diversity branches are combined using Fisher's method as given 

below. 

 

𝐹𝑇 = −2𝑙𝑛(∑ 𝑝𝑖
𝑀
𝑖=1 )                                                                    (14) 

 

3.2. Bayes Factor based diversity combiner 

From the values (p1,p2…..pM)  their corresponding Minimum Bayes factors are computed from (13). 

In the context of spectrum sensing the following method is proposed to integrate these statistical measures 

from independent tests [24] to have an overall assessment on the detection of the primary user signal activity.  

The method proposed for combining the data is by calculating the product of the Bayes factor calculated 

from M independent samples and is defined as the Group Bayes Factor (GBF) as given in [24]. 

 

𝐺𝐵𝐹𝑖𝑗 = ∏ 𝐵𝐹𝑖,𝑗
(𝑛)𝑀

𝑛=1                                                                 (15) 

 

where, the subscripts i,j refer to the hypothesis models being compared, and the bracketed superscript refers 

to the M-th sample. Since the measured data is treated as conditionally independent samples, the probabilities 

are multiplied. 

Strength of Evidence Bayes factor 

Weak 1 to 1/3 
Moderate 1/3 to 1/10 

Substantial 1/10 to 1/30 

Strong 1/30 to 1/100 
Very strong 1/100 to 1/300 

Decisive <1/300 
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 Algorithm 1. Statistical approach to spectrum sensing 
1. Obtain M observation samples from each of the diversity branches of the CR node.  

2. Let Zi, (i=1…M) be the observation vector. Sort the observations from each branch in ascending 

order. 

3. Calculate the AD test statistic using Equation (7) and (8). Let Ai  (i=1…M) denote the test statistic 

obtained for M diversity branches. 

4. Using the formula given in Table 1 calculate the p-Value p1 p2, …, pM  and their respective MBFs  

using Equation (13). 

5. The MBFs and p-Values from M diversity branches are combined using Equation (14) and (15) to 

obtain the new decision statistic. 

6 Reject null Hypothesis if the new decision statistic is less than the predefined significance level. 

 

 

4. RESULTS AND ANALYSIS 

4.1. Monte carlo simulations       

The performance analysis of spectrum sensing using receiver diversity in a CR environment are 

carried out using 1) Conventional Hypothesis Testing and 2) Statistical Hypothesis testing. The statistical 

hypothesis testing is carried out using the following two methods 1) p-Values 2) Minimum Bayes Factor. 

The detection probability is used as a standard of measurement to determine the sensing accuracy. 

The following assumptions are made in the simulations.  

a. The system model has Single Input Multiple Output. 

b. The primary transmitter signal is a sinusoidal pilot signal of known frequency. 

c. Additive White Gaussian Noise with μ=0 and σ2 =1. 

d. For the Hypothesis H1 to be declared true (signal is present)  

Method 1: If the p-Values is less than the significance level α =0.05  

Method 2: If the minimum Bayes factor is less than 1/100 

Figure 2 provides a comparison of the Goodness of fit tests in the context of primary user signal 

detection in cognitive radio. The Conventional method of hypothesis testing in a CR environment is 

compared with the statistical method of hypothesis testing. The number of samples in the test is taken as 100. 

The tests include the the conventional energy detector, Anderson Darling test, Kolmogorov-Smirnov Test 

and Jarque and Bera Test. Energy detector  shows better performance compared to the other tests. But AD 

test provides better detection performance compared to the other normality tests. The statistical measure 

coined as p-Value and Bayes Factor are used as statistical measures in hypothesis testing in Figures 3-6.  

 

 

 
 

Figure 2. Spectrum sensing using Goodness of fit tests when the primary user is present 

 

 

The following observations are made: 

a. It is observed that the p-Value method overstates the evidence against the null hypothesis than the MBF 

method. 

b. The diversity improves the detection probability in the low SNR regimes using both the methods. 

c. The statistical methods provide detection probability close to the conventional square law methods 

of combining. 
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Figure 3. Primary User detection of a Sinusoidal Pilot 

signal with M=1 ,α=0.05 and N=100 Samples using 

Anderson Darling Statistic 

 

 

 

Figure 4. Primary User detection of a Sinusoidal Pilot 

signal with M=1 ,α=0.05 and N=100 Samples using 

Jarque Bera Statistic 

 

  
 

Figure 5. Primary User detection of a Sinusoidal Pilot 

signal with M=3 , Pf =0.05 and N=100 Samples using 

Conventional Square Law diversity combining 

techniques 

 

Figure 6. Primary User detection of a Sinusoidal Pilot 

signal with M=3 , α =0.05 and N=100 Samples using 

statistical approach a)Minimum  Bayes Factor method 

b) p- Value Method 

 

 

Given below is a detailed illustration to support point 1 of the observation: 

If the MBF=0.262788=1/3.8 with p-value=0.070552 then based on the observed evidence, the result 

is that the H1 (the alternative hypothesis) is 3.8 times as likely as H0 (the null hypothesis). 

Since MBF/p-Value =0.262788/0.070552 it can be seen that Fisher’s p-Value states the amount of evidence 

against H0 as 3.7 times as much as the MBF does. This means that the exaggeration of the statistical 

significance by Fisher’ p-Value is almost 4 times as much as that of MBF. Therefore it can be stated that 

Fisher’s p-Value provides less accurate results as a measure of the strength of evidence against H0 [14]. 

 

 

5. CONCLUSION  

In this paper a novel Statistical approach for the hypothesis testing problem in a spectrum sensing 

environment is proposed. The Minimum Bayes factors and p-Values are proposed for combining the data 

received from a secondary user equipped with multiple antennas. The effect of these statistical measures in 

sensing the spectrum in a Cognitive Radio environment is investigated. A ballpark figure of the merits of 

these diversity combining methods are provided in this study. Results show that p-Values magnifies 

the evidence against the null hypothesis. The Bayes factor has a straightforward interpretation as the strength 

of the evidence in favor of H1 relative to H0. Also the algorithm proposed improves the detection of the PU in 

low SNR regimes. Through extensive Monte Carlo simulations it is shown that Bayes Factors provides a 

promising solution to combine the test statistics from multiple receiver antennas and can be used as an 

alternative to the conventional hypothesis testing methods for spectrum sensing. Hence this novel statistical 

approach using bayes factors provide more accurate and relevant test results when measuring the strength of 

the evidence against the hypothesis. 
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