International Journal of Electrical and Computer Engineering (IJECE)
Vol. 9, No. 2, April 2019, pp. 1100~1109
ISSN: 2088-8708, DOI: 10.11591/ijece.v9i2.pp1100-1109 d 1100

A hybrid bacterial foraging and modified particle swarm
optimization for model order reduction

Hadeel N. Abdullah
Department of Electrical Engineering, University of Technology, Iraq

Avrticle Info ABSTRACT

Article history: This paper study the model reduction procedures used for the reduction of
. large-scale dynamic models into a smaller one through some sort of

Received Jul 16 2018 differential and algebraic equations. A confirmed relevance between these

Revised Oct 17, 2018 two models exists, and it shows same characteristics under study. These

Accepted Nov 10, 2018 reduction procedures are generally utilized for mitigating computational

complexity, facilitating system analysis, and thence reducing time and costs.

This paper comes out with a study showing the impact of the consolidation
Keywords: between the Bacterial-Foraging (BF) and Modified particle swarm
optimization (MPSO) for the reduced order model (ROM). The proposed

BF hybrid algorithm (BF-MPSO) is comprehensively compared with the BF and
BF-MPSO MPSO algorithms; a comparison is also made with selected existing
ISE techniques.

Model order reduction

PSO Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Hadeel N. Abdullah,

Department of Electrical Engineering,
University of Technology,

Al-Sinaa Street, Baghdad, Iraq.
Email: 30002@uoechnology.edu.iq

1. INTRODUCTION

Scientists and engineers are often challenged with the analysis, design, and synthesis of real-life
problems due to the regularly increasing size of system models showing up by the present technology and
societal and environmental processes. In such studies, the initial step is the refinement of a mathematical
model which can be an alternative to the real problem. Modelling and controlling of complex-dynamic-
systems (CDS) is the farthest essential areas of study in many engineering fields and sciences [1]-[3].
In various cases and engineering applications, the dynamic system model under the study can be complicated
to some extent and pose challenges when used. Where there is high and complex mathematical model show
exactly the problem at hand, but it is not suitable for the numerical simulation. To overcoming this problem,
model order reduction (MOR) approach is used, which aims to convert a system model from higher order to a
lower order to facilitate the computational complexity of such problem and has lately been intensively
sophisticated for use with piecemeal more CDS inclusive both optimization and control [4]-[5] .

Various popular MOR methods for linear and nonlinear large-scale dynamical systems, are available
in the researches for MOR [6]-[8]. The need for new innovative and advanced approaches is justified.
Theories of evolutional computation are proposed [9] and mathematically formulated as a new way to model
and control of CDS [10]-[12].

All the above-mentioned methods didn’t take into account the merge between the BF and PSO for
the reduced order model. This paper comes out with a study showing the impact of the consolidation between
the BF and PSO for the reduced order model. As well as, the results are counterweight with the original BF
and with the proposed MPSO.
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2. PROBLEM FORMULATION
A straight time-invariant single-input single-output framework can be described by the following
function:

_N,(s) a,+as+a,si+..+a, s""

G,(s) =
) D,(s) b, +bs+b,s’+..+bs" 1)

Where
a,:0<i <n-1
b.:0<1i <n
i are known as scalar constants.

Togetthe r*(r <n) ROM (G, (s)) which is represented in the form:

_N,(5) e +es+e,s’+..+e 5" @)

G, (s) = =
) D,(s) f,+fs+f,s®+..+bs"

Wheree :0<i<r-1,  f,:0<i<r.The integral-square-error (ISE) between G, (s) and G (s) models is
calculated to gauge the quality of the ROM. ISE is known by:

ISE =i[ y@) -, ()] 3)

Where y (t,) and y, (t,) are the unit step responses of the original and ROM, correspondingly. The transfer
function matrix of the multi_input multi_output system can be symbolized in the formula:

a,(s)  a,(s) .. ,(s)

6.t |2 @) a0
D, (s)
aml(s) amz(s) amp(s) (4)
where p =no. of input and m=no. of output.
8;(s)
g; (s) = ——
where i=1 2, ..., p, j=1 2, .., m
To get (r‘h < n) ROM represented in the form of:
€,(S) €,(8) - €,(s)
6L |0 @) - e
D, (s) -
€n(s) €,2(8) ... €,(s) ©)
The overall form of R, (s) from G (s) is reserved as:
€;j (s)
R.(s)=——
U] (S) DT(S) (7)
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To obtain the r™order reduced transfer matrix G, (s), the factors of the communal denominator

D, (s)and the numerator e, (s) of the G, (s) are designed by decreasing the ISE between the 0 (s)and R; (5)
order models.

2.1. BF algorithm
Recently, BF has become increasingly suitable as a global optimization technique in science and
engineering subjects [13], [14]. The basic structural details of the BF algorithm are depicted in Figure 1.
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Figure 1. Basic structural of the BF algorithm

2.2. MPSO algorithm

PSO has seen many changes since it's introduced by Eberhart and Kennedy [15]. Whenever
researchers learn about this technology, new versions are discovered, incorporated into new applications.
PSO is a populace grounded streamlining tool in which the framework is set through various arbitrary-

possibility elements famous as particles. Every particle takes a position (Xt') and speed(\/ti), which are
refreshed by the accompanying equations:

Vt+l = W'Vti + Clr:-l_ (Pl_ibest - th ) + CZ r2 (P(;best - th ) (8)

Xt+1 = th +Vti+1 (9)

Where w= is the inertia_ weight factor,
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c,_c, =the cognitive_ social acceleration factors, I _ I, = randomlly [0, l],

Pli_best =the best result achieved by i particle

PL . =the best result achieved by all particle

Different approaches are beneficial in texts for adjusting [16]-[19]. The proposed MPSO described
as follows:
Step 1: Identify the factors of PSO.
Step 2: Create an initial populace with M particles.
Step 3: estimate the fitness of each particle.
Step 4: Update according to one of the strategies proposed by us in [19].
Step 5: Update Xt and V*' for each particle by using Equations (8) and (9).
Step 6: Check the termination conditions.

2.3. BF-MPSO algorithm

To improve the performance; recent methods combine the PSO and BF algorithms
together [20]-[22]. Here we propose a hybrid algorithm (combining the features of BF and the proposed
MPSO (BF-MPSO) to acquire a ROM as shown in Figure 2.
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Figure 2. Basic structural of the proposed BF-MPSQO algorithm

3. RESULTS AND ANALYSIS

In this segment, the proposed advancement strategies are attempting to limit the ISE as indicated
in (3). The proposed techniques were actualized on a Pentium IV 3-GHz PC in the MATLAB 2010
condition. The exhibitions of the BF, MPSO, and BF-MPSO calculations were assessed utilizing consistent
estimations of the underlying elements proclaimed in Table 1.
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Table 1. Factors Used for Modified PSO, BF and BF_ MPSO Algorithms

Parameters Value
Swarm size 50
Maximum-number of generations 50
Cognitive-social acceleration factors (¢;,Cp) 12,08
Inertia-weight (Wmin —Wmax) 0.4-0.9
Number-of-bacteria (S) 20
Chemotactic-steps (N.) 200
Maximum swim length (Ny) 2
Dispersal-number-of-bacteria (Ned) 2
Reproduction number (Nre) 2
Dispersal probability (Ped) 0.05

Example 1: Consider the 4th order system given in [4]:

14s3 1 24952 +900s +1200

Ga(8)=——— 2
7 +19s” +102s“ +190s +120

The step-responses of the full and ROMs are displayed in Figure 3(a). Likewise, to assess the
feature of the model in the frequency space Figure 3(b) shows the frequency-amplitude attributes of the full
and ROMs. Keeping in mind the ISE and mean square error were computed, to compare the proposed
method with different ROMs, as appeared in Table 2. A comparison for the conjunction of the fitness
function with the number of generations for the two MPSO schemes is presented in Figure 4. Likewise,
Figure 5 displays the variant of the minimum fitness with the number of chemotactic steps.
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Figure 3. Original and reduced models responses for example 1
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for example 1

Example 2: Consider the 8" system model presented in [5]:

40320 +185760s + 2220885 + 12266453 + 363805 +50825° + 51455 + 1857

40320 +109584s + 11812452 1 67284s° + 22449s* + 45365° + 54650 + 3657 + s

5.
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Evolution processes of BF and BF-MPSO
methods for example 1

The step responses of the full and ROMs are presented in Figure 6(a). Also, Figure 6(b) displays the
frequency-amplitude attributes of the full and ROMs. Also, the ISE and mean square error were computed, to
compare the proposed method with different ROMs, as appeared in Table 3. A comparison for the
conjunction of the fitness function with the number of generations for the two MPSO schemes is presented in
Figure 7. Figure 8 displays a plot of the variation of the minimum fitness with the number of
chemotactic steps.

Table 2. Evaluation of Error Index Values for

Table 3. Evaluation of Error Index Values for

Example 1 Example 2
Method ROM RMS- g Method ROM RMS e
Error Error
154.65 + 46.31
E;gg%sid - 0.0631  0.4020 Proposed 340.45+104.3
12.82s" +18.745 +4.66 MP201 19.97s2 +137.7s +104.3 0.0095  0.0092
Proposed 836.55 +399.1 0.0615 0.3820
MPSO2 69.39s2 +112.95 + 40.03 ' '
148.3s + 466.4
gré)posed . s + 00917  0.8504 Proposed 682s +208.8
12.55“ +51.73s + 46.64 MPSO2 40.13s2 + 277.4s+209.8 0.0075  0.0057
Proposed 53.46s+25.5 0.0677 0.4638
BFMPSO 442152 +7.1965 +2.55 ' '
30s +40
Ref. [4] = 01428 20609  broposed 20895 1149 00569 03281
35 +6s5+4 BF 1.908s5 +17.155 +14.65
12.01665 +12.0226
Ref. [22]  1016s%+2.11555+1.202  0.0665  0.4472 Proposed 90.755 +28.23 00086 00076
BFMPSO 531652 +36.55 +28.12 ’ '
Ref. [7] 2.8863s +51.4892 03145 9.9998
er. . .
2
4.150325 +5.1489 1.99s +0.43184
o 14s +1Z Jsrs Ref. [4] 241 175:-;8 0.43184 04371 1929
Ref. [8] T 03016  9.1872 it
§“+2.138s+1.253
70.588 6.7786s + 2
Ref. [23 B I — 0.3301  11.003 : —_ . .
23] s2 +5.2941s + 7.0588 Ref. [5] s? +3s+2 01651 2.7825
88.04s -+ 26.48 237
Ref. [22] 40215 +28.59s+2.648  4.6467 o x
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Example 3: A system model specified in [9], which is 6th order 2-input 2-output:

Where:

2(5+5s) (4+5)
| @+9)10+5)  (2+9)(5+9) | g (g)=
GO=1 " 104 ©G+s) |’ =5
1+5s)(20+s) (2+S)(3+5S)

|:a11(5) ay,(s)

8 (S) @, (s)

D(s) = (1+5)(2+5)(3+5)(5+5)(10+5)(20 +5) = 6000 +13100s +10060s? + 3491s> +571s* + 41s° + s°

ay,(s) = 6000 + 77005 + 3610s” + 762s> + 70s* + 25°

ay,(s) = 2400 + 4160s + 2182s” + 459s® + 38s* + s°
a,,(S) = 3000 +3700s +1650s? + 331s* +30s* + §°
a,,(S) = 6000 + 7700s +3610s” + 601s® + 42s* +°

By utilizing the second procedure of the MPSO calculation, the ROM system g, (s) was:

methods for example 2
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(0.5782s +1.499) (1.781s+3.014)
(s+3)(s+1)

[ (1.3175+2.998)  (1.031s+ 1.202)}

G,(s)=

The step responses of the full and ROMs are displayed in Figure 9(a). Likewise, Figure 9(b)
displays the frequency-amplitude features of the full and ROMs. To compare the proposed method with
different ROMs, the ISE and mean square error were computed, as shown in Table 4.
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Figure 9. Original and reduced model responses for example 3

A hybrid bacterial foraging and modified particle swarm optimization for model... (Hadeel N. Abdullah)



1108 O ISSN: 2088-8708
Table 4. Evaluation of Error Index Values for Example
Method Reduced Model R11 R12 R21 R22
r, =1.317s+2.998
r, =1.031s +1.202 RMS Error = RMS Error = RMS Error = RMS Error =
Proposed _ 0.004504 0.001927 0.001475 0.017657
Mpsop a7~ 05782541499 ISE = ISE = ISE = ISE =
I, =1.781s+3.014 0.004077 7.465x 107 4.x10™ 0.062667
D, = (s> +4s+3)
r,, =1.3285 +3.104
r, =1.034s+1.241 RMS Error = RMS Error = RMS Error = RMS Error =
_ 0.004332 0.002527 0.001423 0.018692
Ref.[9] 1 =0.58185+1.552 ISE = ISE= ISE = ISE =
I, =1.8245+3.104 0.003772 0.001283 4.068x 107 0.070228
D, =(s® +4.109s +3.104)
I, =-1.541s+8.946
LmAT T IR memes  OREC
Ref. [23] ry =—0.9945+4.473 s ol 0.025207 g
ISE = ISE = > ISE =
r,, = 0.54685 +8.946 0.459849 8.845x 10-7 ISE= 0127719 ) 103955
D, =(s® +6.511s +8.946)
r,, =1.079s +0.7091
r, =0.9031s +0.2837 RMS Error = RMS Error = RMS Error = RMS Error =
_ 0.027311 0.059892 0.039632 0.069859
Ref. [24] r, =0.1955s +0.3546 ISE = ISE = ISE = ISE =
I, =0.68955+80.7091 0.149925 0.720996 0.315713 0.980948
D, = (s® +1.548s +0.7092)
4. CONCLUSION

In this paper, we presented a comparative study of three algorithms for ROM optimization

problems, namely: MPSO, BFO, and MPSO_BF. From Figures 3, 6, and 9, unmistakably observed that the
suggested techniques keep up steady state value and stability in the ROMs, while Figures 4 and 7 delineate
that the convergence speed of the second MPSO strategy is the fastest among the two strategies. Figures 5
and 8 illustrate that the speed of convergence and additionally the precision of the proposed BF-MPSO is
better than that of BF. In addition, these algorithms can use a smaller number of chemotactic steps, which
makes them faster. At long last, the information showed in Tables 2, 3, and 4 exhibits that the proposed

calcu

lation performs well in contrast with other accessible procedures.
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