
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 2, April 2019, pp. 1393~1398

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i2.pp1393-1398 1393

Journal homepage: http://iaescore.com/journals/index.php/IJECE

ImageSubXSS: an image substitute technique

to prevent Cross-Site Scripting attacks

P. M. D. Nagarjun
1
, Shaik Shakeel Ahamad

2

1,2Department of CSE, K L University, Vijayawada, India
1Nagabot Software Development Pvt. Ltd., Nellore, India

2CCIS, Majmaah University, Majmaah, Kingdom of Saudi Arabia

Article Info ABSTRACT

Article history:

Received Apr 20, 2018

Revised Nov 6, 2018

Accepted Nov 30, 2018

 Cross-Site Scripting (XSS) is one of serious web application attack. Web

applications are involved in every activity of human life. JavaScript plays a

major role in these web applications. In XSS attacks hacker inject malicious

JavaScript into a trusted web application, execution of that malicious script

may steal sensitive information from the user. Previous solutions to prevent

XSS attacks require a lot of effort to integrate into existing web applications,

some solutions works at client-side and some solutions works based on filter

list which needs to be updated regularly. In this paper, we propose an Image

Substitute technique (ImageSubXSS) to prevent Cross-Site Scripting attacks

which works at the server-side. The proposed solution is implemented and

evaluated on a number of XSS attacks. With a single line, developers can

integrate ImageSubXSS into their applications and the proposed solution is

able to prevent XSS attacks effectively.

Keywords:

Cross-site scripting

ImageSubXSS

Malicious JavaScript

Web application attacks

XSS attacks
Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

P. M. D. Nagarjun,

Department of CSE,

K L University,

Vaddeswaram - 522502, Guntur District, Andhra Pradesh, India.

Email: pmdnr@nagabot.com

1. INTRODUCTION

According to the Open Web Application Security Project (OWASP), Cross-Site Scripting attacks

[1] are popular and dangerous web application attacks. Attackers inject malicious JavaScript into vulnerable

web applications. When a user opens that infected web application in their browser, malicious JavaScript will

be executed and steals cookies and other sensitive information from the user [2].

XSS vulnerabilities are growing every year, XSS attacks increased by 39% in 2017 and almost 79%

of web applications having vulnerable JavaScript library [3]. PHP is a popular programming language used to

develop web applications. It is easy to learn and with this, it is easy to develop websites. So a lot of

developers without proper knowledge of security developing web applications with a lot of vulnerabilities.

Proposed ImageSubXSS will prevent Cross-Site Scripting attacks, this solution works at the server

side. ImageSubXSS is implemented and tested with PHP language. The rest of the paper is organized as

follows: Section 2 shows different types of XSS attacks. Section 3 discusses related work. In Section 4 we

describe the proposed solution to prevent XSS attacks. In Section 5 we evaluated the proposed tool. Section 6

discusses the limitations and future works. Finally, Section 7 concludes briefly.

2. CROSS-SITE SCRIPTING ATTACK TYPES

Two most popular XSS attack types are reflected (Non-persistent) and Stored (Persistent) attacks

[4]. The proposed solution in this paper is able to prevent both of these attacks.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 2, April 2019 : 1393 - 1398

1394

2.1. Reflected (non-persistent)

In Reflected XSS attacks, malicious script will be sent to the server through request and server will

reflect back that malicious code in response. That malicious code will be executed at user browser and steals

user‟s sensitive information. Normally Reflected attacks reach user through E-mail or malicious websites.

Example malicious link:

http://example.net/searchpage.php?searchkeyword=<script>alert ("XSS Attack"); </script>

2.2. Stored (persistent)

In Stored XSS attacks, malicious scripts will be stored permanently on the web server database [5].

An attacker can inject scripts in a vulnerable web application by writing malicious scripts in the comment

section, post message section, etc. Whenever a normal user visits that comment section of the website, then

those injected scripts will be executed and may steal user‟s sensitive information.

Example: The attacker injects malicious code in the comment section in the vulnerable web page.

<script> alert("XSS Attack"); </script>

3. LITERATURE WORK

Hydara et al. [6] conducted a literature study on 115 research papers related to XSS attacks from

2004 to 2012. Their study shows that Reflected XSS attacks are popular XSS attacks compared to other types

of XSS attacks. Their study shows that most of the work done on detecting and preventing XSS attack

vulnerabilities instead of removing vulnerabilities from source code.

Shanmugasundaram, Ravivarman, and Thangavellu [7] stated that websites contain XSS

vulnerabilities because developer lack required knowledge on XSS attacks and developers are unable to

implement existing solutions in their applications. There are different solutions exist to prevent XSS attacks

at client-side and server-side.

Noxes: Client-Side Solution. Developed by Kirda et al. [8], it is a client-side web application

firewall. Noxes works on a client browser. It acts as a personal firewall in the user browser. If the user

requests any URL, checks the filter list to validate URL before sending server request. There will be an alert

box for every new URL to validate the URL by the user. To avoid so many alerts there will be a threshold

(k), for each page can have k external links and these are considered valid for one click or that session. In this

solution, the user needs to have knowledge on deciding which URL is safe and which is not safe.

SWAP: Server-Side Solution. Developed by Wurzinger et al. [9], SWAP means Secure Web

Application Proxy. It is a reverse proxy technique. Input request is ignored and only output responses are

filtered to find XSS attacks. In web application‟s JavaScript, it will modify code by replacing Script with

Script Ids (ex: <script> to <scrip5>). So executable JavaScript will be converted into non-executable

JavaScript. While sending a response to the client it checks for JavaScript. If it finds any JavaScript then it

considered as an attack and if there is no JavaScript means safe then it will decode all Script Ids and send the

response to the client. SWAP may not be suitable for applications with rapid code changes.

BIXSAN: Server-Side Solution. Developed by Chandra and Selvakumar [10], BIXSAN means

Browser Independent XSS Sanitizer. BIXSAN only allows static tags and remove all dynamic tags.

JavaScript tester in BIXSAN finds existing in-line JavaScript code in static tags, filters scripted tags and

finally creates DOM for content. That DOM will be stored in a database or return to the client. BIXSAN can

prevent Reflected and Stored XSS attacks. Document DOM will be created at server-side uses this DOM in

the client browser.

EWAF: Server-Side Solution. Developed by Kazanavicius et al. [11], EWAF means Embedded

Web Application Firewall. EWAF works based on the blacklist and whitelist filters. Based on user request

EWAF analyze which attacks were possible like XSS, SQL Injection, etc. After analyzing possibilities of

attacks, the request sent through corresponding XSS module or SQL Injection or other modules based on

attack type. Then take a decision whether it is common request or attack request based on results of

corresponding attack module.

4. IMAGESUBXSS: THE PROPOSED TECHNIQUE TO PREVENT XSS ATTACKS

4.1. Overview

ImageSubXSS is Image Substitute technique to prevent Cross-Site Scripting attacks. In this system,

characters involved in XSS attacks are replaced with corresponding images. Figure 1 shows the

ImageSubXSS system overview.

Int J Elec & Comp Eng ISSN: 2088-8708

ImageSubXSS: an image substitute technique to prevent cross-site scripting attacks (PMD Nagarjun)

1395

Figure 1. ImageSubXSS system overview

Developers need to include single ImageSubXSS tool file to avoid XSS attacks in their web

applications. This tool will analyze every POST and GET data at server-side and checks for malicious

characters in user input data [12]. If there are any those characters it will replace those characters with

corresponding images. After modifications, the data will proceed to the remaining application. Based on a

web application that data may be reflected back to the user‟s browser or stored in a database. Figure 2 shows

how the input data handled by the ImageSubXSS system by simply considering “<” as a malicious

character [13] and replacing it with (lt.png) image.

Figure 2. The flow of input data in ImageSubXSS system

4.2. ImageSubXSS images

ImageSubXSS tool uses images to prevent Cross-Site Scripting attacks. This tool will check

malicious characters like “, ‟, (, \, <, and &#. It will replace those malicious characters with corresponding

images. All these images are highly compressed to improve performance. Sizes of these images are between

200 to 600 Bytes. Table 1 shows the characters and corresponding images, these characters are the most

frequent special characters involve in XSS attacks.

ImageSubXSS tool allows developers to choose different color images based on their web

application background. Black Images: These images are clearly visible on web applications with light color

related backgrounds, check example shown in Figure 3. White Images: These images can be used in web

applications with dark color related backgrounds, check example shown in Figure 4.

Figure 3. Black images on the light color background

Figure 4. White images on the dark color background

User input data with attack script in search field – At Browser
search = <script>alert(“attack”);</script>

User input data will be converted into below code – At Server

$_POST[„search‟] = script>alert(“attack”); /script>

Processed user input data will looks like below code – At Browser

search = script>alert(“attack”); /script>

ImageSubXSS

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 2, April 2019 : 1393 - 1398

1396

Table 1. Characters and Corresponding Image
Character Black Image White Image

“
„
(
\
<

&#

4.3. Testing on real world web application
We tested web application with our proposed system. ImageSubXSS is able to prevent all XSS

attacks. We implemented the system in PHP programming language but it can be implemented in any

language and can be used on any web application. As a developer, they need to include ImageSubXSS tool

file. So the only modification required to implement ImageSubXSS in existing web application is to add

below code at beginning of PHP file, which handles user input data.

<?php

//Input data in this file is filtered by ImageSubXSS tool include "ImageSubXSS.php";…

//Remaining code may contain code to show data to user or

//store data in database

?>

From the above code, ImageSubXSS.php file contains functions to filter and replace malicious

characters with corresponding images. Figure 5 shows a web page without any XSS security and Figure 6

shows a web page with the ImageSubXSS system to prevent XSS attacks.

Figure 5. A web page without any XSS security

measures

Figure 6. A web page with an ImageSubXSS security

system

5. EVALUATION

We manually tested and verified our solution with more than 100 XSS attacks [14] from different

sources like OWSAP XSS Filter Evasion Cheat Sheet [15] etc. ImageSubXSS system able to prevent all

attack vectors with 100% prevention rate, Figure 7 and Figure 8 shows example XSS attack vectors.

ImageSubXSS will not break the web application look even if there is an XSS attack.

Int J Elec & Comp Eng ISSN: 2088-8708

ImageSubXSS: an image substitute technique to prevent cross-site scripting attacks (PMD Nagarjun)

1397

Figure 7. XSS attack 1 and corresponding ImageSubXSS output

Figure 8. XSS attack 2 and corresponding ImageSubXSS output

6. LIMITATIONS AND FUTURE WORK

ImageSubXSS system can be implemented into existing web application with a single line of code

but sometimes developers need to configure properly to integrate this solution into their web applications. If

developers have their own XSS prevention functions those need to be executed first otherwise ImageSubXSS

may cause problems while handling user data. Compared to large and complex web applications proposed

solution works most effectively on small and simple web applications.

Currently, Image Substitute system to prevent XSS attacks was implemented in PHP, so it only

supports PHP web applications. We are working on implementations in other programming languages like

Java, Python, ASP, etc. ImageSubXSS system shows negligible performance issues while handling large user

input data

7. CONCLUSION

Web applications are growing rapidly. Cross-Site Scripting attacks are popular web application

attacks, XSS attacks are difficult to prevent. Previous solutions have difficulties in integrating into existing

websites. Image Substitute Technique named ImageSubXSS was proposed to prevent Cross-Site Scripting

attacks in web applications. ImageSubXSS can be integrated into existing websites with a single line of code.

ImageSubXSS is most effective in simple web applications. Our evaluation shows that ImageSubXSS can

prevent every possible XSS attack existed on popular XSS Cheat Sheets.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 2, April 2019 : 1393 - 1398

1398

REFERENCES
[1] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) Attacks and Defense Mechanisms: Classification and State-

of-the-art,” International Journal of System Assurance Engineering and Management, vol. 8(1), pp. 512–530, Jan

2017.

[2] B. Rexha, A. Halili, K. Rrmoku, and D. Imeraj, “Impact of Secure Programming on Web Application

Vulnerabilities,” in 2015 IEEE International Conference on Computer Graphics, Vision and Information Security

(CGVIS), pp. 61–66, 2015.

[3] G. Podjarny, “XSS Attacks: The Next Wave | Snyk,” Snyk, 08-Jun-2017. [Online].

Available: https://snyk.io/blog/xss-attacks-the-next-wave.

[4] V. Nithya, S. L. Pandian, and C. Malarvizhi, “A Survey on Detection and Prevention of Cross-site Scripting

Attack,” International Journal of Security and Its Applications, vol. 9(3), pp. 139-152, 2015.

[5] X. Li and Y. Xue, “A Survey on Server-side Approaches to Securing Web Applications,” ACM Comput. Surv., vol.

46(4), pp. 54:1–54:29, Mar 2014.

[6] I. Hydara, A. B. Sultan, H. Zulzalil, and N. Admodisastro, “Current State of Research on Cross-site Scripting

(XSS) – A Systematic Literature Review,” Information and Software Technology, vol. 58, pp. 170–186, Feb 2015.

[7] G. Shanmugasundaram, S. Ravivarman, and P. Thangavellu, “A Study on Removal Techniques of Cross-Site

Scripting from Web Applications,” in 2015 International Conference on Computation of Power, Energy,

Information and Communication (ICCPEIC), pp. 0436–0442, 2015.

[8] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A Client-side Solution for Mitigating Cross-site

Scripting Attacks,” in Proceedings of the 2006 ACM Symposium on Applied Computing, Dijon, France,

pp. 330–337, 2006.

[9] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “SWAP: Mitigating XSS Attacks Using a Reverse

Proxy,” in Proceedings of the 2009 ICSE Workshop on Software Engineering for Secure Systems, pp. 33–39, 2009.

[10] S. C. V. and S. Selvakumar, “BIXSAN: Browser Independent XSS Sanitizer for Prevention of XSS Attacks,”

SIGSOFT Softw. Eng. Notes, vol. 36(5), pp. 1–7, Sep 2011.

[11] E. Kazanavicius, V. Kazanavicius, A. Venckauskas, and R. Paskevicius, “Securing Web Application by Embedded

Firewall,” Elektronika ir Elektrotechnika, vol. 119(3), pp. 65–68, Mar 2012.

[12] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “An Empirical Analysis of Input Validation Mechanisms in

Web Applications and Languages,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing,

Trento, Italy, pp. 1419–1426, 2012.

[13] A. Javed and J. Schwenk, “Systematically Breaking Online WYSIWYG Editors,” in Information Security

Applications, pp. 122–133, 2015.

[14] R. Assis, “XSS Cheat Sheet,” Leanpub, 2018.

[15] OWASP, “XSS Filter Evasion Cheat Sheet-OWASP.” [Online].

Available: https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.

