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 This paper examines the frequency response of power plant grounding 
system exposed to the lightning current. Large amount of current generated 
by the stroke flow in the grounding system of power plant and dissipate in 
the soil.  The electric and magnetic field generated by such high voltages and 
currents may cause damage of equipment and may be dangerous for the 
personnel in power plant.  For the every given frequency obtained using Fast 
Fourier Transformation (FFT) of lightning current impulse, electromagnetic 
field theory approach is used to solve Maxell’s equation and compute scalar 
potential, electric and magnetic field. Also, the influence of the point in 
which lightning current is diffused in the grounding system is presented. 
Three dimensional plots of spatial distribution of scalar potential, electric and 
magnetic field are presented. The time domain response of scalar potential, 
electric and magnetic field on one profile is also presented. 
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1. INTRODUCTION 

The transient behavior of thermal power plant grounding system buried in soil, with good resistivity 
subjected to the lighting current is examined using field theory approach. Different approach are used to 
solve the problem of generated EMF during transients caused by lightning strike to metallic parts of power 
plants, transformer stations, transmission line towers, buildings and communications towers. Recently 
computerized analysis methods had been developed using different approaches, for example circuit theory [1-
2], transmission line theory [3-4], electromagnetic field theory [5-6], and hybrid theory [7-9]. 

In this paper electromagnetic field theory approach is used to solve Maxell’s equation and compute 
scalar potential, electric and magnetic field. The technique used in the paper is based on the electric field 
point matching approach using Method of Moments (MoM).  

In this paper the CDEGS- Current Distribution in Earth and Grounding System, software is used for 
modeling and simulation [10-11]. Two engineering modules from CDEGS are used, first HIFREQ and 
second FFTSES. With first module HIFREQ, GPR-Ground Potential Rise, scalar potential, electric and 
magnetic field are calculated for each frequency obtained by FFT- Fast Fourier Transformation of input 
lightning current impulse. Time domain response of EMF is then obtained by help of Inverse FFT of 
calculated GPR, scalar potential, electric and magnetic field at each frequency. HIFREQ module calculates 
current distribution for a network consisting aboveground and underground conductors excited by arbitrary 
frequencies. The network of conductors is subdivided in small segments. This enables the tin-wire 
approximation to be used with linear current sources. [12-13] 



               ISSN: 2088-8708 

IJECE Vol. 6, No. 2, April 2016 :  512 – 525 

513

2. MATHEMATECAL MODEL 
From the well-known Maxwell’s equations, it is possible to determinate the electric field ܧሬԦ and the 

magnetic field ܪሬሬԦ  from the scalar potential φ and the vector potential ܣԦ. The scalar potential, the electric field 
and the magnetic field can be express by equation given in [14] 
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Where are: 
 Ԧ – Hertz vector potentialܣ 
ߴ  ൌ ߪ  ߝ݆߱ െ complex conductivity of the soil 
ߤ  െ permeability of the medium 
ߪ  െ conductivity of the medium 
ߝ  െpermittivity of the medium. 

 
Different models for lightning current waveforms can be considered; standard exponential function, 

double exponential function and Heidler function [13]. The lightning waveform is usually defined by the rise 
time tf, pulse length tp and peak value I. In order to represent lightning current waveforms in an analytic 
manner, the double-exponential formula is employed to fit with the lightning current waveforms. Equation is 
given in expression (4). 
 

ሻݐሺܫ ൌ ሺ݁ି∙௧	ܫ 	െ ݁ି∙௧ሻ (4) 
 

 In our case most common values for lightning current peak value are Im=10(20, 40, 100) kA, 
coefficient a=1,386 x 104 s-1, coefficient b=6 x 106s-1 The magnitude of lightning current Im= 10 kA in 
simulation is used. With these coefficients a and b the waveform of lightning current impulse is characterized 
by a rising time of 1,2 μs, and half-value time of 50 μs which is typical testing waveform. 
 
 
3. CASE STUDY 

Grounding system of power plant is asymmetrical and complex buried structure which consists of 
Fe/Zn 30x5 mm2 conductors and grounding rods. Conductors form asymmetrical grounding grid buried at the 
depth of 0,46 m. The equivalent diameter of the grounding conductors is d=0,0124 m (for Fe/Zn 30x5 mm2). 
Grounding system also has twelve 3.5 m grounding rods, buried from 0,46 m in the soil. Grounding system is 
shown in Figure 1. 

 
 

 
 

Figure 1.  The asymmetrical grounding grid with grounding rods 
 
 
An observation surface is on the level 0 on the ground on which scalar potential, electric field and 

magnetic field where calculate consists of 70 profiles on distance of 1 m. Each profile is divided on 80 
observation points separate one from another on distance of 1 m. The total number of observation points is 
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5600.  Two layer soil models is used with soil parameters. Top layer soil resistivity is 100 Ωm. Top layer soil 
depth 10 m. Bottom layer soil resistivity 10 Ωm. Bottom layer depth is infinity. Relative permittivity and 
permeability ob the both layers are 1 pu. The first case examined in the paper is when that lightning current 
impulse hits in the middle of the grounding grid. The second case examined in the paper is when that 
lightning current impulse hits in left corner of the grounding grid. 

 
3.1. Scalar Potential for Different Frequencies, 1st Case 

When lightning current waveform is transferred in the frequency domain, by use of FFT 
transformation only fourteen frequencies are recommended for calculation of φ, E and H. [14]. Do thelack of 
the space in the paper only three representative frequencies are chosen:  50 Hz, 2 kHz and 1,68 MHz. For 
frequency of 50 Hz maximum of induced scalar potential at the ground level is 7,98 kV. Figures 3-4 present 
spatial distribution of scalar potential for the frequencies of 2 kHz and 1,68 MHz. For frequency of 2 kHz 
maximum induced scalar potential at the ground level is 9,43 kV, Figure 3. For frequency of 1,68 MHz 
maximum of induced scalar potential at the ground level is 92,67 kV. 
. 
 

 
 

Figure 2.  The spatial distribution of scalar potential at the ground level for the frequency 50 Hz 
 

 

 
 

Figure 3.  The spatial distribution of scalar potential at the ground level for the frequency of 2 kHz 
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Figure 4.  The spatial distribution of scalar potential at the ground level for frequency 1,68 MHz 
 
 
3.2. Electric Field for Different Frequencies, 1st Case 

The spatial distributions of electric field for the same frequencies are shown in Figure 5 to Figure 7. 
 
 

 
 

Figure 5. The spatial distribution of electric field at the ground level for the frequency of 50 Hz 
 
 

The maximum of the electric field is 978 V/m at the point where current strike hits the object above 
grounding grid. For the frequency of 2 kHz maximum of the electric field is 1119 V/m 
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Figure 6. The spatial distribution of electric field at the ground level for the frequency of 2 kHz 
 
 

For the frequency of 1,68 MHz maximum of the electric field is 45176 V/m. 
 
 

 
 

Figure 7. The spatial distribution of electric field at the ground level for frequency of 1,68 MHz 
 
 

3.3. Magnetic Field for Different Frequencies, 1st Case 
The spatial distributions of magnetic field are shown only for frequencies of 50 Hz and 1,68 MHz in 

Figure 8 and Figure 9. Magnetic file do not depend on the frequency changes. The maximum value is 1256 
A/m. 
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Figure 8. The spatial distribution of magnetic field at the ground level for the frequency of 50 Hz 
 

 

 
 

Figure 9. The spatial distribution of magnetic field at the ground level for frequency of 1,68 MHz 
 

 
3.4. Scalar Potential for Different Frequencies, 2nd Case 

Here, also three representative frequencies are chosen: 50 Hz, 2 kHz and 1,68 MHz. The spatial 
distributions of scalar potential are shown in Figure 10 to Figure 12. 

For the frequency of 50 Hz, 2 kHz and 1,68 MHz maximum of induced scalar potentials at the 
ground level are 10,452 kV, 25,77 kV, and 92,21 kV, respectively. 
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Figure 10. The spatial distribution of scalar potential at the ground level for frequency of 50 Hz 
 
 

 
 

Figure 11. The spatial distribution of scalar potential at the ground level for frequency of 2 kHz 
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Figure 12. The spatial distribution of scalar potential at the ground level for frequency of 1,68 MHz 
 
 

3.5. Electric Field for Different Frequencies, 2nd Case 
The spatial distributions of electric field for only three frequencies are shown in Figure 13 to Figure 

15. 
For the frequency of 50 Hz the maximum of induced electric field at the ground level is 978 V/m. 

The amount is the same as in the case when the lightning impulse hit the center of the grounding grid. For the 
frequency of 2 kHzand 1,68 MHz the maximum of induced electric field at the ground level are 4402V/m 
and 81 871 V/m, respectively. 
 
 

 
 

Figure 13. The spatial distribution of electric field at the ground level for frequency of 50 Hz 
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Figure 14. The spatial distribution of electric field at the ground level for frequency of 2 kHz 
 
 

 
 

Figure 15. The spatial distribution of electric field at the ground level for frequency of 1,68 MHz 
 
 

3.6. Magnetic Field for Different Frequencies, 2nd Case 
The spatial distributions of magnetic field for only three frequencies are shown in Figure 16 to 

Figure 18. Magnetic field does not depend on frequency changes. The spatial distribution of magnetic filed 
for 2 kHz is the same as previeous case and is 1526 A/m. For the frequency of 1,68 MHz the maximum of 
induced magnetic field at the ground level is 1 236A/m. 
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Figure 16. The spatial distribution of magnetic field at the ground level for frequency of 50 Hz 
 

 

 
 

Figure 17. The spatial distribution of magnetic field at the ground level for frequency of 2 kHz 
 
 

 
 

Figure 18. The spatial distribution of magnetic field at the ground level for frequency of 1,68 MHz 
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4. TIME DOMAIN ANALYSIS 
The time-domain evolution of the electromagnetic fields was obtained by first computing the skalar 

potential electric and magnetic fields in the frequency domain for a representative sample of 110 frequencies, 
Time-domain analyses are calculate using Inverse FFT with time span of 150 μs like in. [14] 

 
 

 
 

Figure 19. Lightning current waveform 
 
 
The time evolution of scalar potential for the case when lightning impulse hit the center of the 

grounding grid is calculated across the 30th profile at 80th observation points is presented in Figure 20 to 
Figure 22. The time evolution of scalar potential for the case when lightning impulse hit the corner of the 
grounding grid is calculated across the 5th profile at 80th observation points is presented in Figure 23 to 
Figure 25. 
 
 

 
 

Figure 20. Time waveform of scalar potential across the 30th profile for the case one 
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Figure 21. Time waveform of electric field across the 30th profile for the case one 
 
 

 
 

Figure 22. Time waveform of magnetic field the 30th profile for the case one 
 
 

 
 

Figure 23. Time waveform of scalar potential at the 5th profile for the case two 
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Figure 24. Time waveform of electric field at the 5th profile for the case two 
 
 

 
 

Figure 25. Time waveform of magnetic field at the 5th profile for the case two 
 
 

All quantities scalar potential, electric and magnetic field in time domain are smaller in the second 
case when lightning impulse hit the corner of the grounding grid. 
 
 
5. CONCLUSION 

In this paper a detailed frequency response of power plant grounding system exposed to the 
lightning current impulse has been described and analysed. Earth scalar potential, electric and magnetic field 
at the ground level for different frequencies have been computed and plotted for two different scenarios. The 
results of this paper show significant influence of frequency values on the spatial distribution of the scalar 
potentials and the electric fields, while the magnetic fields is weakly dependent on frequency changes. In 
case of low frequencies, scalar potential and electric field are not affected by the location of the lightning 
current injection. 
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