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 Line plotting is the one of the basic operations in the scan conversion. 
Bresenham’s line drawing algorithm is an efficient and high popular 
algorithm utilized for this purpose. This algorithm starts from one end-point 
of the line to the other end-point by calculating one point at each step. As a 
result, the calculation time for all the points depends on the length of the line 
thereby the number of the total points presented. In this paper, we developed 
an approach to speed up the Bresenham algorithm by partitioning each line 
into number of segments, find the points belong to those segments and 
drawing them simultaneously to formulate the main line. As a result, the 
higher number of segments generated, the faster the points are calculated. By 
employing 32 cores in the Field Programmable Gate Array, a line of length 
992 points is formulated in 0.31μs only. The complete system is 
implemented using Zybo board that contains the Xilinx Zynq-7000 chip 
(Z-7010). 
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1. INTRODUCTION  

One of the essential and main activities in computer graphics is the straight line drawing. To get the 
lines displayed in a short time, the computation speed of the applied algorithm is crucial [1]. Several 
algorithms have been developed and employed for drawing straight lines [2], [3]. However, the utilization of 
complex and inefficient algorithms in generating straight lines then displaying their pixels could be slow and 
unacceptable to the user [4]. Such slow algorithms may include heavy computations that consume time and 
power. Bresnham algorithm was highly regarded among other equivalent algorithms due to its suitability and 
efficiency since floating-point, multiplication and division operations do not exist in addition to its numerical 
scaling of integers only [5]. There are several works in the literature concerning line rasterization including 
Bresenham algorithm, which had been implemented in different schemes and methods. In [6], an 
improvement to Bresenham algorithm was performed by determining the number of pixels for each line then 
filling those pixels. The modified algorithm of [7], which combines the symmetry nature of lines with 
Bresenham algorithm, improved the drawing speed by fifty percent; however, the work was only experienced 
in simulation.  

Drawing long straight lines negatively affects the efficiency of Bresenham algorithm, where the 
rasterization speed is extremely reduced in addition to missing the pixels of correlation [6], [7]. In order to 
speed up the drawing algorithm, hardware utilization is necessary. A popular hardware platform utilized for 
digital system design is the field programmable gate array (FPGA) [8]. However, when the length of the line 
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is extended, the time required to calculate the extra points would increase as well since Bresenham algorithm 
is based on finding the points of the specified line sequentially. Therefore, even with the involvement of 
hardware, the delay in drawing lengthy lines is likely to happen. 

In this paper, we have solved the problem of drawing lengthy straight lines in an extremely short 
time. Our approach of line segmentation and parallelization in implementing the 3D-Bresenham algorithm on 
single SoC (System on Chip) [9], [10] is presented. The parallelization approach is to handle several 
procedures at the same time and execute them independently [11]. Therefore, we have segmented the line 
into several shorter lines of equal length and considered every segment as a separate process. In such a case, 
the time consumed in implementing one procedure is the same time in implementing multiple procedures. 
As a result, any extension in the length of the line can be covered by adding an additional procedure to 
compute the points reflecting that increase and this would not add further running time.   

This article is organized as follows; in Section 2, a brief description on the 3D Bresenham algorithm 
is outlined. Section 3 explains our line segmentation and parallelization approach utilized for drawing 
straight lines followed by the Zynq implementation in Section 4. In Section 5, the obtained results and 
analysis are given whereas the conclusions and future work are included in Section 6. 
 
 
2. THREE DIMENSIONAL BRESENHAM’S LINE ALGORITHM 

The flow chart for three dimensional Bresnham’s algorithm [12] is presented in Figure 1, where the 
pixels of the line segment are generated in a three dimensional space. For each pixel, the x, y, z coordinates 
are calculated in the object space. Bresnham’s algorithm starts from one end-point of the line to the other 
end-point by calculating one point at each step. As a result, the calculation time for all the points depend on 
the length of the line thereby the number of the total points presented [13]. 

 
 

 
 

Figure 1. The flow chart for the 3D-Bresenham algorithm  
 
 

From Figure 1, the vertices of the line segment (xa, ya, za) and (xb, yb, zb) are read first then the 
greatest coordinate difference (dx, dy, dz) is calculated. The variables s1, s2, s3, inc1, inc2, inc3, p1, p2, p3 
and m are given their assigned values according to the greatest coordinate difference. Following to this, the 
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error values (e1 & e2) are computed in order to find the increment value of x, y, z. The next step is to find the 
intermediate pixels of the line segment. Those points can be calculated each time by adding the incremented 
value to the x, y, and z coordinate. Finally, store the calculated point and return to calculate the new 
increment value. When the coordinate difference is equal to zero, the algorithm ends [12].  
 
 
3. MATERIAL AND METHODS 

As previously mentioned, in Bresenham algorithm, the line pixels are generated one by one 
beginning at the start point a (xa, ya, za) towards the end point b (xb, yb, zb). In such a case, the time 
required to compute all the points is increasing as long as the line becomes longer, leading to a slower 
plotting process. Our approach in implementing the 3D-Bresenham algorithm is performed by line 
segmentation and procedure parallelization. The line is divided into equal-length segments using the ARM 
A9 Cortex or the processor system (PS) available on the Zynq chip followed by sending them to the FPGA 
located on the same chip. The FPGA or the programmable logic (PL) contains up to 32 individual cores and 
each of those cores can perform a separate procedure concurrently with other cores. Therefore, to draw a line, 
the latter can be divided into up to 32 equal-length segments then calculate the points of each segment 
separately in one of the cores and in parallel with the other segments. As a result, the number of cores 
employed divides the time required to find the total points of the line. In other words, Bresenham algorithm is 
implemented simultaneously with a number of times equivalent to the number of cores engaged in the 
process.  

The time required to draw a line can be controlled. For example, the increase of segments’ number 
decreases the total time required to draw the line or keep the time constant when the length of the original 
line increased by generating additional segments. Figure 2 describes the Zynq architecture [14] showing the 
PS part and only two cores (out of 32) at the PL side. The AXI4-Lite is the communication bus interface 
between the ARM cortex A9 processor and the FPGA. It can be programmed to work in more than one 
protocol. We have appointed it as AXI4-lite bus, which is simple, easy and does not require memory 
mapping [15]. 
 
 

 
 

Figure 2. The Xilinx Zynq SoC including the ARM cortex (PS) and showing two of the FPGA (PL) cores. 
The BR3D refers to Bresenham algorithm (three-dimensional) 

 
 

For the practical implementation of Bresenham algorithm, the line pixels are described by the 
coordinates (x, y, z). Each pixel is represented by 32 bit in total as follows: 10 bit for x, 10 bit for y, 10 bit for 
z coordinate and 2 bit are not applicable. Since the FPGA-BRAM (connected to each core) is of size 
1024×32 bit, which is fixed for each line segment, the straight line plotting could start at the coordinate 
(0, 0, 0) and ending at the coordinate (1023, 1023, 1023). The maximum length of a single line segment is 
1024 point. As mentioned, the number of cores employed depends on the number of segments where each 
core is performing pixel computation of one segment at a time. Table 1 shows different number of cores 
employed or number of line segments and the maximum length of rasterized line in pixels. When all the 
FPGA cores are involved in line computation, the maximum length of the line generated is 32768 pixels. 
The number of cores/segments versus maximum length of line in pixels shown in Table 1.  
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Table 1. The Number of Cores/Segments versus Maximum Length of Line in Pixels 
No. of cores or line segments Max length of rasterized line (in pixel) 

2 1024 * 2   = 2048   (  2K pixel  ) 
4 1024 * 4   = 4096   (  4K pixel  ) 
8 1024 * 8   = 8192   ( 8K pixel ) 

16 1024 * 16 =16384  (16K pixel  ) 
32 1024 * 32 =32768  (32K pixel  ) 

 
 
4. THE ZYNQ IMPLEMENTATION 

As mentioned, the Zynq chip located on the Zybo board contains two main computation parts: the 
ARM processor (PS) and the FPGA (PL) as in Figure 2. The PS is allocated for algorithms with high 
computation complexity whereas the PL is utilized to implement logical system design [16]. Therefore, the 
whole system is programmed in C language to perform the following tasks for each of the PS and the PL 
parts. The PS is directed to perform line segmentation by partitioning the main line into number of segments 
assigned according to the number of PL cores. In other words, the processor will generate the start and end 
coordinates, i.e. the (x, y, z) coordinate for the terminal points for every segment before sending them to the 
FPGA. Since the terminal points of each segment are known, the FPGA cores start calculating the total 
segment’s points according to the 3D Bresenham algorithm. At the end, all the cores that involved in 
computation complete at the same time and the coordinates of all points are calculated and stored in the 
BRAM. When all the points are computed and stored, their values are send back to the PS part one by one for 
verification. Finally, the points are rasterized on the computer screen formulating the specified line.  
 
4.1.  Core operation 

Figure 3 shows the internal architecture of one of the FPGA 32 cores. It consists of numbers of 
32-bit register utilized for initialization and signal separation. The coordinates of the terminal points P1 and 
P2 are entered through Reg0 and Reg1 respectively. The three dimensional Bresenham algorithm (BR3D) 
unit contains the logic configured reflecting this algorithm, which computes the points of the assigned 
segment. When the unit completes calculating the points, bit10, the Ready (Rdy) bit in Reg2 is set and bit0 to 
bit9 will hold the number of the calculated points (NCP). Each calculated point is stored in the dual port 
block RAM that can be fetched through Reg4 (P_out) when the corresponding address is given through 
Reg3. Figure 4 illustrates the block diagram designed to implement Bresenham algorithm inside the BR3D 
unit in Figure 3. In every clock pulse, a new point is generated from point 1 (x1, y1, z1) and point 2 (x2, y2, 
z2). The architecture contains three subtraction units, three units for the absolute value (ABS) and three 
comparators, a multiplexer and finally the calculation unit. The intermediate signals s1, s2, s3, inc1, inc2, 
inc3, p1, p2, p3 and p4 were described in Figure 1. The combination of all of these blocks execute 
Bresenham algorithm. 

 
 

 
 

Figure 3. The internal architecture of the FPGA core designed for the 3D Bresenham algorithm 
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Figure 4. The implementation of Bresenham algorithm inside the FPGA cores 
 
 
In Figure 5, the timing simulation of the main signals in Figure 4 is shown. The start point (x1, y1, 

z1) and the end (x2, y2, z2) coordinates are all inputs to the architecture giving the calculated output point 
(x_out, y_out, z_out) varies at each clock pulse. The output points combined represent the line segment. 
The start point in this example is (3, 2, 5) and the end point is (12, 15, 20). It can be noticed from Figure 5. 
that some coordinates may change value every two-clock pulses such as z-out whereas one clock pulse is 
enough to change value in case of the x-out coordinatedue due to the variation in the coordinate difference 
between its start and end. 

 
 

 
Figure 5. The timing waveform for the input/ output coordinates of one segment calculated using 

3D-Bresenham algorithm 
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4.2.   Timing constraints 
Meeting timing constraints remains an essential part in any digital system design. In this work, all 

the design procedures are performed through the Vivado software package including design optimization, 
which is essential to meet timing requirements. For example, when a specified frequency of operation is 
assigned, such as 100MHz, Vivado will optimize the design according to the period of “create clock”. This is 
essential to achieve the targeted frequency according to the worst failing path in the design. The Xilinx recent 
release of Vivado Design Suit 2017.2 supports the Zynq SoC with a wide variety of FPGA devices. It 
supersedes previous design tool by its additional features of high-level synthesis and SoC [17]. 
 
 
5. RESULT AND DISCUSSIONS 
5.1. Timing analysis 

In our design, the Zybo board operates at 100MHz clock rate and the architecture calculates one 
point in every segment in one clock pulse. The number of FPGA cores employed share calculating the 
number of line points. The hardware runtime is reduced to half when the number of cores employed is 
doubled. The fastest runtime achieved is 0.31μs when all the 32 FPGA cores are involved. This time 
represent the segmentation time (in the PS) in addition to the time required for points’ calculation (in the PL). 
Table 2 lists a comparison between this work and other relevant works. Although the comparison is not on 
exact coordinates, the runtime in this work clearly advances the running time of other works. Figure 6 
reflects the decrease in the hardware running time against the increase in the number of cores employed for 
the line of 992 point. 
 
 

Table 2. Runtime Line Drawing Compared to the Literature 

Reference Year 
Start 

coordinates 
End coordinates 

Operating 
environment 

Running 
time 

This work (32 FPGA cores) 2018 (0, 0, 0) (992, 992, 992) Zybo SoC board 0.31µs 
This work (one FPGA core) 2018 (0, 0, 0) (992, 992, 992) Zybo SoC board 9.92µs 
[18] Bresenham 3D 2013 (0, 0, 0) (1000, 1000, 1000) Spartan 3E FPGA 13.16µs 
[18] modified (less hardware) 
Bresenham 3D 

2013 (0, 0, 0) (1000, 1000, 1000) Spartan 3E FPGA 14.71µs 

[6] line generation based on line pixels 2011 (0, 0) (1000, 1000) Personal computer 1.25ms 
[19] Bresenham improved algorithm 2010 (0, 0) (1000, 1000) Personal computer 1.36ms 
[20] A fast line rasterization algorithm 2008 (0, 0) (1000, 1000) Personal computer 1.72ms 

 
 

 
 

Figure 6. The reciprocal relationship between the FPGA cores employed and the hardware runtime 
 
 
5.2. Graphical analysis 

The main 3D line of 992 point is depicted in Figure 7 in four different cases. The number of 
segments generated from the main line using our approach of parallel implementation of Bresenham 
algorithm depends on and equal to the number of FPGA cores utilized. The generated points are plotted using 
Matlab. Colors are used to distinguish the start and end of each segment. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 
Figure 7. The line of 992 point computed in (a) one-FPGA core, (b) 2-FPGA cores, (c) 4-FPGA cores, 

(d) 32-FPGA cores and formulated with 32 different color segments each of 31 point 
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(d) 

 
Figure 7. The line of 992 point computed in (a) one-FPGA core, (b) 2-FPGA cores, (c) 4-FPGA cores, 

(d) 32-FPGA cores and formulated with 32 different color segments each of 31 point (continue) 
 
 

5.3. Resource evaluation 
Each of the FPGA cores in the Zynq SoC contains variety of logic resources essential to build the 

assigned digital circuit by the user, such as the look-up tables (LUT), block RAM and flip-flops. The more 
FPGA cores are employed, the more utilization of resources is resultant. The parallel usage of these identical 
cores leads to a very fast implementation of Bresenham algorithm (0.31μs) for a line with a high number of 
points (992 point). The high ability of the Zybo platform and the Vivado software package lead to excellent 
achievement in the running time of Bresenham algorithm. However, the percentages of resource utilization 
are increased directly with the higher number of cores employed as Figure 8 shows.  
 
 

 
 

Figure 8. The increase in the number of FPGA cores employed against the increase in the percentages of 
resource utilization 

 
 

6. CONCLUSION 
The characteristic of procedure parallelization is extremely practical for any digital system design 

when the architecture of the available hardware supports parallelism. With the employment of the Zynq SoC 
that include 32 identical cores in its PL part, parallel processing of identical procedures was achievable. 
In this paper, this was applied to divide a line of 992 points into a maximum of 32 identical segments and 
implement Bresenham algorithm in parallel to compute the points of each of those segments. The hardware 
runtime for a line of 992 point was reduced from 9920ns (in case of normal implementation of Bresenham 
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algorithm on the Zybo board) down to only 0.31μs  when the parallel implementation is handled. This makes 
the followed procedure suitable for real time graphical applications. 

Future applications to the concept of parallelization can include drawing a cube or other complex 
shapes. It can also be effective in drawing a 3D polygon shape using the same architecture in calculating one 
polygon line per core to end with formulating all the polygon lines at the same time, or even rendering a 
polygon mesh. In addition, drawing several lines in parallel (maximum 32 lines) will speed up the overall 
graphical presentation. Moreover, the hardware-software co-design can also be expanded to facilitate the 
association between the PL (FPGA) and the PS (ARM-Cortex) blocks in the Zynq chip. 
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