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 To aid the decision maker, the optimal placement of FACTS in the electrical 

network is performed through very specific criteria. In this paper, a useful 

approach is followed; it is based particularly on the use of Kalai-

Smorodinsky bargaining solution for choosing the best compromise between 

the different objectives commonly posed to the network manager such as the 

cost of production, total transmission losses (Tloss), and voltage stability 

index (Lindex). In the case of many possible solutions, Voltage Profile 

Quality is added to select the best one. This approach has offered a balanced 

solution and has proven its effectiveness in finding the best placement and 

setting of two types of FACTS namely Static Var Compensator (SVC) and 

Thyristor Controlled Series Compensator (TCSC) in the power system. The 

test case under investigation is IEEE-14 bus system which has been 

simulated in MATLAB Environment. 
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1. INTRODUCTION 

With the growth of the demand and many voltage collapse incidents recorded recently around 

the world [1], The installation of Flexible AC Transmission Systems (FACTS) in the network is required. 

Based on power electronics, these new devices offer an opportunity to enhance controllability, stability, and 

transfer capability of the interconnected power systems [2], [3]. The investment cost of  FACTS is still very 

expensive, but focusing on their importance, TCSC has the primary function to increase power transfers 

significantly and enhance stability. On the other hand,  SVC is qualified as the preferred FACTS to provide 

reactive power at key points of the power system. It also presents the lowest price as it has no moving or 

rotating main components and presents cheap maintenance costs [4], [5]. Given the high price of FACTS, 

numerous studies have attempted to identify the best placement and size of these equipments in order to take 

advantage of their contribution in an optimal way with less investment.  

Various techniques depending on the technical or economical target fixed by the operator were used 

and were very useful. It started from fixing single-objective such as stability improvement [6], loss 

minimization [7], power quality improvement [8] …etc. In this case, the decision is made quickly but has the 

disadvantage of the improvement of the chosen criterion to the detriment of the other performances. 

mailto:a.oukennou@uca.ma
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Conversely, in the case of multiple objectives which are very frequent [9]-[11], the processing becomes more 

complex. Some methods consist of summing all the objectives by assigning a weight coefficient that the 

decision-maker has to attribute to each one [12], [13]. The order of magnitude must also be known in 

advance. Moreover, the result of the optimization is not unique but there are other possible solutions that can 

be presented as Pareto Front (PF) [14], [15].  

The computing of this set of solutions takes enough time as it requires a large number of mono-

objective functions optimization. It is also difficult to qualify concretely one of these solutions as the best 

one. In this contest, other methods have been used to select the best compromise. We quote for example 

NSGA II [16],[17] and NPSO [18] which are more popular and considered as one of the best methods used to 

solve the problem of FACTS optimal placement. For these methods, the degree of complexity seems to be 

increasingly important given the time required for running and the need to trace the Pareto Front to finally 

select the most dominant solution called the best compromise. 

The Kalai-Smorodinsky (KS), suggested by Ehud Kalai and Meir Smorodinsky [19], [20], is a 

solution to the Bargaining problem where players make decisions in order to optimize their own utility. In 

engineering problems, players are replaced by the objective functions that the operators have to optimize at 

the same time.  The main advantage of KS solution is that it provides a concrete criterion to select only and 

only one unique point along the Pareto Front. 

The objective of this work is to apply the Kalai-Smorodinsky technique in the optimal placement 

and setting of coordinated FACTS in power systems by considering three objectives namely Cost function, 

Total Transmission losses and Lindex as players. In the case of multiple KS Solutions, Voltage Deviation 

Index is added as new criteria to improve Voltage Profile Quality. The proposed method helps to choose only 

one unique solution without exploring the whole Pareto Front which saves computational time considerably. 

The rest of the paper is organized as follows. Section 2 presents a review of the optimal power flow 

problem. Optimization tool is described in section 3. Case study, the model of SVC, TCSC, and objectives 

functions are presented in Sections 4. The results of simulation and discussion are presented in section 5.  

The conclusion is the subject of section 6. 

 

 

2. OPTIMAL POWER FLOW PROBLEM 

The optimal power flow (OPF) problem is the backbone tool for power system operation. The aim 

of the OPF problem is to determine the optimal operating state of a power system by optimizing a particular 

objective in power systems while satisfying certain operating constraints [21]. Mathematically, the OPF 

problem can be formulated as follow: 

 

min 𝐹𝑜𝑏𝑗(𝑥, 𝑢) (1) 

 

Subject to  

 

g(𝑥, 𝑢) = 0 (2) 

 

h(𝑥, 𝑢) ≤ 0 (3) 

 

Fobj can take various functions depending on the target fixed by the operator. In the OPF, the equalities and 

inequalities are as follows: 

a. Equality constraints: 

 

𝑃𝑖(𝑉, 𝛿) − 𝑃𝐺𝑖 + 𝑃𝐷𝑖 = 0  (4) 

 

𝑄𝑖(𝑉, 𝛿) − 𝑄𝐺𝑖 + 𝑄𝐷𝑖 = 0    (5) 

 

And load balance equation: 

 

∑ 𝑃𝐺𝑖 = ∑ 𝑃𝐷𝑖 + 𝑃𝐿
𝑁𝐷𝑖
𝑖=1

𝑁𝐺
𝑖=1    (6) 

 

b. Inequality constraints: 

The inequality constraints represent the limits on all variables such as the generator voltage, active 

and reactive powers. 

 

https://en.wikipedia.org/wiki/Ehud_Kalai
https://en.wikipedia.org/wiki/Kalai%E2%80%93Smorodinsky_bargaining_solution#cite_note-1
https://en.wikipedia.org/wiki/Kalai%E2%80%93Smorodinsky_bargaining_solution#cite_note-1
https://en.wikipedia.org/wiki/Bargaining_problem
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𝑉𝐺𝑖𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖𝑚𝑎𝑥   i=1, … . , 𝑁𝐺 (7) 

 

𝑃𝐺𝑖𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖𝑚𝑎𝑥   i=1, … . , 𝑁𝐺 (8) 

 

𝑄𝐺𝑖𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖𝑚𝑎𝑥   i = 1, … . , 𝑁𝐺 (9) 

 

The maximum and minimum limits of tap settings regarding the transformer and which takes discrete values 

is given by, 

 

𝑇𝑘𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘𝑚𝑎𝑥    𝑘 = 1, … , 𝑁𝑇 (10) 

 

 

3. KALAI-SMORODINSKY SOLUTION AND DIFFERENTIAL EVOLUTION 

3.1. Kalai-Smorodinsky bargaining Solution 

In the multi-objective optimization problem, when many objective functions are conflicting, there 

are many possible solutions. It is impossible to make any preference criterion better off without making at 

least one preference criterion worst off. The advantage of KS Solution is that it satisfies monotonicity so each 

objective can be improved weakly better. Mathematically, it is the intersection point of the segment Ut (point 

of best utilities) and the point of disagreement D with the edge of the feasible set (Pareto Front) as shown in 

Figure 1. To be near from Ut, goal programming optimization technique will be deployed to achieve this 

target in equation 11. 

 

𝐹𝐾𝑆 = 𝛼(𝑓1 − 𝑈𝑡1)2𝑛 + 𝛽(𝑓2 − 𝑈𝑡2)2𝑝 (11) 

 

 

 
 

Figure 1. Solution of Kalai Smorodinsky (KS) between two functions f1 and f2 

 

 

3.2. Differential Evolution Algorithm 

Differential Evolution (DE) [22] is one of the most powerful algorithms for real number function 

optimization problems. The potential of this technique was demonstrated in literature and was compared to 

other techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) especially to 

resolve the OPF problem [23] and proved superiority in terms of solution quality. The flowchart of this 

algorithm is shown in Figure 2.  
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Figure 2. Flowchart of DE algorithm 

 

 

4. CASE STUDY, MODELING OF FACTS, AND OBJECTIVE FUNCTIONS 

4.1. Case Study 

Our study is done on the standard IEEE 14-bus test system shown in Figure 3. It represents a simple 

approximation of the American Electric Power system; it has 14 buses, 20 interconnected branches,  

5 generators and 9 load busbars.  

 

 

 
 

Figure 3. One-line diagram of IEEE 14-bus Test system taken from [24] 
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4.2.    Model of SVC and TCSC 

4.2.1. SVC 

The Static Var Compensator (SVC) equipment is composed of capacitors, thyristors, and 

inductances. In this paper, it is considered as an ideal reactive power controller, which injects or absorbs 

reactive power in the network. The bus where the SVC is placed is considered as a PV bus where the voltage 

is controlled and equal to the unity. A negative value indicates that the SVC generates reactive power and 

injects it into the network (capacitive state) and a positive value indicates that the SVC absorbs reactive 

power from the network (inductive state). 

 

4.2.2. TCSC 

The TCSC is a series compensation device that can modify and adjust the transmission line 

reactance as shown in Figure 4. By this way, the power transfer ability is improved in steady-state. The new 

value of reactance of the line where TCSC is installed is given by: 

 

𝑋𝑖𝑗 = (1 + 𝑘)𝑋 (12) 

 

 

 
 

Figure 4. The basic structure of TCSC (a) and model (b) 

 

 

The range of compensation (k%) of the TCSC is taken between 20% inductive and 80% capacitive  

(-0.8≤k≤0.2) [25]. 

 

4.3. Objective functions 

Three objective functions will be considered The first investigated one is the generation fuel cost 

minimization; it is expressed as: 

 

𝐹𝑐𝑜𝑠𝑡 = ∑ (𝛼𝑖𝑃𝐺𝑖
2 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖)

𝑁𝐺
𝑖=1      ($/h) (13) 

 

𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are the cost coefficients of the ith generator. The technical objective function is the Total Power 

losses and is given by: 

 

𝑇𝑙𝑜𝑠𝑠 = √𝑃𝑙
2 + 𝑄𝑙

2        (MVA) (14) 

 

where Pl and Ql are the active and reactive power losses of the power system. The last objective function 

related to security is the voltage stability index (Lindex) [26],[27]. It is given by: 

 

𝐿𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑎𝑥{𝐿𝑗} = 𝑚𝑎𝑥1≤𝑗≤𝑁𝐿
|1 −

∑ 𝐹𝑗𝑖𝑉𝑖
𝑁𝐺
𝑖=1

𝑉𝑗
| (15) 

 

𝑉𝑖 𝑎𝑛𝑑 𝑉𝑗 are the complex voltage of ith and jth generators, 𝑁𝐺is the number of generator units and 𝑁𝐿 is the 

number of load bus. L-index varies in a range between 0 (no Load) and 1 (voltage collapse). 
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5. SIMULATION AND RESULTS 

In order to identify the best coordinated placement of SVC and TCSC device. Figure 5 is respected 

for each pair of objective functions selected. Since FACTS have an interval where they can operate, all buses 

and lines will be scanned to have the best location and the value of Kalai Smorodinsky's solution. 

 

 

 
 

Figure 5. Flowchart of algorithm for placement 

 

 

In the case of many KS solutions, the voltage profile quality in equation 16 will be considered as additional 

criteria to select the best one. The index is given by: 

 

𝑉𝐷 = ∑ |𝑉𝑖 − 1|𝑁
𝑖=1  (16) 

 

where N is the total number of buses in the system. 

In all that follows, the reactive power of the generators is considered unrestricted and on the other 

side, the voltages of generators are taken constant which is possible because the real systems possess means 

for regulating the voltage automatically (AVR). The only control variables that will be considered are: Active 

power of generators and tap changers. However, the necessary values of reactive power of SVC, and range of 

compensation of TCSC (k%) will be computed.    

 

5.1. Tloss and Cost Function 

The obtained results are as can see in Figure 6. Five non-dominated locations are identified for SVC 

and TCSC placement. The solution number (5) is excluded as it considers the bus 7 for SVC placement, or it 

is a part of the three-winding-transformer. Using the voltage deviation index (VD), the solution (1) is the best 

one where it is equal to 0.59pu, then SVC is placed in Bus 14 and TCSC in line 1-5. To evaluate the result of 
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this simulation, two others DE mono-objective optimizations were done to find the best Cost and the best 

Total Losses minimization without FACTS. Table 1 gives the obtained results in comparison with KS 

Solution with FACTS.  

 

 

 
 

Figure 6. KS Solutions in case 5.1 

 

 

Table 1. Control variables and objective functions in case 5.1 

 

SVC TCSC Optimal values of control variables 
Cosh 

($/h) 

Total 

Losses 

(MVA) 

VD 

(pu) 
Best 

loc. 

Best 

set. 

Best 

loc. 

Best 

set. 

Pg1 

(pu) 

Pg2 

(pu) 

Pg3 

(pu) 

Pg6 

(pu) 

Pg8 

(pu) 
T1 T2 T3 

W
it

h
o
u
t 

F
A

C
T

S
 

Best cost - - - - 2.13 0.20 0.15 0.10 0.10 1.01 0.90 0.99 826.58 48.03 0.71 

Best 

losses 
- - - - 0.97 0.80 0.50 0.35 0.10 1.10 0.98 1.03 983.12 20.45 0.70 

W
it

h
 

F
A

C
T

S
 

Best KS 

Solution 

Bus 

14 
-0.13 

Line 

1-5 
-0.80 1.50 0.34 0.28 0.35 0.17 1.00 0.99 0.99 876.64 21.18 0.59 

 

 

Without FACTS, the values of objectives functions are better. However, the values of the other 

performances are worst, For Cost Minimization, the value of Total losses is equal to 48.03MVA, and the 

value of Cost production is equal to 876.64$/h in Total Losses minimization. The two values are much 

improved with KS solution which gives a very good compromise. In addition to this, the voltage deviation is 

reduced in the proposed approach. 

 

5.2. Lindex and Cost Function 

The summarized results of the simulation are given in Figure 7. Four dominated KS solutions are 

obtained, the solutions (3) and (4) are related to bus 7 which represents in reality, the three winding-

transformer so they are excluded. In this case only solution (1) and (2) are maintained. Focusing on Voltage 

Deviation Index of each solution, the second one is better. SVC is installed in bus 9 and TCSC in line 4-9. 

Both of these equipments operate in capacitive state. Table 2 gives a comparison study between the 

optimization results of the proposed solution and the traditional mono-objectif optimization of cost function 

or Lindex.   

As seen in Table 2, the mono-objective optimization of Cost function has allowed to have the best 

optimal cost (826.59$/h) which means an economic gain. However, the degree of stability is reduced since 

the Lindex is high. The same logic can be applied for Lindex optimization where stability is improved at the 

detriment of production cost. In the case of our approach and using FACTS, all objective functions are in the 

acceptable range. We also note that Lindex and voltage deviation are better which means more security and 

best voltage profile in the whole power system. 
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Figure 7. KS Solutions in case 5.2 

 

 

Table 2. Control Variables and Objective Functions in Case 5.2 

 

SVC TCSC Optimal values of control variables 
Cosh 

($/h) 
Lindex 

VD 

(pu) 
Best 

loc. 

Best 

set. 

Best 

loc. 

Best 

set. 

Pg1 

(pu) 

Pg2 

(pu) 

Pg3 

(pu) 

Pg6 

(pu) 

Pg8 

(pu) 
T1 T2 T3 

W
it

h
o
u
t 

F
A

C
T

S
 Best 

cost 
- - - - 2.13 0.20 0.15 0.10 0.10 1.01 0.90 0.99 826.58 0.0703 0.71 

Best 

L. 

Index 

- - - - 0.93 0.80 0.50 0.10 0.30 0.90 0.90 1.10 991.61 0.0684 0.86 

W
it

h
 

F
A

C
T

S
 Best 

KS 

Solut

ion 

Bus 

9 
-0.73 

Line 

4-9 
-0.80 2.14 0.20 0.16 0.10 0.10 1.09 0.97 1.10 829.10 0.0368 0.48 

 

 

5.3. Lindex and Tloss 

The result of simulations is illustrated in Figure 8. Five non-dominated KS solutions are obtained, 

solution 2 is discarded as it is linked to the transformer. If we look at the voltage deviation index, the solution 

number (3) seems to be the best one. In this case, SVC is installed in bus 9 as well as the TCSC in the line 

bus 4-9. Both of them operate in capacitive state. The Table 3 shows the corresponding results in comparison 

with Lindex or Total losses DE optimization. From Table 3, it is clear that the best solution is given by KS 

solution, all objective functions were improved significantly which demonstrates the effectiveness of the 

approach in combination with Voltage Deviation Index and the contribution of FACTS in the power system.  

 

 

 
 

Figure 8. KS Solutions in case 5.3 
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Table 3. Control variables and objective functions in case 5.3 

 

SVC TCSC Optimal values of control variables 

Lindex 

Total 

Losses 

(MVA) 

VD 

(pu) 
Best 

loc. 

Best 

set. 

Best 

loc. 

Best 

set. 

Pg1 

(pu) 

Pg2 

(pu) 

Pg3 

(pu) 

Pg6 

(pu) 

Pg8 

(pu) 
T1 T2 T3 

W
it

h
o
u
t 

F
A

C
T

S
 Best 

Lindex 
- - - - 0.93 0.80 0.50 0.10 0.30 0.90 0.90 1.10 0.0684 32.17 0.86 

Best 

losses 
- - - - 0.97 0.80 0.50 0.35 0.10 1.10 0.98 1.03 0.0721 20.45 0.70 

W
it

h
 

F
A

C
T

S
 

Best KS 

Solution 

Bus 

9 
-0.48 

Line 

4-9 
-0.65 0.67 0.80 0.50 0.35 0.30 1.00 0.99 1.01 0.0368 18.07 

0.50

1 

 

 

6. CONCLUSION 

This paper presents an efficient, simple and fast approach for the SVC and TCSC optimal placement 

in the network; it was done on IEEE 14-bus test system by using KALAI Smorodinsky solution which gives 

a concrete solution. Several optimization techniques such as differential evolution and goal programming 

were used to achieve this target. Voltage Deviation Index was also used in case of many possible KS 

Solutions.  

We were able to locate the best placement of SVC and TCSC in the power system which depends on 

the targets fixed by the operator, and secondly, the size of FACTS was computed. The approach used in this 

paper can be used for other objectives and other networks in order to improve their exploitations under 

optimal conditions. 
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