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 Branch-and-Bound algorithm is the basis for the majority of solving methods 

in mixed integer linear programming. It has been proving its efficiency in 

different fields. In fact, it creates little by little a tree of nodes by adopting 

two strategies. These strategies are variable selection strategy and node 

selection strategy. In our previous work, we experienced a methodology of 

learning branch-and-bound strategies using regression-based support vector 

machine twice. That methodology allowed firstly to exploit information from 

previous executions of Branch-and-Bound algorithm on other instances. 

Secondly, it created information channel between node selection strategy and 

variable branching strategy. And thirdly, it gave good results in term of 

running time comparing to standard Branch-and-Bound algorithm. In this 

work, we will focus on increasing SVM performance by using cross 

validation coupled with model selection. 
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1. INTRODUCTION 

In real life, MILP has countless applications in different fields like logistics, finance and 

transportation. A very common solution technique of MILP framework is Branch-and-Bound. It continues to 

prove its relevance nowadays. Branch-and-Bound algorithm is an iterative algorithm, and at each iteration, 

we eventually get a feasible or optimal solution of an initial problem. Concretely, the algorithm constructs 

little by little a tree of nodes, where each node represents a modified version of the original problem. The 

construction of child nodes is conducted by a variable branching strategy. Another fundamental element in 

Branch-and-Bound algorithm is Node Selection Strategy that aims to choose among a nodes queue, one that 

will speed up the search.  

Recently, some works has been trying to identify an analytic approach that decide about strategies 

described above, given a set of problem features. Authors use likely machine learning techniques. The main 

remark is that few authors who deal with node selection strategy, and if so, they did not use machine learning 

framework. 

Our contribution is oriented towards learning efficient branch-and-bound strategies. This is the 

result of a consistent methodology beginning with the collection of the data set, and ending with the test of 

the final hypothesis. More explicitly, we: 

- Define features 

- Collect data set  

- Pick the optimal learning model 

- Learn the final hypothesis with the chosen model 

- Implement and test the final hypothesis  
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Next, we address research papers relative to our work. To do so, we divide contributions in five sub-

sections relatively to the strategy and to the learning technique used. Firstly, relatively to variable branching 

strategy, authors in [1], learned a function to be with approximatively the same performance as strong 

branching in term of precision, and in the same time, results in a gain of the processing time. 

In this same category, we cite [2], wherein authors infer consistent data from applying an algorithm 

for detecting clauses. A clause being a combination of binary values affected to a set of indexed variables, 

that if it happens, the whole problem would be infeasible. In addition, that algorithm generates minimal 

clauses and restarts with active clauses (“those that can be used in fathoming child nodes”). In parallel, this 

information is used to choose branching variable with the best effect. Also [3] and [4] use backtracking to 

improve branching decisions. 

Besides, there are classic variable branching rules, like strong branching, pseudo costs branching, 

hybrid branching, reliable branching, inference-based branching [5]. Note that reliability branching is known 

to be the best branching rule with the reliability 𝜂𝑟𝑒𝑙 = 4 𝑜𝑟 8 [6]. For our experiments, we used: 𝜂𝑟𝑒𝑙 = 8. 

The reliability parameter 𝜂𝑟𝑒𝑙 is fixed to stop the calculation of pseudocost values after attaining a certain 

level of the branch and bound tree. This is because pseudocost value remain approximatively constant after 

calculating it several times for a determined variable. 

Secondly, we cite from node selection strategy literature, in addition to classic node selection 

strategies, such as depth-first rule, breadth-first rule, and node best-estimate [5], authors of [1], extracted 

information from MILP Benchmark libraries by using specific algorithm called oracle. Thirdly, concerning 

learning algorithms, they are used in different engineering fields. Algorithms purposes are classification, 

regression, clustering [7][8]. There are algorithms that tend to do well in practice more than others [9][10]. 

In the same context of applying learning in branch and bound, the ExtraTrees is applied in [11].  

Fourthly, when looking at model selection and the performance of algorithms, there are techniques 

used to tune parameters such as Fuzzy Logic controller for Ant Colony System (ACS) epsilon 

parameter [12]. Also, [13] and [14] used Hidden Markov Model (HMM) algorithm to tune the Particle 

Swarm optimization population size and acceleration factors parameters. Besides, authors in [15] used HMM 

to tune the inertia weight parameter of the Particle Swarm Optimization algorithm. Moreover, [16] used 

Fuzzy controller to control Simulated Annealing cooling law, [17] and [18] used HMM to tune ACS 

evaporation parameter and local pheromone decay parameter respectively, [19] and [20] used HMM to adapt 

the simulated annealing cooling law. Furthermore, [14] used SVM algorithm to predict the performance of 

optimization problems. Finally, authors in [20] used the Expectation-Maximization algorithm to learn the 

HMM algorithm parameters. Finally, this paper is the continuity of our previous papers which deals with the 

learning of branch-and-bound algorithm strategies, namely variable branching strategy and node selection 

strategy [21], [22]. The learning algorithm used was Support Vector Machine (SVM). 

The rest of this paper is organized as follows: Section 2 recalls some basics on branch-and-bound 

algorithm and SVM algorithm with parameter tuning. In section 3, we present our methodology of inferring 

efficient branch and bound strategies and experimentation configuration. Sections 4 is dedicated to results. 

Finally, we conclude and propose some future work. 
 
 

2. BRANCH-AND-BOUND AND SVM 

In this section, we are first going to see an overview of a formal description of branch-and-bound 

strategies and present the features used in the algorithm. Secondly, we will investigate SVM most important 

advantages with a remainder of learning theory. 
 

2.1. Branch-and-bound algorithm 

Branch-and-bound algorithm is outlined in this section. We first define useful notation and then 

proceed with the explanation of the algorithm steps. Let us define a general MILP problem P as follows:  
 

𝑧 = min {𝑐𝑇𝑥 |𝐴𝑥 =  𝑏, 𝑥 ≥ 0, 𝑥 Non-negative vector of  dimension 𝑛 containing at least one integer} 
 

where 𝑐 𝜖 𝑅𝑛, 𝑏 𝜖 𝑅𝑚𝑎𝑛𝑑 𝐴 is 𝑚 ∗ 𝑛 dimension matrix. We will use also define: 𝑃𝑟𝑒𝑙  is a relaxed version 

of 𝑃: which is  
 

𝑧𝑟𝑒𝑙 = 𝑚𝑖𝑛 {𝑐
𝑇𝑥 |𝐴𝑥 =  𝑏, 𝑥 ≥ 0}  

 

𝑃𝑘 is the problem in the 𝑘𝑡ℎ iteration which corresponds to a node in branch-and-bound tree. 

𝑃𝑘,𝑟𝑒𝑙 is a relaxed version of 𝑃𝑘. 

𝑧𝑘  is the objective value of 𝑘𝑡ℎ node. 
(𝑥∗) is the incumbent point at iteration 𝑘, which means the vector that leads to the best 𝑧𝑘 so far. 

𝑧∗ is the objective function value on (𝑥∗) 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Adapted branch-and-bound algorithm using SVM with model selection (Kabbaj Mohamed Mustapha) 

2483 

Briefly, the Branch-and-bound algorithm, in the case of minimization, is described as follows as 

shown in Algorithm 1. It is an iterative algorithm, and in each iteration 𝑘, we have at least three steps 

which are: 

Firstly, the node selection step aims to retrieve a node from a node list that maximizes some 

criterion. This latter is specific to the node selection strategy.  Secondly, and once we have picked a node 𝑃𝑘, 

we solve its relaxation 𝑃𝑘,𝑟𝑒𝑙 by an algorithm from the linear programming framework such as simplex or 

interior points. Depending on the results, we distinguish three cases. The first one is when the problem 𝑃𝑘,𝑟𝑒𝑙 
is infeasible or the resulting objective function 𝑧𝑘 value is greater than 𝑧∗. Consequently, the current iteration 

is termintated. The second case is when the solution is integer and 𝑧𝑘 < 𝑧
∗. In this moment, we update the 

incumbent point and its objective value 𝑧∗, then we move to the next iteration. In the third case, when none of 

the condifions mentioned before happens, we perform variable branching. In this final step, we must select a 

variable from a set of non-integer variables relatively to some defined criterion. And this criterion is defined 

by the variable branching strategy. 

 

 

 
 

Algorithm 1. Branch-and-bound Algorithm 

 

 

2.2. Support Vector Machine 

SVM is in top ten machine learning algorithms [9], it is used for both classification and regression. 

It aims to find the hyperplane with the best margin. The best is demonstrated to be the large one differentiating 

between the hyperplane and nearest data points called support vectors.  

 

2.2.1. Case of Linear Hypothesis set for SVM: 

In the case of regression, and especially one variant of SVM called 𝜀-SVM, we will present nextly, 

the case of linear hypothesis set. Let’s have in have in the input, 𝑁 training data, namely (𝑥𝑛, 𝑦𝑛),0 ≤ 𝑛 ≤ 𝑁 

The output of the algorithm is a linear function: 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏, with 𝑤 a coefficient vector, x the unknown 

vector and b a constant. 

The distance between a hyperplane of equation 𝑤𝑇𝑥 + 𝑏 = 0 and the support vectors, is 
1

||𝑤||
. 

Consequently, maximizing the margin is equivalent to the next optimization problem: 

 

𝑃(𝑤): {
min

1

2
𝑤𝑇𝑤

𝑠. 𝑡.  |𝑦𝑛 − (𝑤
𝑇𝑥 + 𝑏)| ≤  𝜀, ∀𝑛 

  

 

With, 𝜀 being the error tolerance between 𝑦𝑛 and 𝑓(𝑥). 
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The last problem might be infeasible. And to add more chance to be feasible, we add slack variables 

to the problem, in the following way: 

 

𝑃(𝑤):

{
 
 

 
 min𝑃(𝑤) =

1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑛 + 𝜉𝑛

∗  )𝑁
𝑖=1

𝑠. 𝑡.  𝑦𝑛 − (𝑤
𝑇𝑥 + 𝑏) ≤  𝜀 + 𝜉𝑛 , ∀𝑛 

(𝑤𝑇𝑥 + 𝑏) − 𝑦𝑛 ≤  𝜀 + 𝜉𝑛
∗ , ∀n

𝜉𝑛 , 𝜉𝑛
∗ ≥ 0,∀𝑛

  

 

with, 𝜉𝑛𝑎𝑛𝑑 𝜉𝑛
∗  are the slack variables, and 𝐶 is the cost parameter used to penalize data points outside the 

margin 𝜀. 

By using lagragian function, and quadratic optimization or other resolution methods, one can prove 

that the solution is with the form of: 

 
𝑓(𝑥) = ∑ (𝛼𝑖

∗ − 𝛼𝑖)𝑥𝑖
𝑇𝑥𝑁

𝑖=1 + 𝑏  
 

with  0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, ∀1 ≤ 𝑖 ≤ 𝑁. 

 

2.2.2. Case of non linear hypothesis set 

In the situation, where we cannot find a hyperplane containing all training instances, one might 

transform the space of the training data to another, in such way can be comprised in one hyperplane on the 

new space. To do this transformation, one can use the well-known kernel methods. In fact, there are in 

literature different kernels used for SVM, such as RBF and polynomial. For the rest, we will present the 

distance calculation method for the RBF kernel.  

Instead of using the standard L2 − 𝑛𝑜𝑟𝑚 ||. ||, we used the norm associated with RBF kernel that is 

described as follows:  

 

𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) = exp(−γ ||x𝑗 − x𝑖||
2
)  

 

with γ, is the gamma parameter. Its geometrical interpretation is, when the gamma parameter has larger values, 

the hyperplane associated with the solution will have more inclinations to contains, as far as possible, all 

training data. The form of the resulting target function, will be as follows: 

 
𝑓(𝑥) = ∑ (𝛼𝑖

∗ − 𝛼𝑖)𝑅𝐵𝐹(𝑥𝑖 , 𝑥)
𝑁
𝑖=1 + 𝑏  

 

In this paper, we will use 𝜀-SVM regression algorithm with the RBF kernel twice for learning node selection 

strategy and variable branching strategy respectively. 

 

2.3. Learning of variable branching strategy and node selection strategy  

Concerning the variable branching strategy, we aim in this paper to imitate the behavior of the 

reliability branching rule. This rule is based on strong branching, which is time consuming. By and large, 

reliability branching uses an unreliability quality for variable pseudo-costs values. For this reason, reliability 

depends on numerous problem features. These features are to be classified in node-based features and variable-

based features. 

 

2.3.1. Node-based features 
We use in this category features below:  

- Reduced Objective values gain: 

 

Δ𝑘,𝑟𝑒𝑑 =
|𝑧𝑘−𝑧𝑘−1|

|𝑧𝑘−1|
 (Note that the features should be independent of the problem scale) 

 

- Depth in branch and bound tree 𝑑𝑘 starting from zero. 

- Node estimate. 

- LP Objective Value 

 

2.3.2. Variable-based features 

In the same thinking line, we use:  

- Pseudo-cost value 

- The positive reduced cost and the negative reduced costs i.e. 
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max (
|𝑐𝑗,𝑘|

∑ |𝑐𝑗,𝑘|
 
𝑗: 𝑐𝑗 ,𝑘 ≤0 

, 0)  and max (
|𝑐𝑗,𝑘|

∑ |𝑐𝑗,𝑘|
 
𝑗: 𝑐𝑗 ,𝑘 ≥0 

, 0)  

 

with 𝑐𝑗,𝑘 is the 𝑗𝑡ℎ  component value of cost vector of iteration 𝑘. These features aim to present either in 

minimization or maximization problems how we approach to the optimal solution. 

The other specificity in our work beyond changes in features based on those presented in [11], is we 

add the value of learned function representing node selection in the set of features. This last point is justified 

in the following sub-section. For learning node selection strategy, we will imitate node estimate strategy. 

This strategy is the default one used in SCIP solver. 

 

2.4. Interaction of node selection strategy and variable selection strategy 

Intuitively, the choice of a node, by a node selection strategy, influences the choice the next 

branching variable. For this reason, we describe formally the variable branching strategy function VB in 

function of a combination of NS (Node selection strategy function) and other features described below: 

 
𝑉𝑅(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡) = 𝑎 ∗ 𝑁𝑆( 𝑑𝑘 , 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑡) + ∑ 𝑎𝑖 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

 
𝑖    

 

where 𝑎 and 𝑎𝑖 are real numbers. Note that we double use NS features add more precision. 

 

2.5. Overfitting and parameter tuning 

In this sub-section, we will define overfitting, which is a very common problem in learning 

techniques that affects the final performance. 

 

2.5.1. Overfitting 

A learning model is, by definition, a couple of a learning algorithm and a hypothesis set. A learning 

algorithm is an iterative algorithm that searches the best hypothesis fitting the training data. This hypothesis 

is included in the hypothesis set chosen initially. A very common problem encountered in learning is 

overfitting. This phenomenon occurs when the learned hypothesis does not generalize well to all possible 

values beyond the training data. Causes are number of data points, noise and target complexity [7].  

The choice of learning algorithms could affect the noise by affecting either bias or variance. In the 

case of SVM, the thorough choice of SVM parameters is required to prevent from overfitting. The RBF 

Kernel SVR algorithm used in this work has two parameters, cost and gamma. Cost defines how much is 

penalized misclassified examples and gamma defines how far the influence of a single training example 

reaches. As known small cost and large gamma, give higher bias and lower variance. In addition, large cost 

and small gamma give lower bias and larger variance. Consequently, we should tune cost and gamma 

parameters until we find tradeoff values to minimize the generalization error. One way to tune gamma and 

cost parameters is to use cross validation.  

 

2.5.2. Cross validation with model selection 
Before defining cross validation, let us find out what is validation. To do so, we define some useful 

notation:  

𝐷  the data set 

𝐷𝑡𝑟𝑎𝑖𝑛  the training set 

𝐷𝑣𝑎𝑙  the validation set  

The goal of validation is to give an estimation of the generalization error. First, it divides 𝐷 of 𝑁 

data points, to 𝐷𝑡𝑟𝑎𝑖𝑛  of size 𝑁 − 𝐾 and 𝐷𝑣𝑎𝑙  of size 𝐾, then learns the target function based on 𝐷𝑡𝑟𝑎𝑖𝑛. 

Finally, we calculate error of the target function in 𝐷𝑣𝑎𝑙 . This latter error is proven an estimation of the 

generalization error. The Figure 1 represents what is described above. 
 

 

 
 

Figure 1. Validation method 
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The 𝐸𝑣𝑎𝑙  error is a good estimate of generalization error but it is not too precise. To improve the 

precision, other techniques repose on validation like cross validation. Without the loss of generality, 

we present next 10-fold cross validation process. 

Let’s partition 𝐷 to 𝐷1, 𝐷2 to 𝐷10. We use validation process ten times for 𝐷𝑣𝑎𝑙,𝑖 = 𝐷𝑖  where 

1 ≤ 𝑖 ≤ 10  and 𝐷𝑡𝑟𝑎𝑖𝑛,𝑖 = 𝐷\𝐷𝑖 . In the output, we have 10 errors 𝐸𝑣𝑎𝑙1 to 𝐸𝑣𝑎𝑙10. Then we calculate cross 

validation error denoted by 𝐸𝐶𝑉 which is the mean validation errors. The cross validation error is more 

precise that validation error. We resume this process in the Figure 2. 
 

 

 
 

Figure 2. Cross validation for a specific learning algorithm 
 

 

Now that we have presented cross validation, let us look forward model selection, that used in this 

paper to tune parameters of gamma and cost. For 𝑘 ∗ 𝑙 different combinations of cost and gamma, let’s note a 

couple (𝐶𝑖, 𝐺𝑎𝑚𝑚𝑎𝑗) with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑙. As mentioned in the Figure 3, cross validation is 

executed multiple times with different parameter configuration. As result, we get errors 𝐸𝐶𝑉1,1 to 𝐸𝐶𝑉𝑘,𝑙. 
In the end, we have the configuration that have the lower error. 

 

 

 
 

Figure 1. Cross validation for model selection 

 

 

3. RESEARCH METHOD 

In this section, we outline the methodology, step by step, of learning the node selection strategy NS 

and variable branching strategy VB using parameter tuning. Then, we present the experiment configuration. 

 

3.1. Collecting Datasets 

We use the MIPLIB2010 library as instances to which we apply the Branch-and-Bound algorithm 

featured by reliability branching rule and best estimate selection rule. Then we extract information of features 

described before. Note that the best estimate selection rule is the default one is various optimization tools like 

SCIP. Here is the pseudo-code of the data collection step as shown in Algorithm 2. 
 

 

For I instance in MIPLIB2010 

Solve I by branch-and-bound ruled by reliability branching and node estimate selection rule and 

collect feature values. 

Return the list of features values 
 

Algorithm 2. Data Collection 
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3.2. Learning NS and VB 

First, we divide collected data into two sets, one used for training and validation and the other for 

test. By applying twice cross validation based model selection descripted above, we firstly learn the score 

function of every node in the nodes queue. So the node having the best score 𝑁𝑆(𝑛𝑜𝑑𝑒) will be chosen in 

branch-and-bound. Secondly, we will learn the score function VB of variable branching selection. 

 

3.3. Experiments 

In this sub-section, we present the lab-test used to experiment our methodology and we give the 

pseudo-codes used for tests. 

 

3.3.1. Experimentation configuration 

We used SCIP 3.2.1 for the raison that is the best in open-source and free tools [23]. Moreover, for 

SVM algorithm and model selection, we used the package e1071 [23] of the language R 3.2.5 known to be 

among the most performant languages in implementation of SVM algorithms [13].  

 The cost range used is {10−4, 10−3, … , 105} and the gamma range is {2−8, 2−7, … , 21}. These ranges 

cover too small and too high values of cost and gamma. The OS used is Debian 7 32 bits, 8 Go RAM, 

Intel 2.40 GHz Processor. We use for MILP instances the benchmark set of MIPLIB2010 [28] to collect data, 

valid it, and to test resulting models. For training and validation set, we took the following instances as 

shown in Figure 4. 

 

 

30n20b8.mps   acc-tight5.mps   aflow40b.mps   air04.mps app1-2.mps   ash608gpia-3col.mps    bab5.mps   

beasleyC3.mps   biella1.mps   bienst2.mps   binkar10_1.mps   bley_xl1.mps   bnatt350.mps core2536-

691.mps cov1075.mps   csched010.mps  danoint.mps   dfn-gwin-UUM.mps   eil33-2.mps   eilB101.mps   

enlight13.mps   enlight14.mps   ex9.mps   glass4.mps   gmu-35-40.mps   iis-bupa-cov.mps   iis-pima-

cov.mps lectsched-4-obj.mps m100n500k4r1.mps   macrophage.mps   mcsched.mps   mik-250-1-100-

1.mpsmine-166-5.mps   mine-90-10.mps   n3div36.mps   n4-3.mps   neos-1109824.mps   neos-

1337307.mps   neos-1396125.mps neos13.mps neos-1601936.mps  neos18.mps   neos-686190.mps  neos-

849702.mps   neos-916792.mps   neos-934278.mps   net12.mps 

 

Figure 4. Training and validation sets 

 

   

These instances about tens of thousands of rows and columns. The total description is available 

in [28]. Concerning the validation set, it contains approximatively fifth of number of mentioned instances 

above [7]. Finally, the node limit is fixed to five hundred nodes and running time limit is fixed to 

six-hundred seconds.   

 

3.3.2. Pseudo-codes 

In the solving process, the algorithm as it is implemented in SCIP is executing numerous event 

codes related to some events. Next, we will describe these events, and give the pseudo-code relative to each 

one. Besides, main events modified are respectively: 

 

3.3.3. Node selection event 
This event occurs when the algorithm is in the phase of selecting the next node to solve. The criteria 

of selection is determined by the strategy implemented. Note that this event code is also executed even in the 

root node selection. In this event, we implement the node selection rule score function NS that is already 

established. Moreover, it calculates the score for each node in the node list. Finally, it returns the node with 

the maximum score. The pseudo-code is the Algorithm 3.  

 

 

For each leap n 

 Calculate NS(n) 

Return the leap with maximum NS(n) 

 

Algorithm 3. Node selection event pseudo-code 
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3.3.4. Variable branching event 
This event occurs when the algorithm is in the phase of selecting a branching variable of a node 

already solved and had gave a non-integral value. In this event, we implement the variable selection rule 

score function VB. The input of this function is the values of the node-based features and the variable-based 

features. The node-based features are related to a fixed node and they are calculated for the current node as a 

first step. Besides, we calculate, the value of NS on the current node. Then we calculate the values of the 

variable-based features and consequently the value of VB for each variable. In the output, we will return the 

variable with the maximum score VB. Finally, we branch on the selected variable and created two related 

children nodes. The pseudo-code is as Algorithm 4. 

 

 

Calculate the value of the node-based features 

   Calculate the value of NS relative to the present node. 

   For each branching variable candidate 

    Calculate values of variable-based features 

 Calculate VB in terms of calculated features. 

   Return the max of VB and relative variable 

   Create two children nodes relying upon the chosen variable 

   Calculate possible node-based features values of the two children 

 

Algorithm 4. Variable branching event pseudo-code 

 

 

3.3.5. Node Solved event 
This event occurs when the algorithm is the state of leaving the node already solved. We use this 

event to calculate the values of LP Objective Value of the current node, and the reduced objective values 

gain. The pseudo-code is the Algorithm 5. 

 

 

Get the LP Objective Value of the present node. 

Calculate the reduced objective values gain 

 

Algorithm 5. Node solved event pseudo-code 

 

 

 

4. RESULTS 

We present in this section, a comparison between algorithms resulted from our approaches and 

standard branch-and-bound algorithm. The comparison is done in term of Running Time, Dual Bound and 

Number of Solved nodes. The dual bound being a quantity converging to the optimal solution if it exists. 

The greater value of dual bound is the best one.  

To get to this comparison, we did three different solving configurations on test set. The first is done 

by standard branch-and-bound (SBB) algorithm ruled by reliability pseudo-cost branching rule and best 

estimate node selection rule. Then for the second and third, we used our algorithms with SVR without model 

selection (ABB) and with model selection (ABB+MS). The results are detailed in the Table 1. 

 

 

Table 1. Results of experimentation 
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In this test, we had ten instances from MIPLIB2010. These instances have three different types. 

The first one is mixed integer program (MIP) that regroups integer and continuous variables. The second is 

mixed binary program (MBP), which includes both continuous and binary variables. And the final one is 

Binary program (BP) that contains exclusively binary variables. 

These results show up that our approaches give equivalent if not better dual bound comparing to 

standard branch-and-bound in term of dual bound in 80% of cases except from opm2-z7-s2 and ran16x16 

instances. Another important result, is that our last approach gives equivalent or better running time 

comparing our last approach in 80% of cases. Also, when comparing it to the standard branch and bound 

algorithm ruled by reliability branching and node best esimate rule, our approach gives better or equivalent 

result in about half of total instances.  

We noticed that there is an empirical relation between the performance of dual bound and the number 

of constraints of the problem from the one hand, and a relation between the performance of running time and 

the number of variables from the other hand. To concretize these last points, we plot these in Figure 5. 

 

 

  
 

Figure 5. Increase or decrease of dual bound and running time respectively 

 

 

The left-hand figure shows that instances with less that 5000 constraints gave better dual boud for 

our approaches comparing to standard branch and bound. As a matter of fact, the opm2-z7-s2 instance, which 

is represented by the isolated point in the down-rignt side has approximatively 31000 variables. Concerning 

the right-hand figure, it shows that instances with more than 2500 variables, increased the performance of 

running time, when resolved by our approaches, especially for ns1208400, ns1688347 and rail507 instances. 

 

 

5. CONCLUSION  

In this paper, we add parameter tuning to infer better configuration of SVM. Saying this, we used 

𝜀 −SVM regression learning algorithm known for his high accuracy to learn branch-and-bound algorithm 

node selection and variables branching strategies. These choices lead to better results comparing to reliability 

pseudo cost rule and best estimate selection rule, which are known to be from the best in literature. In 

perspectives, we will work on eliminating noise in data, compare with different learning algorithms available 

in literature. 
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