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 Genetic Algorithm is an algorithm imitating the natural evolution process in 

solving optimization problems. All feasible (candidate) solutions would be 

encoded into chromosomes and undergo the execution of genetic operators in 

evolution. The evolution itself is a process searching for optimum solution. 

The searching would stop when a stopping criterion is met. Then, the fittest 

chromosome of last generation is declared as the optimum solution. 

However, this optimum solution might be a local optimum or a global 

optimum solution. Hence, an appropriate stopping criterion is important such 

that the search is not ended before a global optimum solution is found. In this 

paper, saturation of population fitness is proposed as a stopping criterion for 

ending the search. The proposed stopping criteria was compared with 

conventional stopping criterion, fittest chromosomes repetition, under various 

parameters setting. The results show that the performance of proposed 

stopping criterion is superior as compared to the conventional stopping 

criterion. 
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1. INTRODUCTION 

In 1975, John Holland, inspired by the Darwin Evolution Theorem [1, 2], introduced an algorithm 

[3, 4] mimicking the process of genetic inheritance in evolution [4-6]. It was named as Genetic  

Algorithm (GA). Due to its adaptable competences, the algorithm applications in research areas are gigantic 

[7] where they are not only found in pure sciences such as engineering [8-10] but also in social sciences such 

as operation managements [11-14].  

GA has been categorised under the family of meta-heuristic algorithms [15, 16] such as Tabu Search 

and Artificial Neural Network. Meta-heuristic algorithms are always used for solving combinatorial problems 

or hard optimization problems [17] since they can provide good solutions at reasonable computational  

cost [18, 19]. However, they may not be able to guarantee the optimality of solution due to their stochastic   

nature [20].  

Slightly different from some meta-heuristic algorithms that improve a single solution, the genetic 

algorithm handles a group of feasible solutions simultaneously [21]. These feasible solutions are encoded 

into chromosomes [22] and placed into an environment analogue of natural evolution where they need to 

survive, adapt, and propagate their genetics to the future generations [21]. The evolution of these 

chromosomes is the process of searching the optimum solution. The evolution takes many generations to 

converge to perfectly adapted chromosome (global optimum solution) [21]. Hence, timing for ending the 

evolution/searching process is crucial. Otherwise, premature convergence could happen in the evolution.   
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A premature convergence should be avoided as it may led to the acquisition of a local optimum solution 

instead of global optimum solution [20]. The choice of the stopping criterion would determine if the global 

optimum solution could be found before its searching process is terminated.  

In this paper, we investigated the stopping criterion of genetic algorithm as the time of searching the 

solution space is one of the very important factors to find the global optimum solution. We proposed the 

density or saturation of population fitness as the new stopping criterion which served as a measurement key 

to end the searching process. The proposed stopping criterion was compared to a conventional stopping 

criterion which the searching process will be stopped when there is no improvement of fittest chromosome 

for some successive generations. The numerical results show that the proposed stopping criterion has better 

performance as compared to the conventional stopping criterion.  

This paper is organized as follow. Section 2 gives the description of the genetic algorithm including 

solution encoding / encrypting, evolution and the stopping criteria that has been used. Section 3 details hybrid 

algorithms for two tested models, one with conventional stopping criterion, one with the proposed stopping 

criterion. Section 4 reports on experimental results with different parameters/genetic drift setting.  

In section 5, the findings are concluded and some recommendations are given for future study. 

 

 

2. THE VITAE OF GENETIC ALGORITHM 

In an artificial evolution system as shown in Figure 1, genetic algorithm search begins by generating 

a population of randomly generated candidate solutions. These candidate solutions are encoded into 

chromosomes [7] and brought into the evolution that is constructed by genetics operators. Each of the 

chromosomes is assigned with a fitness function [20] that serves as a fitness index.  

 

 

 
 

Figure 1. Artificial evolution system in genetic algorithm 

 

 

The chromosomes from the same generation would have to compete with one another. A selection 

pressure that is biased to privilege on the fittest chromosomes is enforced in the system [5]. This act is to 

ensure that only those with dominant traits of optimisation would have higher possibilities to be selected for 

passing the genes [21]. Through the execution of genetic operators on these selected chromosomes, a new 

population / generation of chromosomes is formed [20]. The evolution/searching process will continue until a 

stopping criterion / threshold is met and the fittest in the last generation will be identified as an optimum 

solution [23]. However, the identified optimum solution could be a local optimum solution instead of a global 

optimum solution if the searching process ended too early.  

Basically, the algorithm search involves two different spaces, one is coding space, and the other is 

solution space [24]. The implementation of genetic operators on coded solutions, namely chromosomes, 

works in the coding space. Nonetheless, the evaluation and selection of chromosomes are employed in the 

solution space which is the space for an actual solution [24]. 

 

2.1. Solution encryption 

Each generation is constituted by a population of size M candidate solutions. These candidate 

solutions are feasible solutions [25] which will be encrypted into chromosomes Cij constructed by gene gijk. 

They could be in the form of binary string [17], real number string [8] or matrix [26] depending on the types 

of optimization problem. The (1) is the solution representation form for jth chromosome of k genes in ith 

generation. For the purpose of this research, binary string constructed by gene gijk ={0,1} was chosen. 

 

Cij = ( gijk ,… gij3,  gij2,  gij1,   gij0)                         (1) 
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2.2. Selection, mating and mutation phases in the evolution 

In the artificial evolution system, all chromosomes of each generation must go through the evolution 

[27] that comprised of a selection, mating and mutation phases as shown in Figure 2. In the selection phase, 

the selection pressure is enforced in a probabilistic manner into each generation by using selection operators 

such as Roulette Wheel [12], Tournament [28], and Elitism [9]. In this paper, Roulette Wheel and Elitism 

Selection Operators were selected to be imposed in the study.  
 

 

 
 

Figure 2. Evolution 
 

 

As the name of Roulette Wheel suggests, each chromosome was given a slot that is proportional to 

its fitness in an imaginary roulette wheel. The size of each slot determines the probability of a chromosome 

being selected for the next phase. This means that the fittest would have precedence in breeding than those 

that were not well-adapted [17]. The selection pressure of Roulette Wheel operator was enforced into the 

chromosomes pool with some probability of crossover (crossover rate, CR). 

 Two chromosomes that had been selected by Roulette Wheel were treated as the parent 

chromosomes (PC1, PC2) for breeding in the mating phase. In this phase, the crossover operator exchanged 

and spliced the segmentations of both parent chromosomes at random point (r) [25] to form new 

chromosomes called offsprings (O1, O2) (2). These offsprings will carry the exchanged genetic information 

which inherited from their parent chromosomes [7]. In this study, the operation was repeated until a 

population of M-2 offspring was formed.  
 

PC1= ( gijk ,… gijr+1,  gijr,… gij2,  gij1,   gij0) 

PC2= ( g’ijk ,… g’ijr+1, g’ijr, ,… g’ij2,  g’ij1,   g’ij0)  

 (2) 

O1= ( gijk ,… gijr+1,  g’ijr,… g’ij2,  g’ij1,   g’ij0) 

O2= ( g’ijk ,… g’ijr+1, gijr, ,… gij2,  gij1,   gij0)                     
 

Next, the offsprings were brought into the mutation phase that consisted of mutation operator with 

some probability of mutation (mutation rate, MR). The probability of mutation is always a lower probability 

than the probability of crossover [7]. The mutation operator might alter the gene of the chromosomes at 

random position (R) [9] (3) with the intention of varying the genetic [22] and hence further expanding the 

solution space search [20]. The offsprings would then be regarded as new chromosomes for the coming 

generation. The mutation operators might serve as a tool to reduce the risk of premature convergence.  
 

O= (gijk ,… gijR,  gij2,  gij1,   gij0) 

gijR=   1           if   gijR=0  (3) 

          0           if   gijR=1                             
 

Simultaneously, Elitism operator was used to make sure that the elite chromosomes  

(fittest chromosomes of each generation) would not be disrupted by the execution of the crossover and 

mutation operators [28]. Two elites would be replicated directly as new chromosomes for the coming 

generation. This was a preservation act for reducing the probability of losing the fittest gene from the 

chromosome pool and decreasing the time of convergence to an optimum solution. 
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2.3. Stopping criteria 

Lastly, a judgement to stop the evolution is important. The decision of having an appropriate 

threshold/stopping criterion greatly affects the capability of the algorithm [26]. Generally, there are two 

stopping criteria that have been widely used: 

a) Maximum generations or maximum CPU time allowed [26]. 

b) No improvement of fittest chromosome for successive generations (fittest chromosome repetition) [14]. 

The first criterion (a) would end the evolution if the algorithm had met the pre-defined maximum 

number of generations or CPU time. However, to determine the appropriate time or maximum number of 

generations is a perplexing puzzle. Defining a very huge number of maximum generations or CPU time 

would lead to unpractical computational time while a small number might cause the algorithm has not 

enough time to reach a global optimum solution. The size of the population would sometimes influence the 

duration required for convergence [28].  

In this aspect, the second criterion (b) might seem a better choice since the algorithm would stop if 

there is no improvement of fittest chromosome for few generations successively (fittest chromosome 

repetition). Again, it is another paradox where the algorithm user needs to determine the appropriate number 

of successive repetition for dismissing the search. The successive repetition of fittest chromosome is greatly 

influenced by the size and complexity of the research problem [26]. 

In this paper, a stopping criterion that measures the saturation of population fitness (F) of M 

chromosomes was proposed. The proposed stopping criterion aimed to work as a threshold to stop searching 

when the fitness deviation of the population is small (4) (when δ→0) and further enhance the competency of 

algorithm in finding global optimum solution. 

 

[(1/M) ∑ (Fij –F)2]< δ  ,  δ→0         (4) 

 

 

3. EXPERIMENTAL MODEL ALGORITHM 

To test the proposed stopping criterion, two models with different stopping criteria were developed. 

The first model, named as Normal stopping criterion (Nsc) model, was designed with an algorithm that ends 

the searching process when fittest chromosome repetitions have reached the plateau, prefix upper bound.  

The second model, named as the Saturation stopping criterion (Ssc) model, was created with the proposed 

stopping criterion. The searching was stopped when the generation saturated with the fittest chromosomes. 

The algorithms of the two models are illustrated in Figure 3. 

 

 

 
(a) 

 
(b) 

 

Figure 3. Algorithms for (a) Nsc Model; (b) Ssc Model 
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These two models are hybrid with a forecasting equation.  This forecasting equation consists of one 

adjusted parameter α that range between zero and 1. The choice of the parameter α would influence the 

accuracy of forecasting simulation. Hence, the two models were assigned to identify a global optimum 

solution α such that the accurate forecasting simulation could be produced. Numerical tests were used to test 

the efficiency of the two models. 

The parameter α would be encoded into chromosome in the form of (1) and the chromosome 

decipher of α is as (5). Each encoded parameter αij was assigned with a fitness function  

(Fij (αij)), Mean Absolute Error (6). The Fij (αij) expressed the fitness function of jth chromosomes in ith 

generation. The chromosome that is able to minimize the errors of forecast was viewed as fittest.  

The forecasting equation was modified and hybrid into algorithms stated as (7). The hijt was the forecast data 

simulated by (7) and yt represented the real data. 

 

αij  = (∑   gijk× 2K )/100  ,       K=0,1,2…k                 (5) 

 

Minimize Fij (αij) = (1/k)∑|hijt-yt|        subject to      0<αij<1                     (6) 

 

hijt = αij ( fij1t – fij2t)/ (1– αij)+ [2 fij1t – fij2t ]                   

fij1t= αij yt + (1– αij) fij1t–1   (7) 

fij2t= αij fij1t   + (1– αij) fij2t–1   

 

Generation, i =1, 2… upper bound of generation  

Chromosome, j =1, 2 ...M chromosome 

Data Time, t = 1, 2 ...maximum number of time   

In the selection phase, the selection pressure was affected by selection probability (RPij (Cij)) (8) of 

each chromosome. At the same time, two elite chromosomes (ECw) would be replicated directly into the next 

generation (9). Two elites (ECw) of generation ith were assigned as the first two new chromosomes (Ci+1,w) of 

the coming generation i+1 th.  In the crossover and mutation phases, the possibilities of happening were 

controlled by crossover rate (CR) and mutation rate (MR).     

                                                                                                                                                                                                                                                                            

Pij (Cij)=Fij / ∑ Fij      

CPij (Cij)=1- P(Cij) (8) 

RPij (Cij)= CPij/ ∑ CPij                              

 

If     ECw= Ci,j ,  then Ci+1,w = ECw, w =1,2  , j = two identified elite chromosomes              (9) 

 

 

4. RESULTS AND DISCUSSION 

Both Nsc and Ssc models were tested for their capabilities in forecasting simulation by using a set of 

time series data range [1300, 1600]. The competence of models in avoiding premature convergence and 

finding the global optimum solution was used as an index for gauging a good model. A good model shall be 

able to produce a simulated result that is very close to actual value [28] under various circumstances 

(of different crossover rate and mutation rate).  

In this research, both models carried out simulation experiment with 1000 trials to accumulate the 

statistical records of stopping criteria efficiency. The effectiveness of stopping criterion could be revealed by 

the probability of having a good forecast (consist of global optimum solution α) when the searching ended. 

The genetic drift/parameters of both experiment models are standardized as in Table 1. 

 

 

Table 1. Genetic drift/parameters for experiment models 
Genetic drift/parameters 

Population size, M = 20 chromosomes 

Crossover rate, CR = [0.5, 0.9] with rate interval 0.1 

Mutation rate, MR = [0.01,0.1] with rate interval 0.01 

 

 

Figure 4 depicts the probabilities of Nsc model of achieving global optimum alpha α under different 

crossover rates (CR) and mutation rates (CR). The performances of Nsc model were above average when 

crossover rate was set in the range of [0.5, 0.7], the probabilities of getting good forecast were reported above 

0.6 but far from 1. Under these CRs, the abilities of the model were improved when the MR was raised to the 
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range [0.08, 0.1], yet the probabilities were still slightly further from 1. The effectiveness of Nsc in obtaining 

accurate forecasting results was reported good when CR was set high (CR=[0.8,0.9]), the probabilities were 

averagely above 0.7 regardless of the MR. 

 

 

 
 

Figure 4. The probabilities of Nsc model of obtaining global optimum α under 

CR=[0.5,0.9] with interval rate 0.1 and MR=[0.01,0.1] with interval rate 0.01 

 

 

The radar charts of Figure 5 reveal the capability of the Ssc model under the same genetic drift.  

The Ssc model seemed able to provide better results than the Nsc model when CR and MR rates were not 

high (CR=[0.5,0.7], MR=[0.01,0.06]). Under the same CR interval [0.5, 0.7], the competency of the model 

became apparent when MR was set above 0.07. The performances of the Ssc model were superior when both 

CR and MR were high (CR=[0.8, 0.9] and MR=[0.07, 0.1]), the probabilities of getting global optimum 

solution were approaching 1. 

 

 

 
 

Figure 5. The probabilities of Ssc model of obtaining global optimum α under 

CR=[0.5,0.9] with interval rate 0.1and MR=[0.01,0.1] with interval rate 0.01 
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Figure 6 show the comparison of Ssc and Nsc models performances under (a) CR=[0.5, 0.9] with 

interval rate 0.1 and (b) under MR=[0.01, 0.1] with interval rate 0.01. From both the graphical 

representations, the Ssc model has demonstrated tracking ability better than the Nsc model. The probabilities 

of the Ssc model in generating good simulation model were close to 1 especially when CRs were high as 

shown in Figure 6(a). In Figure 6(b), the Nsc model was better at the low mutation rate (MR=[0.01, 0.02]) 

but the prevailing characteristic of the Ssc model emerged when MR was greater than 0.03. The possibilities 

of the Ssc model having a good forecast were very close to 1 when MR was above 0.07. 

 

 

 
(a) 

 
(b) 

 

Figure 6. Comparison of Ssc and Nsc models performances (probabilities)  

(a) under CR=[0.5,0.9]  with interval rate 0.1; (b) under MR=[0.01,0.1] with interval rate 0.01 

 

 

5. CONCLUSION AND RECOMMENDATION 

Two research models, Nsc and Ssc models, with different approaches in stopping criteria that had 

been developed and were numerically tested with forecasting simulation. The Nsc model adopted the idea of 

setting the upper bound for the fittest chromosome repetition. If a chromosome was declared as the fittest of 

its generation and as being successively selected for M generations, then the searching process would be 

terminated and this chromosome was viewed as the best solution. 

Nonetheless, the Ssc model was designed to apply the concept of fittest dominancy. It is a known 

fact that the fittest of each generation would have a higher probability in transmitting the genetic information. 

Gradually, the population would be dominated by the fittest’s trait. If the density of saturation or degree of 

domination of the fittest had reached the pre-defined boundary (4), then the evolution was considered 

complete and the fittest of the last generation was commended as the optimum solution.  

In the numerical test, it was found that the Ssc model was more capable, the probabilities of 

obtaining global optimum parameter α were found higher than Nsc model. The Nsc model showed a 

moderate performance with low values of MR and CR. Its competency was slightly improved after the MR 

and CR were raised.  Generally, the Ssc model demonstrated a better skill in finding a good solution when 

MR and CR were not high. The capability of the Ssc model boosted when CR and MR had been set high. 

Hence, it can be concluded that the proposed stopping criterion has shown a great improvement in enhancing 

the algorithm ability in solving the optimization problem and reducing the risk of premature convergence. 

For future study, one may research on the influence of different genetic operators in evolution. The proposed 

stopping criterion may also be tested in other fields of optimization such as engineering. 
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