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 In this paper, we determine an optimal range for angle tracking radars 

(ATRs) based on evaluating the standard deviation of all kinds of errors in a 

tracking system. In the past, this optimal range has often been computed by 

the simulation of the total error components; however, we are going to 

introduce a closed form for this computation which allows us to obtain the 

optimal range directly. Thus, for this purpose, we firstly solve an 

optimization problem to achieve the closed form of the optimal range (Ropt.) 
and then, we compute it by doing a simple simulation. The results show that 

both theoretical and simulation-based computations are similar to each other. 
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1. INTRODUCTION  

There are different kinds of radar systems for different applications in industries, airports, military 

organs such as navy and so on. A type of radars is the tracking radars which are applied in fire control 

and etc [1]. Generally, two classes of tracking radars can be considered as angle tracking and range tracking 

radars. Our aim in this study attends to the first class. Figure 1 shows a real sample of tracking radar which 

has been placed on a ground platform for the fire control usages. Tracking radar for finding angle can use 

several tracking modes (scanning techniques) including sequential lobing, conical scan and monopulse  

(e.g. in terms of amplitude) [1]. These three techniques are different in terms of the error status. So, the mode 

used in each angle tracking radar must be considered in computing the error and then the optimal range of 

radar. Figure 2 shows a schematic which explains the mechanism of angle tracking radars. From step 1 to 

step 6, a target is seen in PPI display which tracked during these steps. Figure 3 and Figure 4 show the block 

diagram of two types of angle tracking radars based on monopulse and conical scan techniques, 

respectively [2], [3]. In [1]-[3], it is explained that in terms of angle error, two techniques of sequential lobing 

and conical scan are similar to each other. In the next parts, we specify the differences between the impacts 

of monopulse and conical scan/sequential lobing (non-monopulse) techniques. Computing the optimal range 

of each angle tracking radar is an optimization problem which depicts one of the main parameters of the 

radar. In [1], this problem has been represented, but it is only solved by simulation and numerical 

computation. As a completing approach for [1], we wish to solve this problem theoretically. In addition, we 

obtain the simulation result to compare to the proposed approach.  

In the appendix of this paper, we give the readers a sample MATLAB code in order to the 

simulation-based computing of the optimal range.  
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Figure 1. A fire control tracking radar 

 

 

This paper is organized as follows. In the second part, we have an overview on the resources of the 

angle error. In the third part, we theoretically solve the problem. In the forth part, we solve a typical example 

based on both simulation-based and theoretical approaches which allows us to have a comparison between 

them. The latest parts are allocated to the conclusions of the work and the appendix. 

 

 

 
 

Figure 2. PPI display sequence to illustrate the target tracking process [2] 

 

 

2. RESOURCES OF ERROR IN ATRS 

According to [1], the general standard deviation of the angle error ( t ) in ATRs is mainly depended 

on five components (five different standard deviations) including angle fluctuation error related to angle 

noise and glint phonomena ( g ), mechanical error ( mech. ), control loop error ( cont. ), scintillation error 

related to amplitude fluctuation and target fading ( sc. ). And finally the error created by thermal noise of the 

radar system ( n ). As follows, we introduce the detailed information about t . (1) shows the general 

formula of t . 

 

2 2 2 2 2
. . .      t cont mech g n sc  (1) 
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Where . ., , ,   cont mech g n and .sc ( sc. is zero for monopulse mode) are as (2) to (6), respectively 

((6) is for non-monopulse modes).  
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In the equations, sB , vk and ak are some constants related to the status of movement of the target 

and depended on transform function of the control loop, see more information in [4]. max is the highest 

angle frequency of the target. B is the maximum of beam width in two directions of elevation and azimuth  

( max{ , }   B az el ). L  is the largest size of the target and R  is the distance between radar and target. SNR  

is signal-to-noise ratio of radar while receiving an echo from the target. SNR  is based on the radar equation; 

we will discuss more about it later. PRF shows the pulse repetition frequency which is equal to the inverse of 

pulse repetition interval (shown by Tp) in pulse radar-based tracking systems. About SNR  and radar 

equation, we can say that SNR is desired at the input side of the receiver and is therefore computable by the 

radar equation as (7); for simplicity, we omit some details of radar equation which are reachable in [1], [4].  

 
2 2

3 44( )






t a

noise

P G RCS
SNR

P R
 (7) 

 

Where tP the maximum of transmission power of the radar is,   is the wavelength used in the radar. 

aG  is antenna gain of the radar (assume that we use a monostatic pulse radar for angle tracking) and 

described by (8) where 32000G , and Lel and Laz are the size of the radar's antenna for elevation and 

azimuth, respectively, see more details in [1]. RCS  shows the radar cross section of target and is not often 

fixed, especially in fast maneuvering and high rate fluctuation, however it is usually replaced with an average 

value which is at most equal to the geometrical cross section of the target (target size). So in here, we 

suppose that it is a constant. Finally, noiseP is power of the thermal noise of radar's receiver which is 

computed by (9); in this equation B  is the noise bandwidth of the radar's receiver in which 1 B  (where   

is pulse width), F is the noise figure (NF), k andT  are two constants; for more information in this regard, 

see [1]. 
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In addition, there is another form for representing the noise power noiseP , refer to [1]. It is observable that in a 

specific example, all values of t aP , ,G ,RCS,B,F and noiseP  are fixed, thus the SNR is a function in terms of 

the radar range ( R ). 

 

 

 
 

Figure 3. Block diagram of a monopulse tracking radar [2] 

 

 

 
 

Figure 4. Block diagram of a conical scan radar [3] 

 

 

3. PROPOSED METHOD 

In this part, the proposed method is represented based on solving a mathematical optimization 

problem. In the previous part, we reviewed all details of angle error. It is noticeable that in an example with 

the specified parameters, t  is only in terms of R (distance to the target). Therefore, if we minimize the 

general standard deviation for a sample range such as . optR R , then the total angle error becomes the 

minimum (because the mean of error variable is assumed to be zero, so a minimum variance/standard 

deviation shows the lowest error). In this case, .optR  is the optimal range. The equation of t  is rewritten 

as (10). If the SNR equation is to be rewritten as (11), we accordingly have t  as (12). 
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In (12), all K1 to K4 coefficients are fixed, so we find the optimal range which can minimize the term for t , 

as (13). After solving the optimization problem, we see that K1 has no impact on the .optR .  
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The roots of (13) include all roots of two new equations of 0A  and 0B . It is provable that the equation 

0A  has no acceptable root for R  (do it easily), we must solve the equation 0B ; (14) shows the single 

root of this equation. 
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The achieved relation for the optimal range is a theoretical solution. This recent equation is a 

generally closed form for all scanning techniques due to the consideration of the coefficient 2q (embedded in 

K2) and the standard deviation of .sc  in terms of different aspects related to the scanning techniques. 

In order to have a clear approach, we integrate all discussed items through the Consequence 1. 

Consequence 1. The optimal range of an angle tracking radar for all scanning techniques is as (15)-(18). 
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All angles are in degree(s) and other parameters are in linear space (not in dB) and some of them 

which have physical dimension are in S.I. units. In the next part, we solve an example based on the proposed 

approach and then compare it to the simulation result. 

 

 

4. NUMERICAL EXAMPLE AND SIMULATION 
In this part, we firstly use the MATLAB code in the appendix to solve the problem by simulation 

(classically). Its result is shown in Figure 5. It is clear that the optimal range when the simulation parameters 
are selected as Table 1 is between 5 and 10 meters. 

 
 

 
 

Figure 5. The error curve shows the optimal range obtained from the simulation under the setting in Table 1 
 
 

Table 1. Settings for simulation 
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Now, we use the Consequence 1 for computing the optimal range theoretically. At first, 1 2a a, and 

3a  are computed by (16) to (18). 
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Then with using (15), we calculate the optimal range as follow. 
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Note that in theoretical computation of the optimal range, some of the parameters like vkmax ,  and 

so on are not generally used (against the simulation-based solution, The MATLAB code for solving the 

problem based on simulation is in Table 2.). 

 

 

5. CONCLUSIONS 

In this work, our aim is to introduce a computational method [5]-[10] in which we theoretically 

computed the optimal range of ATRs. Our approach's result was matched with the simulation result in which 

they are sufficiently similar to each other. In fact, main aim of the work is to create an extension for 

the approaches represented in [1]. The proposed approach is suitable for educational aspects too. 
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APPENDIX 
 

 

Table 2. The MATLAB code for solving the problem based on simulation 

 
 


