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 The recognition of emotions is a vast significance and a high developing 

field of research in the recent years. The applications of emotion recognition 

have left an exceptional mark in various fields including education and 

research. Traditional approaches used facial expressions or voice intonation 

to detect emotions, however, facial gestures and spoken language can lead to 

biased and ambiguous results. This is why, researchers have started to use 

electroencephalogram (EEG) technique which is well defined method for 

emotion recognition. Some approaches used standard and pre-defined 

methods of the signal processing area and some worked with either fewer 

channels or fewer subjects to record EEG signals for their research. This 

paper proposed an emotion detection method based on time-frequency 

domain statistical features. Box-and-whisker plot is used to select the optimal 

features, which are later feed to SVM classifier for training and testing the 

DEAP dataset, where 32 participants with different gender and age groups 

are considered. The experimental results show that the proposed method 

exhibits 92.36% accuracy for our tested dataset. In addition, the proposed 

method outperforms than the state-of-art methods by exhibiting higher 

accuracy. 

Keywords: 

Accuracy 

EEG signal 

Emotions 

Features 

FFT 

Frequency bands 

SVM 

Copyright © 2019 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Jia Uddin,  

Department of Computer Science and Engineering, 

BRAC University, 66 Mohakhali, Dhaka-1212, Bangladesh. 

Email: jia.uddin@bracu.ac.bd 

 

 

1. INTRODUCTION 

Emotion, being a non-verbal vital approach for social interaction, is a psychological and mental state 

of mind that provokes us to effectively react to a certain situation based on past experience [1]. The 

implementation of emotion recognition can be applied to various fields such as education, cognitive science, 

entertainment, machine learning, self-control and security, biomedical engineering, marketing and 

production. According to Russell, any discrete emotion can be deducted from their level of arousal and 

valence using his Circumplex Model of Emotion [2].  

Many existing methods implemented facial expression, speech signals, and self-ratings to classify 

emotions [3], [4]. However, the systems used in these existing methods usually fail to acknowledge all the 

detailed emotional inputs for processing, such as the hand gestures or the tone of the voice, thus leading to 

vague and biased outcome [3]. Some approaches used subjective measurement that can affect the end result 

as the presence of anomalous trials can be significant [4]. After the high influence of Electroencephalogram 

(EEG) signals on the field of research, it was observed that human emotion can be represented more 

accurately with EEG signals than with facial gestures, speech signals, or self-reporting information [5]. 

Emotional activities cause the brain to generate signals in the forms of waves and the technique used to 

record these signals is known as EEG [5]. Predicting emotions using EEG signals was first introduced by 

Musha et al. [6]. From then onward, studies on this area is bringing more interest in the current years for 
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machine learning purpose and the provision of less expensive EEG measuring devices. In numerous 

investigations, experiments were restricted to very few subjects, but the methods implemented for a single 

subject were inadequately simplified and could not be utilized broadly for multiple subjects [7]. Many studies 

were limited to few channels in order to avoid high complexity and computational costs nevertheless, this can 

lead to feeble result due to lack of adequate information [8]. For the feature extraction process, different 

methodologies were used to retrieve features in previous studies and these included Sample Entropy [9], 

Autoregressive (AR) Model [10], Discrete Wavelet Transform (DWT) [11], and Fast Fourier Transformation 

(FFT) [12]. Classification of these extracted features was done using various classifiers by the researchers 

such as Support Vector Machine (SVM) [13, 14], Neural Network [15], and k-nearest neighbor (KNN) [16].  

Referring to the previously specified issues [3], [4], [7], [8], a novel methodology, for emotion 

recognition based on time-frequency analysis, is proposed and evaluated with EEG signals from DEAP 

dataset [17]. In the proposed model, initially, the EEG signals from only the prefrontal cortex are retrieved 

for further work since emotional activities occur mainly in the frontal and temporal lobe of the brain [18]. 

Additionally, this also reduced the total number of channels that are to be used in the feature extraction 

method, as the irrelevant channels are already discarded beforehand. This lead to less computational cost and 

thus increased the efficiency of the algorithms used in our technique [19]. Existing methods, working with 

frequency bands, extracted all the five types of frequency bands, namely delta (0.5-4 Hz), theta (4-7 Hz), 

alpha (7-13 Hz), beta (13-30 Hz), and gamma (30-60 Hz) [20]. According to the state-of-the-art methods, the 

emotional and cognitive activities of the brain can be well signified using the alpha, beta, and theta frequency 

bands [8], [21]. Therefore, these specific bands were considered in this paper. The dataset is distributed into 

four emotional quadrants, which are high arousal - high valence (HAHV), low arousal - high valence 

(LAHV), low arousal - low valence (LALV), and high arousal - low valence (HALV). The dataset in each 

specific quadrant was then averaged for all participants for the specific emotion. The reason for averaging the 

samples according to the quadrant is due to the inconsistency in emotions felt by the participants. Not all the 

participants feel the same emotion for a particular video which indicates that some samples in the EEG 

signals are anomalous and thus can greatly affect the end result. The premise of averaging is to reduce data 

deviation and to statistically reach close to the actual value. This hypothesis might improve the accuracy of 

the classification process. Finally, the statistical features, extracted in the frequency domain, were then fed 

into the SVM classifier in order to classify the emotions. 

The subsequent sections of the paper have been organized as follows. Section 2 introduces the 

dataset used in this paper, as well as the proposed approach for recognizing emotion. Section 3 provides the 

experimental results along with their analysis. Finally, Section 4 concludes the paper. 

 

 

2. PROPOSED METHOD 

The proposed model illustrated in Figure 1 represents the overall flow of our work. For this 

research, the EEG signals were first accumulated followed by data preprocessing. Next, bands of specific 

frequencies were extracted from the preprocessed data. Subsequently, suitable features were extracted and 

selected to be fed into the classifier. Finally, SVM classifier was used to classify these selected features. 

 

 

 
 

Figure 1. Workflow of the proposed method 

 

 

2.1.  Data description 

In our research, we used DEAP dataset [17] as the source of brain signals. It is a multimodal dataset 

which can be used to analyze the human affective states. The data collection process was carried out in the 

controlled light environment. Biosemi ActiveTwo system was used to record the EEG signals of each 

participant. Two computers were used which were synchronized periodically with the help of markers - one 

for recording the signals and another for presentation of stimuli. The experiment was carried out using a  

1-minute 40 music videos displayed in 17-inch screen but (800x600) resolution was maintained to minimize 
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the eye movements. For the experiment, 32 AgCl electrodes were used to record the EEG signals at a 

sampling rate of 512 Hz. 16 male and 16 female participants with ages ranging from 19 to 37 were chosen to 

conduct the experiment. After 20 video trials, the subjects could take a break for snacks. Each trial lasted for 

63 seconds, a total of 60-second video and 3-second pre-trial baseline. At the end of each video trial, a 

manual rating was done by the subjects on a scale of 1-9 to determine four different emotions (Arousal, 

Dominance, Liking, and Valence). 

 

2.2.  Signal preprocessing 

The dataset was downsampled into 128 Hz and then Electrooculography (EOG) artifacts were 

removed due to eye movements. The signals were then filtered with a minimum of 4 Hz and a maximum of 

45 Hz using a band-pass filter. To create a common reference, the data were averaged. Later on, the data was 

segmented into 60 seconds by removing the 3 seconds pre-trial baseline and was arranged in Experiment_id 

order. 

For our research, we have chosen pre-processed data files that included EEG signals of each 

participant. All participants file have two arrays such as data and label, which is clarified below in Table 1. 

 

 

Table 1. Contents of each Participant Files 
Name Size Description 

Data 40×40×8064 Video/trial×Channel×Data 

Label 40×4 Video/trial×Label (Valence, Arousal, Dominance, Liking) 

 

 

The data array contains EEG signals for all the participants and all the videos inclusive whereas the 

labels array contains the video ID classifications according to the label (valence, arousal, dominance, and 

liking). 

 

2.3.  Signal refining 

As the first step towards band extraction, the data were first rearranged to make it appropriate for the 

extraction process. The preprocessed data from DEAP dataset was used for our work which contained 32 

files representing each participant. Each file contained two arrays: one was 3D array, named Data, of size 

40x40x8064 and another was the 2D array, named Label, of size 40x4. For our study, the 3D data array was 

used throughout the course of our work. A total of 40 channels were used to record the EEG signals, out of 

which 32 were EEG channels and 8 were peripheral channels. Previous studies illustrated that the 

information related to emotions are focused mostly in the frontal and temporal areas of the brain [18]. 

However, in order to decrease the computational costs of our proposed method, we only worked with the 

channels that are related to the frontal lobe of the brain and these channels are Fp1, F3, F7, FC5, FC1, Fp2, 

Fz, F4, F8, FC6, and FC2. Classification and feature extraction from 3D array were laborious as it was hard 

to manipulate the data as per our requirements. For this reason, the preprocessed data was sorted to 40 files 

each representing the music video used in the DEAP dataset. Each video file contained an array of size 

8064x352 where the rows represent the length of data and columns represent the total number of channels of 

the 32 participants as described in Table 2. 

 

 

Table 2. Array Representation of the Video File 
Array Name Array Size (Row × Column) Array Contents (Row × Column) 

Video_no 8064 × 352 Data × subjectNo_channelNo 

 

 

2.4.  Band extraction 

The EEG signals used for our research are on the time domain. Existed researches demonstrated 

that, in order to recognize emotional activities with better accuracy the features are extracted in the frequency 

domain [22]. This is done by applying FFT to the time domain signal. FFT is an algorithm that is used to 

convert a signal from the time domain to the frequency domain.  

For X and Y of length n, these transforms are defined as follows: 

 

     ∑        
   
            (1) 

 

where   
    

 
 is one of   roots of unity and               . 
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As it was discussed earlier, emotional activities cause the brain to generate signals in the form of 

waves. These signals, which can be subdivided into 5 frequency bands, hold a correlation with the emotional 

activities. These 5 different types of frequency bands are comprised of delta, theta, alpha, beta, and gamma 

[21]. As stated by [21], the alpha, beta, and theta can well represent the emotional and cognitive process of 

the brain than the other 2 bands. This is why, we have extracted these 3 bands using Butterworth band-pass 

filter after applying FFT on the EEG signals. 

 

2.5.  Feature extraction 

The experimenters in [17] also provided information regarding emotions that are supposed to be felt 

after watching each video. It was estimated that each video can be placed in any of the 4 emotional quadrants 

which are HAHV, LAHV, LALV, and HALV as represented in Figure 2. Individuals can respond differently 

for a specific video, which can result in the presence of irregular samples in the EEG signals. These 

erroneous samples are required to be ruled out of each quadrant in order to minimize the inconsistency in the 

samples. For our research, in order to reduce the data deviation, the extracted band values of the videos were 

averaged according to their corresponding quadrant along with specific emotion as illustrated in Table 3.  

 

 

 
 

Figure 2. Four quadrants of emotion 

 

 

Table 3. List of 40 Videos (Denoted by the Experiment_Id) and their Corresponding Quadrant 
HAHV LAHV LALV HALV 

1 8 16 10 

2 9 22 21 

3 12 23 31 

4 13 24 32 

5 14 25 33 

6 15 26 34 

7 17 27 35 

11 18 28 36 

- 19 29 37 

- 20 30 38 

 

 

After sorting the video in accordance with their quadrant and averaging the bands of all the videos 

from each quadrant, 4 video files were created which contained only the averages values of the extracted 

bands. These band values were further scaled so that the SVM classifier does not get influenced by large 

band values. Once the band values were scaled, the features of the input signals were then extracted. For our 

work, we have extracted the statistical features minimum, maximum, variance, standard deviation, wave 

entropy, power bandwidth, skewness, and kurtosis based the location or central tendency (statistical  

Features I), the dispersion or spread (Statistical Features II), and the shape of distribution (Statistical  

Features III) as illustrated in Table 4. 
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Table 4. Types of Features Extracted For Classification 
Statistical Features I Statistical Features II Statistical Features III 

Minimum Variance Skewness 

Maximum Standard deviation Kurtosis 

Mean Wave entropy - 

- Power bandwidth - 

 

 

2.6.  Emotion classification 

Numerous machine learning algorithms have been in the existed studies, out of SVM is measured as 

one of the most efficient classifiers for classifying emotions [8], [9]. The basic perception of the SVM is to 

determine a decision hyperplane in order to classify data samples into two classes. The optimum hyperplane 

for differentiating two groups is determined by maximizing the distances between nearest data point of both 

the classes and the hyperplane [23]. The classification procedure includes predicting a confusion matrix 

model by partitioning the sample data into a training set and a test set, for training and validation 

respectively, using a technique called k-fold cross validation [24]. This technique randomly divides the data 

into k equal subset of the data and is repeated 10 times. Each time, one of the k subsets is used as the test set 

and the other k-1 subsets are put together to form a training set [24]. 

In our paper, different combinations of features were used for training and testing the SVM 

classifier in order to generate the confusion matrix model. This model was then used to find the accuracy 

depending on the k-fold cross validation. Here, we integrated SVM with 10-fold cross fold validation with 

the parameters, kernel and regularization, which were selected by the grid-search method. In order to 

implement SVM, LIBSVM library is used, which is a widely used library for support vector machines [25].  

 

 

3. RESULTS AND ANALYSIS 

Classifying the statistical features for obtaining a decent outcome was not an easy process. Various 

aspects were required to be considered prior to reaching to a conclusion as the initial trials did not generate a 

satisfying output. In this paper, 10-fold cross validation was incorporated with the SVM classifier using the 

regularization and kernel parameter, which were selected via a grid-search approach. In order to determine 

the accuracy of k-fold cross validation for the classification technique, (2) was used.  

The equation for accuracy is defined as:  

 

          
     

           
           (2) 

 

where TP: the number of true positive, TN: the number of true negative, FP: the number of false positive, and 

FN: the number of false negative. 

At the very beginning, prior to averaging the extracted band values according to their corresponding 

quadrants, all the statistical features from Table 4 were fed into the SVM classifier at once. They were used 

to train and test the SVM with a specific end goal to construct the confusion matrix model. This model was 

then used to determine the accuracy based on the 10-fold cross validation. However, the very first trial did 

not provide an expected output since the accuracy was only found to be 2.03%. This occurred because the 

features, before averaging the data, do not contain distinguishable characteristics as it can be seen from 

Figure 3. A box-and-whisker plot was used to graphically represent each feature through their quartiles, as 

shown in Figure 3(a). 

 

 

 
(a) 

 
(b) 

 

Figure 3. Boxplot of the statistical features: (a) before averaging, (b) after averaging the video data 
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Afterward, we averaged the band values, in accordance with their quadrant to reduce the data 

deviation and improve the accuracy of the classification process. Once the data were averaged, these were 

scaled and the statistical features were extracted again as discussed in Section 2.5. The features were once 

more fed into the classifier all at once. This time, there was a significant improvement in the percentage 

accuracy for classification as it increased drastically from 2.03% to 32.14%. 

The percentage of accuracy before and after averaging the data of all the features is summarized in 

Table 5. It can be observed from the table that the features do not offer satisfactory outcome prior to 

averaging the data because not all the participants feel the same emotion for a specific category of video. 

Hence, the SVM classifier could not create our expected model due to the irregularity in data for each 

quadrant. 

 

 

Table 5. Accuracy for Classification before and after Averaging the Video Data 
State of the Data Accuracy (%) 

Before averaging the data 2.03 

After averaging the data 32.14 

 

 

Even though the accuracy for classification improved by a certain amount after averaging the band 

values, it still did not provide the expected output. Subsequently, we reconstructed the boxplot to analyze 

each feature that can be seen from Figure 3(b), but this time after averaging the data according to their 

corresponding quadrants.  

A box-and-whisker plot was used to distinguish each feature once the data were averaged with 

respect to their equivalent quadrants, as shown in Figure 3(b). It can be observed from the figure that the data 

of the features skewness, kurtosis, and wave entropy can be easily distinguished from each other as the data 

do not overlap and are significantly deviated. The situation is also similar for the features skewness and 

power bandwidth as these two features contained significant distinguishable characteristics. On the other 

hand, the features mean, variance and standard deviation were relatively deviated from each other, but most 

of the data were still seen to be overlapping. Furthermore, it was seen that the difference in the features 

minimum, maximum, and variance was not as prominent as the deviation in the data was very insignificant. 

Based on the above parameters, we segregated all the features into the following combinations: 

1) Feature combination A: mean, standard deviation, variance. 

2) Feature combination B: skewness, kurtosis, wave entropy. 

3) Feature combination C: minimum, maximum, variance. 

4) Feature combination D: skewness, power bandwidth. 

It was observed that the accuracy for classification improved by a significant amount as illustrated 

in Table 6. It can be noticed that the combination B provided a better result with an accuracy of 92.36% for 

the quadrant HAHV_LALV and 89.11% for the quadrant HALV_LAHV, whereas the combination C 

provided the least result with an accuracy of 11.23% for the quadrant HAHV_LALV and 15.69% for the 

quadrant HALV_LAHV. 

 

 

Table 6. Accuracy of the Feature Combinations after Averaging the Video Data 
Accuracy of Feature Combinations (%) HAHV_LALV HALV_LAHV 

A 25.34±5.20 21.21±3.20 

B 92.36±6.30 89.11±8.30 

C 11.23±5.20 15.69±3.50 

D 44.31±7.50 49.23±8.30 

 

 

The reason for feature combination B providing better result is that the samples of the features 

skewness, kurtosis, and wave entropy can be easily distinguished from each other as the data are significantly 

deviated (see Figure 3(b). Similarly, the accuracy for feature combination D was also seemed to be 

satisfactory for the same reason. On the other hand, the feature combinations A, and C could not provide a 

satisfactory result due to the overlapping and similarity of the data. This affects the SVM classifier in 

generating a confusion matrix model that fails to depict the better accuracy. By observing the above results, 

we could conclude that the shape of the distribution could well represent the emotional activities of the brain 

and thus has provided a better percentage accuracy for classification. 

As DEAP is a public dataset, we took a step forward to compare and analyze the existing methods 

that have already used the DEAP dataset for recognizing emotions with our proposed approach. Table 7 

illustrates some of the existing methods for emotion recognition using the DEAP dataset. It also provides 
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information regarding the emotions identified, the features extracted and the accuracy for emotion 

classification by each method. It can be observed that most of the existing methods extracted more than one 

type of features and few identified more than two emotions. However, for our work, only the statistical 

features were considered for the feature extraction process and only two states of emotion were identified, 

namely valence and arousal. Furthermore, it can be also seen from the table that the accuracy of the existing 

methodologies is limited within 80%, whereas our proposed approach provided an accuracy of approximately 

92.36%. Thus, it can be said that our approach is more efficient in terms of classifying emotions than many 

of the existing approaches. 

 

 

Table 7. Accuracy of Existing Approaches based on DEAP Dataset 
Reference Emotions Features Accuracy (%) 

[26] Valence and arousal DWT, WE, and Statistical 71.40 

[27] Male/female valence and male/female arousal Statistical, Linear, and Non-statistical 78.60 

[28] Stress and calm Statistical, PSD, and HOC 71.40 

[29] Valence, arousal, and dominance Statistical and HFD 71.40 

[30] Excitation, happiness, sadness, and hatred WT (db5), SE, CC, and AR 78.60 

[31] Anger, surprise, and other HHS, HOC, and STFT 78.60 

Proposed 

Approach 
Valence and arousal Statistical 92.36 

 

 

4. CONCLUSION 

In this paper, the preprocessed EEG signals from DEAP dataset were used to classify two types of 

emotions, namely valence and arousal. The samples in the dataset were first transferred from time domain to 

frequency domain by applying FFT followed by the extraction of the alpha, beta, and theta frequency bands 

that are particularly significant for emotion recognition. Subsequently, the extracted bands were averaged in 

correspondence to their quadrant for each emotion and the averaged band values were used to extract 

statistical features. After that, the extracted features were scaled and various feature combinations were fed 

into the SVM classifier for emotion recognition. It was observed that our approach predicts emotions with an 

accuracy of 92.36% using skewness, kurtosis, and wave entropy features. Our proposed model shows better 

results compared to the existing methods for DEAP dataset. 
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