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 Vehicle routing problem with time windows (VRPTW) is one of NP-hard 

problem. Multi-trip is approach to solve the VRPTW that looking trip 

scheduling for gets best result. Even though there are various algorithms for 

the problem, there is opportunity to improve the existing algorithms in order 

gaining a better result. In this research, genetic algoritm is hybridized with 

simulated annealing algoritm to solve the problem. Genetic algoritm is 

employed to explore global search area and simulated annealing is employed 

to exploit local search area. Four combination types of genetic algorithm and 

simulated annealing (GA-SA) are tested to get the best solution. The 

computational experiment shows that GA-SA1 and GA-SA4 can produced 

the most optimal fitness average values with each value was 1.0888 and 

1.0887. However GA-SA4 can found the best fitness chromosome faster than 

GA-SA1. 
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1. INTRODUCTION  

The growth of the number of tourists in tourist destinations located in Banyuwangi, East Java, 

Indonesia, is increasing as the infrastructure improvements by the government. With the increasing number 

of visits, there are some problems for tourists coming from out of town or from abroad. Some of them find it 

difficult to determine which sights to visit with the time limit they have set due to limited access to available 

information. They can not decide the trip based on their time limit with minimum cost and arrive to the 

destination on opening hours [1]. That problem usually called as scheduling problem. Scheduling problem is 

to make a schedule to visit tour places that total time of the schedule is balanced under many contrains [2]. 

Scheduling problem is complex problem because to get best solution must be balancing allocation the visit 

that to pass all contrains. The main focus of scheduling is to minimize the total duration of the visit [3]. In 

addition, the delay of scheduling during change the part is very important because get influence the tota 

duration of the scheduling [4]. The research focus to get maximum solution with having minimum cost as 

low as possible. The tourist must have a schedule trip. To solve this problem needs a certain model. Anggodo 

et al [1] had finished this problem with same data. It can solve the problem with vehicle routing problem 

approach. Vehicle routing problem is procedure for solving scheduling problem in vehicle route. 

Vehicle routing problem with time windows is a combination schedule visiting many places with 

time constrained service provision [5]. VRPTW is used to find optimal route of vehicle which leave a 

centralized depot. The solution of route gets from geographically dispersed customers. Finding vehicle 

scheduling and routing plan and minimizing total route distance are the focus of the problem [6]. VRPTW is 

used in logistics manufacturing with the complexity problem. As many as constrain makes the problem as 

difficult as. In fact, to solve VRPTW problem is easy when just having one depot and few nodes but the 

problem will become complex when having many depots and nodes. In addition, the problem will be more 
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complex when be found the flexible path [7]. Based on that, VRPTW is a non-determinstic polynominal-time 

hard (HP-hard) problem [6]. Previous research that proposed Anggodo et al [1] have constrain day of trip the 

tourist. Every finishing the trip on once day the tourist must go back to the hotel or centralized depot. In this 

study, the tourist will visit for many days so the problem has many trips. It is called multi-trip VRPTW that 

difference problem with only VRPTW. Multi-trip VRPTW makes problem to be complex because only 

VRPTW without multi-trip just need one leave and go back to the centralized depot. 

Most researchers have been growing interest to use combination and developing heuristics algorithm 

to solve VRPTW problem. The hybrid heuristic algorithm gets very strong searching and the solution quality 

of method is high [8]. Geoseiri & Ghannadpour [5] proposed goal approach to solve routing problem, 

building and implemented genetic algorithm (GA) to solve the problem. Recently, many researchers used 

genetic algorithm to solve the problem. Ursani et al [9] used genetic algorithm in routing problem 

framework. Genetic algorithm can get maximum solution for Solomon benchmark problem, research 

problem, and E-Commerce Supplier [7], [10], [11]. However, genetic algorithm has weakness in local 

searching solution. Solving the roblem must improve to effective and efficient searching maximum solution. 

Wang et al [12] proposed combination genetic algorithm with particle swarm optimition. The focus of 

Genetic algorithm finds global solution and particle swarm optimization search local solution. It is balance 

and excellence but needing more time for computation. Improving crossover genetic algorithm use cyclic 

shift crossover with hill-climbing mechanism to generate a child in initializiton proses [13]. It is good model 

to solve the problem but this model just the focus for searching local area because crossover modification 

makes change focus search area. 

Based on it, we need model to solve which balance to search solution and fast computation. In fact, 

genetic algorithm shows one model can to get maximum solution with focus in global search. Previously, 

genetic algorithm had could implementation in this case [1]. Many procedures do to get good local search. In 

this study, adding combination one heuristic method which focus in local searching. Crossover modification 

is not done because can change focus genetic algorithm from global search to local search. Mahmudy [14], 

improved simulated annealing (SA) for routing problem gets the best solution and fast computation. 

Simulated annealing focus on local search, when using large data simulated annealing tends to get poor 

solution. In this research, we propose new combination model of genetic algorithm and simulated annealing 

(GA-SA) to solve the problem. The proposed method will test with other model [15]. Focus this research is 

building new combination of genetic algorithm and simulated annealing and compare all GA-SA 

combination to get maximum solution. 

 

 

2. RELATED WORK 

Previsious research about routing problem have done to get maximum solution. It is not new 

problem however very interesting to find the model which solving in many conditions. The same data had 

been finished by Anggodo [1], it was finished using genetic algorithm. It proposed one-cut-point crossover 

and reciprocal exchange mutation to get the solution. to get maximum solution it was used permutation 

model for chromosome. Previous studies, GA can solve routing problem [9]. That study proposed 

combination mutation operator and recombination operator for the genetics algoritm operator. In that 

problem, chromosome representation was used permutation model. GA was used to solve routing problem 

with many constrains i.e. vehicle with limited capacity, depot constrains, and time windows constrains [5]. 

that research got maximum result because the main focus was the techniques genetic algorithm that used best 

cost-best route crossover, sequence best mutation, and permutation model for chromosome representation. 

Based on previsous studies, GA is good method to find solution in global searching and the best chromosome 

representation for route problem is permutation model. 

Routing problem will get maximum solution when have method which balance to find solution. It is 

focus on global and local search. GA can do finding solution in global search, so needing method can find in 

local search. Mahmudy [14] prosesed improved simulated annealing to solve routing problem. It got good 

solution with fast computation. Combination GA and SA will get best solution which rather than other 

method. GA do finding solution in focus global search and SA do finding solution in focus local search. To 

get better solution will be used adaptive chromose [5]. It is good method however to need one’s procedure to 

combination GA & SA. Fatyanosa et al [15] had finished hybrid GA and SA to solve benchmarks function. 

In that research used extended intermediate crossover and random mutation for operator GA. In this study, 

we will use hybrid GASA which proposed by Fatyanosa. other than that, will proposed procedure hybrid 

GASA and compare with Fatyanosa’s GASA method. 
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3. DESCRIPTION OF THE PROBLEM 

Vehicle Routing Problem with Time Windows (VRPTW) is one of the most studied VRP issues. 

The concept of VRPTW is the development of VRP problems with the addition of new constraints that is a 

time windows. Thus, the service of each customer must be started and terminated based on the time windows 

that have been determined. If the vehicle distributes up before the customer's windows time, it is subject to 

the waiting points, while the distribution vehicle that comes after the customer's windows time expires, then 

it is subject to penalty points [16].  

The purpose of VRPTW's optimization problem is to determine the shortest distance route to 

minimize travel cost and the number of vehicles without breaking the time windows and vehicle capacity. 

The journey starts from a single depot then goes to each of the scattered customers. The distribution vehicle 

must reach the customer's place between the customer's time windows. The total weight of the goods 

transported should not exceed the capacity of the vehicle. Vehicles that have finished visiting the customer 

node must return to the initial depot within the predefined time windows depot [17]. Multi-Trip Vehicle 

Routing Problem (MT-VRP) is one of the development of classic VRP problems in which a vehicle travels 

on multiple routes within a certain time frame [18]. The MT-VRP is a special vehicle route issue where each 

vehicle can serve more than one trip where each trip starts from the depot, passes several customers and ends 

up in the depot and the total customer demand should not exceed capacity [19]. Multi-Trip VRPTW applies 

MT-VRP concept but there is addition of time limit of windows in it. 

In this study, hybridization of genetic algorithm and simulated annealing is used to solve the 

problem of Multi-Trip Vehicle Routing Problem with Time Windows which is about scheduling tourist route 

in Banyuwangi Regency. There are several conditions that limit the study. 

a. There are 19 tourist data and 14 hotel data used in this research 

b. Trips are set for 3 days and occupy only 1 hotel as depot 

c. Travel is assumed using the car and road conditions smoothly 

d. The round trip time is assumed to be the same 

e. Time windows tourists start at 05.00-19.00 

f. Fitness value derived from total travel time and total tourist attraction can be visited within 3 days 

g. The more tourist objects and the less travel time required will result in greater fitness value 

h. Penalty value is the total value of violation against time windows tourist object and time windows 

tourists 

 

 

4. ALGORITHM USED 

4.1. Genetic Algorithm 

Genetic Algorithm is one of search and optimization algorithms based on natural selection and 

genetic mechanisms that have been developed as effective optimization approaches to solve complex 

problems [20]. Genetic algorithm approach can help find a good solution for complex mathematical problems 

such as the VRP problem [21]. Multi-Trip Problems VRPTW is a combinatorial optimization problem by 

forming the appropriate reprepentation solution that will get optimal solution in the use of genetic algorithm 

for Multi-Trip VRPTW problem. In this study, we use procedure of genetic algorithm that is shown in  

Figure 1 [1]. 

 

 
Initialization parameter GA 

GA (stopping condition) { 

Calculating fitness of chromosome 

// doing reproduction to get new chromosome 

Crossover using One-Cut-Point Crossover 

Mutation using Resiprocal Exchange Mutation 

Selection using Replacement Selection 

} 

 

Figure 1. Procedure of genetic algorithm 

 

 

4.1.1. Chromosom Representation 

In case about VRPTW, chromosome is an encode of destinations permutation that are visited by 

tourist. Using permutation will include all of tourism destinations so genetic algoritm can search optimum 

solution. Chromosom representation can be seen in Figure 2. 
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Figure 2. Chromosome representation 

 

 

After getting the chromosome results, next step is to calculate the fitness value of the chromosome 

that has been formed. The fitness calculation begins as if it inserts a hotel index on a chromosome. In the first 

gene of the chromosome inserted the index of the selected hotel, for example the index of the selected hotel 

is 4, then the hotel index 4 is inserted at the beginning of the chromosome. Once the hotel index is inserted, 

the next step is to insert the tourist object gene one by one on the chromosome, if the total duration of the 

tourist visit has exceeded 14.45 then the insertion of the hotel index 4 returns. After the insertion of the hotel 

index the process of entering the return tourist gene is done with the same process until the day limit is 

entered. In this study it is assumed that the trip is done within 3 days so that the process of entering the 

chromosome gene is done in 3 trips. If the process of entering the gene has been completed, then the end of 

the chromosome is re-inserted the hotel index 4. 

The calculation of fitness value is influenced by the parameters of travel time (time), penalty, and 

number of tourist destinations that can be visited. In the time parameter the greater the value of time, the 

smaller the fitness value obtained so equation 1 is used divided by 1 + time, the addition of value 1 in the 

time parameter is used to avoid infinity value if there is an occurrence of time value equal to 0. In the 

increasing penalty parameter penalty value will reduce the fitness value so that the penalty equation is used 

multiplied by the value -1 for the penalty value to be minus, if there is no penalty then the penalty value equal 

to 0. In the parameter of the number of attractions, the less number of visited tourist sites will reduce the 

value of fitness so that the value of the number of tourist attractions divided by the number of ideal tourist 

attraction that can be visited within 3 days as many as 10 attractions [1]. In this study Equation 1 shows the 

function to calculate the fitness value. The example of chromosome’s fitness calculation can be seen in  

Table 1. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1 

1+𝑡𝑖𝑚𝑒
+ (𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑥 − 1) + 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑢𝑟𝑖𝑠𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

10
,   (1) 

 

 

Table 1. Chromosome’s Fitness Calculation 

C
h

ro
m

o
so

m
e 

Path Node 
Starting 

Time 

Travel 

Time 

Arrive 

Time 

Earliest 

Time 

Waiting 

Time 
Start 

Visit 

Duration 
Finish 

Latest 

Time 
Penalty 

1 

4,8 5:00 2:06 7:06 5:00 0:00 7:06 3:00 10:06 19:00 0:00 

8,17 10:06 1:12 11:18 8:00 0:00 11:18 3:00 14:18 17:00 0:00 

17,1 14:18 1:32 15:50 5:00 0:00 15:50 3:00 18:50 17:00 1:50 

1,4 18:50 2:21 21:11 5:00 0:00 21:11 0:00 21:11 19:00 2:11 

2 

4,12 1:00 0:37 1:37 5:00 3:23 5:00 3:00 8:00 19:00 0:00 

12,2 8:00 2:02 10:02 5:00 0:00 10:02 3:00 13:02 19:00 0:00 

2,3 13:02 1:02 14:04 5:00 0:00 14:04 3:00 17:04 17:00 0:04 

3,4 17:04 2:57 20:01 5:00 0:00 20:01 0:00 20:01 19:00 1:01 

3 

4,14 5:00 0:40 5:40 8:00 2:20 8:00 3:00 11:00 19:00 0:00 

14,10 11:00 2:19 13:19 5:00 0:00 13:19 3:00 16:19 19:00 0:00 

10,4 16:19 2:17 18:36 5:00 0:00 18:36 0:00 18:36 19:00 0:00 

Total 19:05 
 

5:06 

fitness -4.2101 

 

 

After getting the result of travel time and penalty, fitness is calculated by using Equation 2. 

  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1 

1+19.05
+ (5.06 𝑥 − 1) + 

8

10
      (2) 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  −4.2101 

 

4.12. Crossover 

In this study, crossover process uses one-cut point crossover [22]. The number of offspring obtained 

from crossover rate x popsize. In this method, the cut point value will be generated randomly with a range of 

values 0 to chromosome length-1. 
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4.1.3. Mutation 

Mutation process using Reciprocal Exchange Mutation [22]. The number of offspring mutations 

results from mutation rate x popsize. In the process of mutation the first step is to select 1 individual at 

random. In the Reciprocal Exchange Mutation method, 2 randomly selected indexes will be selected with a 

range of 0-chromosome length-1 and exchange both values of the selected gene index. 

 

4.1.4. Selection 

At the selection step, the method to be used is Replacement Selection because can getting maximum 

solution [1]. The principle of the replacement selection operator is that if the offspring reproduction has a 

fitness value greater than the parent then offspring will replace the parent Offspring obtained from the 

mutation process will replace the parent if the offspring has greater fitness than the parent, if the crossover 

process that has 2 parents, then selected 1 parent with the lowest fitness value [23], [24]. 

 

4.2. Simulated Annealing 
Simulated annealing (SA) consists of optimizing the “melting” process with the appropriate 

temperature, then lowering the temperature slowly until it "freezes" and no further process [25]. At the 

beginning of the process, the metal will be heated. Then, the temperature is lowered slowly to avoid cracking 

to minimize the energy used [26]. SA's flow can helps GA's individual to get convergence to a minimum 

global [27]. The higher the temperature and the lower the value of the solution, the greater the chance of 

receiving a less than optimal solution [28]. Figure 3 shows procedure of simulated annealing which is used. 

 

 
Initialization parameter SA 

SA (stopping condition) { 

If (t ≥ final temperature { 

d1=fitness (chromosome) 

Sn=Creating Neighborhood Solution using Scramble Mutation 

d2=fitness (Sn) 

If (d < d1) { 

Initial α=random [0, 1] 

Initial p=Probability 

If (α < p) { 

S=Sn 

} 

} else { 

S=Sn 

} 

} 

} 

 

Figure 2. Procudure of simulated annealing 

 

 

Where S is maximum chromosome which is get from result of GA. d1 and d2 are fitness of S and Sn. Sn is new 

chromosome from Neighborhood scramble mutation process and result solution of SA is S. Probabilty value 

in SA is generated using Equation 3. 

 

𝑝𝑟𝑜𝑏 =  
1

𝑒

(𝑑2−𝑑1)𝑘
𝑑1𝑡

         (3) 

 

4.2.1. Neighborhood Search 

In this study, SA will generate neihborhood solution by using Scramble Mutation [27]. At this 

operator two randomly selected points are selected and switch the chromosome position between two points 

randomly for example show in Figure 4.  
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Figure 3. Scramble mutation process 

 

 

4.3. Hybrid Genetic Algorithm and Simulated Annealing 

Based on goodness and weakness each algorithm, combination genetic algorithm and simulated 

annealing will furnish weakness each algorithm. However, needing one combination to get maximum result. 

GA-SA1 is prosesed method in this study, while GA-SA2, GA-SA3, and GA-SA4 are comparison  

method [15]. 

 

4.3.1. GA-SA1 

Combination GA-SA1 is started by initialization GA parameter. The second process is running SA 

with initial solution using chromosome with best dan worst fitness. It is stop until iteration maximum in GA. 

Pseudocode of GA-SA1 can be seen in Figure 5. 

 

 
Initialization parameter GA-SA 

GA (stopping condition) { 

//running GA process 

S=chromosome with best fitness of GA 

SA (stopping condition) { 

S=chromosome with best fitness of GA 

//running SA process 

} 

S=chromosome with worst fitness of GA 

SA (stopping condition) { 

S=chromosome with best fitness of GA 

//running SA process 

} 

} 

 

Figure 4. GA-SA1 process 

 

 

4.3.2. GA-SA2 

GA-SA2 process starts by running GA first until stopping condition, then SA process is  

executed [15]. In SA process, the number of populations used is obtained based on random rate of the best 

individuals. Pseudocode of GA-SA2 can be seen in Figure 6. 

 

 
Initialization parameter GA-SA 

GA (stopping condition) { 

//running GA process 

} 

Chromosome=select (random rate, GA chromosome) 

SA (stopping condition) { 

//running SA process 

} 

 

Figure 5. GA-SA2 process 
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4.3.3. GA-SA3 

GA-SA3 process starts by running SA algorithm first until stopping condition, then GA process is 

executed [15]. In GA process, the number of populations used is obtained based on random rate of the best 

individuals. Pseudocode of GA-SA3 can be seen in Figure 7. 

 

 
Initialization parameter GA-SA 

SA (stopping condition) { 

//running SA process 

} 

Chromosome=select (random rate, GA chromosome) 

GA (stopping condition) { 

//running GA process 

} 

 

Figure 6. GA-SA3 process 

 

 

4.3.4. GA-SA4 

GA-SA2 process starts by running GA first for generations, then SA process is executed and after 

SA process is completed it will run GA again. After GA process on the first iteration is completed, individual 

is taken as much as random rate of the best individual to be processed by SA. After SA process is completed, 

it will take the individual as much as the random rate of the best individual from the SA process to be 

processed back by GA [15]. The recurrence will stop after stopping condition is found. Pseudocode of GA-

SA4 can be seen in Figure 8. 

 

 
Initialization parameter GA-SA 

While (Stopping Condition) { 

If (GA condition) { 

GA() { 

//running GA process 

} 

} 

If (SA condition) { 

SA() { 

//running SA process 

} 

} 

Chromosome=select (randomrate, chromosome) 

} 

 

Figure 7. GA-SA4 process 

 

 

5. EXPERIMENTAL RESULT AND DISCUSSION 

5.1. Experimental Scenario 

The experimental scenario will be done by comparing fitness results generated from each algorithm 

ie GA, SA, GA-SA1, GA-SA2, GA-SA3, and GA-SA4. In the GA-SA2, GA-SA3, and GA-SA4 algorithms, 

a random parameter of 0.1-1 is used to select the number of individuals randomly to be processed further. In 

GA-SA2, if the random rate used is 0.1 then only 10% of the overall GA population will be re-optimized by 

SA [15]. To know the most optimal random rate, it will be tested random rate parameters in advance so it can 

be known random rate value that can produce the most optimal fitness value. The parameters used in this 

experiment can be seen in Table 2. 

 

 

Table 2. Ecperiment Parameters 
Parameters Value 

GA 

Population Size 400 

Maximum Generation 800 

crossover rate 0.3 

mutation rate 

 
0.1 
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Table 2. Ecperiment Parameters 
Parameters Value 

SA 

initial temperature 0.9 

cooling rate 0.9 

new solution acceptance 

probability coefficient 
200 

 

 

The experiments will be carried out with the same environment using Java programming language 

and computation time for each algorithm for 60 seconds and will be repeated 10 times to produce a fair 

comparison. 

 

5.2. Result and Discussion 

The first experiment is conducted to determine the optimal random rate. The result of random rate 

parameter test can be seen in Table 3-5. Table 3 shows that random rate 0.8 yields the highest average fitness 

value of 1.0323. In Table 4, the highest fitness average is obtained when the random rate is 1 which is 

1.0872. In Table 5, the highest average fitness value is obtained when the random rate is 0.5 which is 1.0886. 

 

 

Table 3. GA-SA2’s Random Rate Result 

random 

rate 

Fitness Value 
Fitness 

Average 
Iteration 

1 2 3 4 5 6 7 8 9 10 

0.1 1.0894 1.0067 1.0085 1.0064 1.0085 1.0093 1.0064 1.0101 1.0049 1.0085 1.0159 

0.2 1.0094 1.0094 0.9985 1.0059 1.0812 0.9988 1.0093 0.9988 1.0093 1.0891 1.0210 

0.3 1.0085 1.0891 1.0064 1.0074 1.0050 1.0093 1.0096 1.0093 1.0812 1.0085 1.0234 

0.4 1.0093 1.0059 1.0096 1.0093 0.9956 1.0060 1.0096 1.0897 1.0897 1.0093 1.0234 

0.5 1.0093 1.0094 1.0053 1.0049 1.0093 1.0052 1.0101 1.0101 1.0064 1.0101 1.0080 

0.6 1.0096 1.0060 1.0053 1.0093 1.0080 1.0101 1.0093 1.0101 0.9982 1.0059 1.0072 

0.7 1.0101 1.0101 1.0054 1.0085 1.0094 1.0094 1.0054 1.0074 1.0096 1.0080 1.0083 

0.8 1.0094 1.0074 1.0064 1.0868 1.0096 1.0891 1.0096 1.0067 1.0883 1.0094 1.0323 

0.9 1.0074 1.0085 1.0900 1.0101 1.0093 1.0101 1.0094 1.0052 1.0101 1.0064 1.0167 

1 0.9985 1.0094 1.0094 1.0053 1.0052 1.0050 1.0054 1.0101 1.0880 1.0085 1.0145 

 

 

Table 4. GA-SA3’s Random Rate Result 

random 

rate 

Fitness Value 
Fitness 

Average 
Iteration 

1 2 3 4 5 6 7 8 9 10 

0.1 0.9991 0.9959 0.9986 1.0047 0.9885 0.7662 1.0094 0.9973 1.0057 0.9984 0.9764 

0.2 0.8816 1.0093 0.9978 0.9983 1.0085 1.0827 0.7615 0.8551 0.8573 1.0888 0.9541 

0.3 1.0053 0.8803 0.8182 0.8696 0.8694 0.8571 1.0045 0.8613 0.7623 1.0062 0.8934 

0.4 1.0891 0.8000 0.8648 0.6706 1.0067 0.8609 0.9965 1.0064 1.0096 0.8614 0.9166 

0.5 0.7833 0.7739 1.0054 0.8644 1.0046 0.8658 0.8617 1.0057 1.0043 0.8583 0.9027 

0.6 1.0864 1.0067 0.7800 1.0053 0.7662 0.7876 0.7694 1.0076 0.8688 1.0093 0.9087 

0.7 0.8899 0.8664 0.8402 1.0080 0.8796 0.8810 1.0064 1.0052 0.8554 0.8702 0.9102 

0.8 1.0060 0.8649 1.0064 0.9153 0.8655 0.8751 1.0082 0.8543 0.8699 0.8661 0.9132 

0.9 0.8694 0.9570 1.0049 0.9654 0.8619 0.9993 0.9604 0.8666 0.8816 0.8700 0.9237 

1 1.0888 1.0867 1.0900 1.0888 1.0867 1.0868 1.0866 1.0867 1.0888 1.0822 1.0872 

 

 

Table 5. GA-SA3’s Random Rate Result 

random 

rate 

Fitness Value 
Fitness 

Average 
Iteration 

1 2 3 4 5 6 7 8 9 10 

0.1 1.09 1.0812 1.0812 1.0868 1.0888 1.0888 1.0867 1.0888 1.0883 1.0888 1.0869 

0.2 1.0867 1.0868 1.0868 1.0888 1.09 1.0883 1.0888 1.0826 1.0888 1.09 1.0878 

0.3 1.0884 1.09 1.0888 1.0897 1.0867 1.0884 1.0867 1.0891 1.0812 1.0867 1.0876 

0.4 1.0868 1.0867 1.0897 1.0868 1.09 1.0867 1.0888 1.0867 1.0868 1.0894 1.0878 

0.5 1.0884 1.0897 1.0868 1.0897 1.0867 1.0868 1.0897 1.09 1.0894 1.0894 1.0886 

0.6 1.0867 1.0868 1.0888 1.0888 1.0868 1.0868 1.0864 1.0894 1.0888 1.0897 1.0879 

0.7 1.0868 1.0884 1.09 1.0868 1.0864 1.0894 1.0888 1.0894 1.09 1.0867 1.0883 

0.8 1.0868 1.0888 1.0894 1.0812 1.0868 1.0894 1.0888 1.0812 1.088 1.0868 1.0867 

0.9 1.0868 1.0894 1.0897 1.0868 1.0897 1.0888 1.09 1.0888 1.0868 1.0897 1.0886 

1 1.0894 1.09 1.0867 1.0884 1.0868 1.0867 1.0888 1.0867 1.0894 1.0867 1.0879 
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The next experiment is to compare the fitness results of each algorithm using GA and SA 

parameters and the random rate parameters that have been tested previously. Testing is done 10 times on each 

algorithm. The comparison of the algorithm can be seen in Table 6. 

The first test was performed on a genetic algorithm. After testing 10 times, the average fitness score 

of 1.0384 was obtained. The second experiment was performed on the simulated annealing algorithm and 

produced an average fitness of 1.0772. The third test was performed on the GA-SA1 hybridization and 

generated an average fitness of 1.0888. In GA-SA2 test, the average fitness gain is 1.0135. In the GA-SA4 

test the average fitness gain of 1.0124 and the GA-SA4 test obtained the average fitness value of 1.0863. 

From the sixth test of the algorithm, the best average fitness value is generated by the GA-SA1. 

Figure 9 shows the fitness results obtained by each algorithm within 1 minute. The chart shows that 

uses of the simulated annealing algorithm can significantly increase the fitness value because e the algorithm 

effectively exploits local search area, providing an opportunity to find the best fitness faster. From all 

algorithms tested in this research, GA-SA1 and GA-SA4 algorithm can produce the most optimal fitness 

among other algorithms, but GA-SA4 can find the best fitness chromosome for 26 second faster than GA-

SA1 that requires 39 second to find the best fitness chromosome. however, GA-SA4 is still often stuck on its 

local search while GA-SA1 can find the optimum point even though it takes a little longer. 

 

 

Table 6. Result Comparison of Algorithm 

Iteration 
Algorithm 

GA SA GA-SA1 GA-SA2 GA-SA3 GA-SA4 

1 1.0900 1.0816 1.0884 1.0085 1.0891 1.0867 

2 1.0101 1.0876 1.0868 1.0093 1.0866 1.0868 

3 1.0888 1.0816 1.0900 1.0064 1.0891 1.0894 

4 0.9982 1.0867 1.0894 1.0094 1.0867 1.0900 

5 1.0060 1.0868 1.0868 1.0067 1.0867 1.0894 

6 1.0094 1.0812 1.0894 1.0057 1.0897 1.0868 

7 1.0883 1.0868 1.0894 1.0900 1.0822 1.0897 

8 1.0054 1.0064 1.0900 1.0054 1.0900 1.0884 

9 1.0891 1.0868 1.0897 1.0047 1.0888 1.0897 

10 0.9984 1.0867 1.0884 1.0900 1.0891 1.0897 

Fitness 

Average 
1.0384 1.0772 1.0888 1.0236 1.0878 1.0887 

Fitness 

Minimum 
0.9982 1.0064 1.0868 1.0047 1.0822 1.0867 

Fitness 

Maximum 
1.0900 1.0876 1.0900 1.0900 1.0900 1.0900 

 

 

 
 

Figure 8. Comparison Result 

 

 

6. CONCLUSION 
This study compares the fitness values generated by genetic algorithm and simulated annealing 

algorithm and four its hybridization models. From the sixth test of the algorithm, the best average fitness 

value is generated by the GA-SA1. However, the ratio of fitness values generated by GA-SA1 and GA-SA4 

can be said to be close together so that both GA-SA1 and GA-SA4 can produce the most optimal average 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 :  4713 - 4723 

4722 

fitness values but GA-SA4 can find the best fitness chromosome faster than GA-SA1. Determination of 

population number of genetic algorithm to be optimized again by simulated annealing algorithm can 

influence algorithm speed in finding best result. In GA-SA1, populations re-optimized by the simulated 

annealing algorithm are just the best and worst fitness chromosomes, but in GA-SA4, the population is 10% 

of the population with the best chromosomes, the more chromosomes optimized by the simuated annealing 

algorithm, the faster the chance of the algorithm to find the most optimal fitness. Futher research, to needs K-

Means for clustering nodes that can improve computation time [30]. 
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