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 We continue the study of the concepts of minimality and homogeneity in the 

fuzzy context. Concretely, we introduce two new notions of minimality in 

fuzzy bitopological spaces which are called minimal fuzzy open set and 

pairwise minimal fuzzy open set. Several relationships between such notions 

and a known one are given. Also, we provide results about the transformation 

of minimal, and pairwise minimal fuzzy open sets of a fuzzy bitopological 

space, via fuzzy continuous and fuzzy open mappings, and pairwise 

continuous and pairwise open mappings, respectively. Moreover, we present 

two new notions of homogeneity in the fuzzy framework. We introduce the 

notions of homogeneous and pairwise homogeneous fuzzy bitopological 

spaces. Several relationships between such notions and a known one are 

given. And, some connections between minimality and homogeneity are 

given. Finally, we show that cut bitopological spaces of a homogeneous 

(resp. pairwise homogeneous) fuzzy bitopological space are homogeneous 

(resp. pairwise homogeneous) but not conversely. 
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1. INTRODUCTION  

Throughout this paper, 𝐼 will denote the interval [0,1]. Let 𝑋 be a nonempty set. A member of 𝐼𝑋 is 

called a fuzzy subset of 𝑋 [1]. Throughout this paper, for 𝐴, 𝐵 ∈ 𝐼𝑋 we write 𝐴 ≤ 𝐵 iff 𝐴(𝑥)  ≤  𝐵(𝑥) for all 

𝑥 ∈  𝑋. By 𝐴 =  𝐵 we mean that 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴, i.e., 𝐴(𝑥) = 𝐵(𝑥) for all 𝑥 ∈ 𝑋. Also we write 𝐴 < 𝐵 

iff 𝐴 ≤ 𝐵 and 𝐴 ≠ 𝐵. If {𝐴𝑗: 𝑗 ∈ 𝐽} is a collection of fuzzy sets in 𝑋, then (⋁𝐴𝑗) (𝑥) = 𝑠𝑢𝑝{𝐴𝑗(𝑥): 𝑗 ∈

𝐽}, 𝑥 ∈  𝑋;  𝑎𝑛𝑑 (⋀𝐴𝑗) (𝑥) =  𝑖𝑛𝑓 {𝐴𝑗(𝑥): 𝑗 ∈ 𝐽}, 𝑥 ∈  𝑋. 𝐼𝑓 𝑟 ∈ [0,1] then 𝑟𝑋 denotes the fuzzy set given by 

𝑟𝑋(𝑥) = 𝑟 for all 𝑥 ∈  𝑋. If 𝑈 ⊆  𝑋 then 𝒳𝑈 denotes the characteristic function of 𝑈. A fuzzy set 𝑝  

defined by 
 

𝑝(𝑥) = {
𝑡, 𝑖𝑓 𝑥 = 𝑥𝑝

0, 𝑖𝑓 𝑥 ≠ 𝑥𝑝
          

 

where 0 < 𝑡 ≤ 1 is called a fuzzy point in 𝑋, 𝑥𝑝 ∈ 𝑋 is called the support of 𝑝 and 𝑝(𝑥𝑝) = 𝑡 the value 

(level) of 𝑝 [2]. In this paper, a fuzzy point 𝑝 in 𝑋 is said to belong to a fuzzy set 𝐴 in 𝑋 [3] (notation: 𝑝 ∈
 𝐴) iff 𝑝(𝑥𝑝)  ≤  𝐴(𝑥𝑝). 

Let 𝑓: 𝑋 → 𝑌 be an ordinary mapping. We define 
 

𝑓→ ∶ 𝐼𝑋 → 𝐼𝑌 and  𝑓← ∶ 𝐼𝑌 → 𝐼𝑋   
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By 

 

  (𝑓→(𝐴))(𝑦) = {
𝑠𝑢𝑝{A(x): x ∈  f⁻¹({y}}, 𝑖𝑓 𝑦 ∈ range 𝑓

0,                                                𝑖𝑓 𝑦 ∉ range 𝑓
  

 

and 𝑓←(𝐵) = 𝐵 ∘ 𝑓. A fuzzy topological space [4] is a pair (𝑋, ℑ), where X is a nonempty set, ℑ called a 

fuzzy topology on it is a subfamily of 𝐼𝑋 satisfying the following three axioms. 

(1) 0𝑋, 1𝑋 ∈ ℑ. 

(2) If 𝐴, 𝐵 ∈ ℑ, then 𝐴 ∧ 𝐵 ∈ ℑ. 

(3) If {𝐴𝑗 ∶ 𝑗 ∈ 𝐽} ⊆ ℑ, then ∨ {𝐴𝑗: 𝑗 ∈ 𝐽} ∈ ℑ. 

Let (𝑋, ℑ) be a fuzzy topological space, ℑ∘ ⊆ ℑ. ℑ∘ is called a base of ℑ, if ℑ = {⋁𝐴: 𝐴 ⊆ ℑ∘} ∪
{0𝑋}. ℑ∘ is called a subbase of ℑ, if {⋀𝐴: 𝐴 ⊆ ℑ∘ and 𝐴 is a nonempty finite set} forms a base of ℑ. Let 

𝑓: (𝑋, ℑ₁) → (𝑌, ℑ₂) be a function. f is fuzzy continuous [2] if  𝑓←(𝐵) ∈  ℑ₁ for all 𝐵 ∈ ℑ₂. 𝑓 is fuzzy open 

[2] if (𝑓→(𝐴) ∈  ℑ₂ for all 𝐴 ∈ ℑ₁. f is fuzzy homeomorphism if 𝑓 is bijective, fuzzy continuous and  

fuzzy open. In 1963, Kelly [5] introduced the notion of bitopological spaces as an ordered triple (𝑋, 𝜏₁, 𝜏₂) of 

a set 𝑋 and two topologies 𝜏₁ and 𝜏₂, (i.e., two bitopological spaces (𝑋, 𝜏₁, 𝜏₂) and (𝑋, 𝜏₁′, 𝜏₂′) are identical if 

and only if 𝜏𝑖  = 𝜏𝑖′ for each 𝑖 ∈ {1,2} and similarly, the author in [6], defined the notion of fuzzy 

bitopological spaces. The area of research in fuzzy bitopological spaces is still a very hot research topic [7-9]. 

The authors in [10] introduced the concept of homogeneous fuzzy topological space as follows: A 

fuzzy topological space (𝑋, ℑ) is called homogeneous if for any two points 𝑥, 𝑦 ∈ 𝑋, there exists a fuzzy 

homeomorphism ℎ: (𝑋, ℑ) → (𝑋, ℑ) such that ℎ(𝑥)  = 𝑦. A nonempty open set 𝑀 of an ordinary topological 

space (𝑋, 𝜏) is called a minimal open set in 𝑋 [11] if any open set in 𝑋 which is contained in 𝑀 is ∅ or 𝑀. 

The authors in [12] extended the concept minimal open set to include fuzzy topological spaces as follows: A 

fuzzy open set 𝐴 of a fuzzy topological space (𝑋, ℑ) is called a minimal fuzzy open set in 𝑋 if 𝐴 is nonzero 

and there is no nonzero fuzzy open set 𝐵 such that 𝐵 < 𝐴, and then Al Ghour continued the study of minimal 

fuzzy open sets in [13,14]. Recently, the authors in [15] introduced and investigated two types of minimal 

open sets in bitopological spaces and using them they obtained some homogeneity results in bitopological 

spaces. As defined in [16], for fuzzy topological space (𝑋, ℑ), the associated topological space 

{𝐵⁻¹(𝑎, 1]: 𝐵 ∈ ℑ} is called the 𝑎-cut (level) topological space and denoted by ℑ𝑎. Cut topological spaces 

have been studied in deep by a number of authors. Some authors were used cut topological spaces for solving 

some problems of fuzzy topology by reducing them to standard problems of general topology (see [17-26]). 

Also cut topological spaces have shown to be useful in fuzzy automata theory in [27-29].  

In this paper the we continue the study of the concepts of minimality and homogeneity in the fuzzy 

context. Concretely, in Section 2 we introduce two new notions of minimality in fuzzy bitopological spaces 

which are called minimal fuzzy open set and pairwise minimal fuzzy open set. Several relationships between 

such notions and a known one are given in Theorem 2.2, Theorem 2.5, Theorem 2.8 and Theorem 2.10. 

Moreover, in the same section, we provide results about the transformation of minimal, and pairwise minimal 

fuzzy open sets of a fuzzy bitopological space, via fuzzy continuous and fuzzy open mappings, and pairwise 

continuous and pairwise open mappings, respectively. Section 3 is devoted to present two new notions of 

homogeneity in the fuzzy framework. In fact, we introduce the notions of homogeneous and pairwise 

homogeneous fuzzy bitopological spaces. Several relationships between such notions and a known one are 

given in Theorem 3.3., Theorem 3.7 and Corollary 3.8. Moreover, some connections between minimality and 

homogeneity are given in Theorem 3.9, Theorem 3.10 and Theorem 3.11. Section 4 is devoted to show that 

cut bitopological spaces of a homogeneous (resp. pairwise homogeneous) fuzzy bitopological space are 

homogeneous (resp. pairwise homogeneous) but not conversely. The following definitions and results will be 

used in the sequel. 

Definition 1.1. Let ℑ₁ and ℑ₂ be two fuzzy topologies on a nonempty set 𝑋. Then ℑ₁ ∪ ℑ₂ forms a 

subbase for some fuzzy topology on 𝑋. This fuzzy topology is called the least upper bound fuzzy topology on 

X and denoted by < ℑ₁, ℑ₂ >. It is clear that each basic fuzzy open set in <ℑ₁,ℑ₂> can be written in the form 

A∧B where A∈ℑ₁ and 𝐵 ∈ ℑ₂. 

Definition 1.2. Let 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) be a function. 

a. 𝑓 is called fuzzy continuous (fuzzy open, fuzzy homeomorphism) iff the functions 𝑓: (𝑋, ℑ₁) → (𝑌, 𝛿₁) 

and 𝑓: (𝑋, ℑ₂) → (𝑌, 𝛿₂) are fuzzy continuous (fuzzy open, fuzzy homeomorphism respectively). 

b. 𝑓 is called fuzzy pairwise continuous iff for each 𝐵 ∈ 𝛿₁ ∪ 𝛿₂, 𝑓←(𝐵) ∈ ℑ₁ ∪ ℑ₂. 

c. 𝑓 is called fuzzy pairwise homeomorphism iff 𝑓 is a bijection, fuzzy pairwise continuous and 

𝑓⁻¹: (𝑌, 𝛿₁, 𝛿₂) → (𝑋, ℑ₁, ℑ₂) is fuzzy pairwise continuous. 

Proposition 1.3. [12] Let 𝑓: (𝑋, ℑ₁)  →  (𝑌, ℑ₂) be a fuzzy continuous and fuzzy open function. If 𝐴 is a 

minimal fuzzy open set in (𝑋, ℑ₁) then (𝑓→(𝐴) is a minimal fuzzy open set in (𝑌, ℑ₂). 
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Proposition 1.4. [12] Let (𝑋, ℑ) be a homogeneous fuzzy topological space which contains a minimal fuzzy 

open set. Then we have the following. 

a. The collection of all minimal fuzzy open sets in (𝑋, ℑ) can be written of the form {𝑟𝒳𝐺𝛼
: 𝛼 ∈ 𝛬} where 

𝑟 ∈ (0,1] and {𝐺𝛼: 𝛼 ∈ 𝛬} is a partition on X and |𝐺𝛼| = |𝐺𝛽| for all 𝛼, 𝛽 ∈ 𝛬. 

b. For any fuzzy open set 𝐴 in 𝑋 and 𝛼 ∈ 𝛬 either 𝐴|𝐺𝛼
= 0 or 𝐴(𝑥) ≥ 𝑟 for all 𝑥 ∈ 𝐺𝛼 . 

Definition 1.5. [15] Let 𝑓: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) between bitopological spaces. 

a. 𝑓 is called continuous (open, homeomorphism) iff the functions 𝑓: (𝑋, 𝜏₁) → (𝑌, 𝜎₁) and 𝑓: (𝑋, 𝜏₂) →
(𝑌, 𝜎₂) are continuous (open, homeomorphism respectively). 

b. f is called pairwise continuous iff for each 𝑉 ∈ 𝜎₁ ∪ 𝜎₂, 𝑓⁻¹(𝑉) ∈ 𝜏₁ ∪ 𝜏₂. 
c. 𝑓 is called pairwise homeomorphism iff 𝑓 is a bijection, pairwise continuous and 𝑓⁻¹: (𝑌, 𝜎₁, 𝜎₂) →

(𝑋, 𝜏₁, 𝜏₂) is pairwise continuous. 

Definition 1.6. [15] A bitopological space (𝑋, 𝜏₁, 𝜏₂) is said to be homogeneous (resp. pairwise 

homogeneous) if for any two points 𝑥₁, 𝑥₂ ∈ 𝑋 there exists a homeomorphism (resp. pairwise 

homeomorphism) ℎ: (𝑋, 𝜏₁, 𝜏₂) → (𝑌, 𝜎₁, 𝜎₂) such that ℎ(𝑥₁) = 𝑥₂. 

 

 

2. MINIMALITY IN FUZZY BITOPOLOGICAL SPACES 

Definition 2.1. Let (𝑋, ℑ₁, ℑ₂) be a fuzzy bitopological space. 
a. A fuzzy set 𝐴 of 𝑋 is called a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂) if 𝐴 is a minimal fuzzy open set in 

both of (𝑋, ℑ₁) and (𝑋, ℑ₂). 

b. A nonzero fuzzy set 𝐴 of 𝑋 is called a pairwise minimal fuzzy open set in (𝑋, ℑ1, ℑ2) if 𝐴 ∈ ℑ1 ∪ ℑ2 

and for any fuzzy set 𝐵 ∈ ℑ1 ∪ ℑ2 with 𝐵 ≤ 𝐴, 𝐵 = 0𝑋 or 𝐵 = 𝐴.  
As a simple example of a fuzzy bitopological space that have a minimal fuzzy open set, take 𝑋 =

{𝑎, 𝑏, 𝑐}, ℑ₁ = {0𝑋, 1𝑋, 𝒳{𝑎}, 𝒳{𝑏}, 𝒳{𝑎,𝑏}}, ℑ₂ = {0𝑋 , 1𝑋, 𝒳{𝑎}, 𝒳{𝑐}, 𝒳{𝑎,𝑐}}, it is clear that 𝒳{𝑎} is a minimal 

fuzzy open set in (𝑋, ℑ₁, ℑ₂).Theorem 2.2. Given a fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) and 𝐴 be a fuzzy set 

of 𝑋. Consider the following statements. 

(𝑎) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

(𝑏) 𝐴 is a minimal fuzzy open set in (𝑋, 〈ℑ₁, ℑ₂〉) with 𝐴 ∈ ℑ₁ ∪ ℑ₂. 

(𝑐) 𝐴 is a pairwise minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

Then (𝑎)  ⇒  (𝑏)  ⇒  (𝑐). 

Proof. 

a. (𝑎)  ⇒  (𝑏) Since 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then 𝐴 ∈ ℑ₁ ∩ ℑ₂ ⊆ ℑ₁ ∪ ℑ₂ ⊆ 〈ℑ₁, ℑ₂〉. 

Suppose for some nonzero fuzzy set 𝐵 ∈ 〈ℑ₁, ℑ₂〉 we have 𝐵 ≤ 𝐴. Choose 𝑥₀ ∈ 𝑋 such that 𝐵(𝑥₀) > 0. 

Consider the fuzzy point 𝑝 with support 𝑥𝑝 = 𝑥₀ and level 𝑝(𝑥𝑝) = 𝐵(𝑥₀)/2. Then 𝑝 ∈ 𝐵 and so there 

exists a fuzzy set 𝐶 ∧ 𝐷 where 𝐶 ∈ ℑ₁, 𝐵 ∈ ℑ₂, 𝑝 ∈ 𝐶 ∧ 𝐷, and 𝐶 ∧ 𝐷 ≤ 𝐵. Since 𝐴 is a minimal fuzzy 

open set in (𝑋, ℑ₁, ℑ₂) then 𝐴 ≤ 𝐶 and 𝐴 ≤ 𝐷 and hence 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵. Therefore, 𝐴 = 𝐵. 

b. (𝑏) ⇒  (𝑐) Suppose for some nonzero 𝐵 ∈ ℑ1 ∪ ℑ2, 𝐵 ≤ 𝐴. Since ℑ1 ∪ ℑ2 ⊆ 〈ℑ1, ℑ2〉, it follows that 

𝐵 = 𝐴. The following example clarifies in Theorem 2.2 that (𝑐) ⇏  (𝑏). 

Example 2.3. Let 𝑋 = {𝑎, 𝑏} with the fuzzy topologies ℑ₁ = {0𝑋, 1𝑋, 𝐴} and ℑ₂ = {0𝑋, 1𝑋, 𝐵} where 𝐴 =

{(𝑎, 0.5), (𝑏, 0.25)} and 𝐵 = {(𝑎, 0), (𝑏, 0.5)}. Note that 𝐴 ∧ 𝐵 ∈ 〈ℑ₁, ℑ₂〉, 𝐴 ∧ 𝐵 ≠ 0_{𝑋}, and 𝐴 ∧ 𝐵 < 𝐴. 

Therefore, A is a pairwise minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂) but not a minimal fuzzy open set in 

(𝑋, 〈ℑ₁, ℑ₂〉). The following example will show in Theorem 2.2 that (𝑏)  ⇏  (𝑎). 

Example 2.4. Let 𝑋 = {𝑎, 𝑏} with the fuzzy topologies ℑ₁ = {0𝑋, 1𝑋, 𝐴} where 𝐴 = {(𝑎, 0), (𝑏, 0.5)} and 

ℑ₂ = {0𝑋, 1𝑋}. Then 𝐴 is a pairwise minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂) with 𝐴 ∈ ℑ₁ ∪ ℑ₂ but not a 

minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂).  

In Theorem 2.2, if we add the condition "𝐴 ∈ ℑ₁ ∩ ℑ₂", then converse of each implication will be 

true. Theorem 2.5. Let (𝑋, ℑ₁, ℑ₂) be a fuzzy bitopological space and 𝐴 ∈ ℑ₁ ∩ ℑ₂. Then the following are 

equivalent. 

(𝑎) 𝐴 is a minimal open set in (𝑋, ℑ₁, ℑ₂). 

(𝑏) 𝐴 is a minimal open set in (𝑋, 〈ℑ₁, ℑ₂〉) with 𝐴 ∈ ℑ₁ ∪ ℑ₂. 

(𝑐) 𝐴 is a pairwise minimal open set in (𝑋, ℑ₁, ℑ₂). 

Proof.  

a. (𝑎)  ⇒  (𝑏) and (𝑏)  ⇒  (𝑐) follow from Theorem 2.2. 

b. (𝑐)  ⇒  (𝑎) Without loss of generality we show that 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁).  
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Let 𝐵 ∈ ℑ₁ be nonzero with 𝐵 ≤ 𝐴. Since 𝐵 ∈ ℑ₁ ∪ ℑ₂ and 𝐴 is a pairwise minimal fuzzy open set in 

(𝑋, ℑ₁, ℑ₂), then 𝐵 = 𝐴. Theorem 2.6. If 𝐴 is a minimal fuzzy open set and B is a pairwise minimal fuzzy 

open set in a fuzzy bitopological space (𝑋, ℑ₁, ℑ₂), then either 𝐴 ∧ 𝐵 = 0𝑋 or 𝐴 = 𝐵. 

 Proof. Suppose 𝐴 ∧ 𝐵 ≠ 0𝑋. From the assumptions, we conclude that 𝐴 ∧ 𝐵 ∈ ℑ₁ ∪ ℑ₂. Then we 

have the following cases: 

a. Case 1: If 𝐴 ∧ 𝐵 ∈ ℑ₁, then we conclude that 𝐴 = 𝐴 ∧ 𝐵, i.e., 𝐴 ≤ 𝐵, because 𝐴 is minimal fuzzy open 

in (𝑋, ℑ₁) and 𝐴 ∧ 𝐵 ≤ 𝐴. Therefore, as 𝐵 is pairwise minimal fuzzy open in (𝑋, ℑ₁, ℑ₂) and 𝐴 ∈ ℑ₁ ∪
ℑ₂, we conclude that 𝐵 = 𝐴. 

b. Case 2: If 𝐴 ∧ 𝐵 ∈ ℑ₂, then we conclude that 𝐴 = 𝐴 ∧ 𝐵, i.e., 𝐴 ≤ 𝐵, because 𝐴 is minimal fuzzy open 

in (𝑋, ℑ₂) and 𝐴 ∧ 𝐵 ≤ 𝐴. Therefore, as 𝐵 is pairwise minimal fuzzy open in (𝑋, ℑ₁, ℑ₂) and 𝐴 ∈ ℑ₁ ∪
ℑ₂, we conclude that 𝐵 = 𝐴.  

Therefore, in both cases we show that 𝐴 = 𝐵. Corollary 2.7. (i) Let (𝑋, ℑ₁, ℑ₂) be a fuzzy bitopological 

space. If 𝐴 and 𝐵 are two minimal fuzzy open sets in (𝑋, ℑ₁, ℑ₂), then either 𝐴 ∧ 𝐵 = 0𝑋 or 𝐴 = 𝐵. (ii) [9] 

Let (𝑋, ℑ) be a fuzzy topological space. If 𝐴 and 𝐵 are two minimal fuzzy open sets in (𝑋, ℑ), then either 𝐴 ∧
𝐵 = 0𝑋 or 𝐴 = 𝐵. Proof. (i) (resp. (ii)) is shown by Theorems 2.2 and 2.6 (resp. (i) above; take ℑ₁ = ℑ₂). 

In Example 2.3, A and B are pairwise minimal fuzzy open sets in (𝑋, ℑ₁, ℑ₂), but neither 𝐴 ∧ 𝐵 =
0𝑋 nor 𝐴 = 𝐵. Therefore, in Theorem 2.6 we cannot replace minimality by pairwise minimality. 

Theorem 2.8. If 𝐴 is a pairwise minimal fuzzy open set in a fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) with 𝐴 ∈ ℑ𝑖 

for some 𝑖 ∈ {1,2}, then 𝐴 is a minimal fuzzy open set in (𝑋, ℑ𝑖). 

Proof. For each nonzero fuzzy set 𝐵 ∈ ℑ𝑖 with 𝐵 ≤ 𝐴, we have 𝐵 ∈ ℑ₁ ∪ ℑ₂ and so 𝐵 = 𝐴, hence 

𝐴 is a minimal fuzzy open set in the fuzzy topological space (𝑋, ℑ𝑖). 

Corollary 2.9. If 𝐴 is a pairwise minimal fuzzy open set in a fuzzy bitopological space (𝑋, ℑ₁, ℑ₂), then 𝐴 is a 

minimal fuzzy open set in (𝑋, ℑ₁) or 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₂). 
Theorem 2.10. Let 𝐴, 𝐵 be two pairwise minimal fuzzy open sets in a fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) 

with 𝐴 ≠ 𝐵 and 𝐴 ∧ 𝐵 ≠ 0𝑋. Then 𝐴 ∧ 𝐵 is a minimal fuzzy open set in (𝑋, < ℑ₁, ℑ₂ >). 

Proof. If {𝐴, 𝐵} ⊆ ℑ𝑖 where 𝑖 = 1 or 𝑖 = 2, then by Theorem 2.8, it follows that both 𝐴 and 𝐵 are 

minimal fuzzy open sets in (𝑋, ℑ𝑖) and by Corollary 2.7 (ii), it follows that either 𝐴 = 𝐵 or 𝐴 ∧ 𝐵 = 0𝑋. 

Therefore, we may assume that 𝐴 ∈ ℑ₁ and 𝐵 ∈ ℑ₂. Suppose there exists a nonzero fuzzy open set 𝑊 ∈<
ℑ₁, ℑ₂ > such that 𝑊 ≤ 𝐴 ∧ 𝐵. Choose 𝑈 ∈ ℑ₁ and 𝑉 ∈ ℑ₂ such that 0𝑋 ≠ 𝑈 ∧ 𝑉 ≤ 𝑊 ≤ 𝐴 ∧ 𝐵. Choose a 

fuzzy point 𝑞 ∈ 𝑈 ∧ 𝑉. Then 𝑞 ∈ 𝑈 ∧ 𝐴 ∈ ℑ₁ and 𝑞 ∈ 𝑉 ∧ 𝐵 ∈ ℑ₂. Thus, 𝑈 ∧ 𝐴 = 𝐴 and 𝑉 ∧ 𝐵 = 𝐵. Hence, 

𝐴 ∧ 𝐵 ≤ 𝑈 ∧ 𝑉 ≤ 𝑊. This completes the proof. 

Theorem 2.11. (i) Let 𝑓: (𝑋, ℑ₁, ℑ₂)  → (𝑌, 𝛿₁, 𝛿₂) be fuzzy continuous and fuzzy open function. If 𝐴 is a 

minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then 𝑓→(𝐴) is a minimal fuzzy open set of (𝑌, 𝛿₁, 𝛿₂). (ii) Let 

𝑓: (𝑋, ℑ₁, ℑ₂)  → (𝑌, 𝛿₁, 𝛿₂) be a fuzzy homeomorphism. Then 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂) if 

and only if 𝑓→(𝐴) is a minimal fuzzy open set in (𝑌, 𝛿₁, 𝛿₂). 
Proof. (i) Proposition 1.3. (ii) Follows from (i) above. 

Theorem 2.12. Let 𝑓: (𝑋, ℑ₁, ℑ₂)  → (𝑌, 𝛿₁, 𝛿₂) be injective, fuzzy pairwise continuous, and fuzzy 

pairwise open function. If 𝐴 is a pairwise minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then 𝑓→(𝐴) is a pairwise 

minimal fuzzy open set of (𝑌, 𝛿₁, 𝛿₂). 
Proof. Since 𝐴 is a pairwise minimal fuzzy open set then 𝐴 ≠  0𝑋, and so 𝑓→(𝐴)  ≠ 0𝑌. Also, since 

𝑓 is fuzzy pairwise open then 𝑓→(𝐴) ∈ 𝛿₁ ∪ 𝛿₂. Suppose for some nonzero fuzzy set 𝐵 ∈ 𝛿₁ ∪ 𝛿₂, 𝐵 ≤
𝑓→(𝐴). Then 𝑓←(𝐵) ≤ 𝑓←(𝑓→(𝐴)). Since 𝑓 is injective, we have 𝑓←(𝑓→(𝐴)) = 𝐴. Choose 𝑦₀ ∈ 𝑌 such that 

𝐵(𝑦₀) > 0. Since 𝐵 ≤ 𝑓→(𝐴), then 0 < 𝐵(𝑦₀) ≤ (𝑓→(𝐴))(𝑦₀) = 𝑠𝑢𝑝{𝐴(𝑥): 𝑓(𝑥) = 𝑦₀} and so there exists 

𝑥₀ ∈ 𝑋 such that 𝑓(𝑥₀) = 𝑦₀. Therefore, (𝑓←(𝐵))(𝑥₀) = 𝐵(𝑦₀) > 0 and hence 𝑓←(𝐵) ≠ 0𝑋. Since 𝑓 is 

fuzzy pairwise continuous, then 𝑓←(𝐵) ∈ ℑ₁ ∪ ℑ₂. Since 𝐴 is a pairwise minimal fuzzy open set, it follows 

that 𝐴 = 𝑓←(𝐵). Hence, 𝑓^{→}(𝐴) = 𝑓→(𝑓←(𝐵)) ≤ 𝐵. This ends the proof. Corollary 2.13. Let 

𝑓: (𝑋, ℑ₁, ℑ₂)  → (𝑌, 𝛿₁, 𝛿₂) be a fuzzy pairwise homeomorphism. Then 𝐴 is a pairwise minimal fuzzy open 

set in (𝑋, ℑ₁, ℑ₂) if and only if 𝑓→(𝐴) is a pairwise minimal fuzzy open set  

of (𝑌, 𝛿₁, 𝛿₂).  

 

 

3. PAIRWISE HOMOGENEITY IN FUZZY BITOPOLOGICAL SPACES 

Definition 3.1. A fuzzy bitopological space (𝑋, ℑ₁, ℑ₂) is said to be homogeneous (resp. pairwise 

homogeneous) if for any two points 𝑥₁, 𝑥₂ ∈ 𝑋 there exists a fuzzy homeomorphism (resp. fuzzy pairwise 

homeomorphism) ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥₁) = 𝑥₂. Lemma 3.2. Let 𝑓: (𝑋, ℑ₁, ℑ₂) →
(𝑌, 𝛿₁, 𝛿₂) be a function. (𝑎) If 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy pairwise continuous, then 𝑓: (𝑋, <
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ℑ₁, ℑ₂ >) → (𝑌, < 𝛿₁, 𝛿₂ >) is fuzzy continuous. (𝑏) If 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy continuous, then 

𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy pairwise continuous. Proof. (𝑎) For every 𝐴 ∈ 𝛿₁ and 𝐵 ∈ 𝛿₂, we have 

{𝐴, 𝐵} ⊆ 𝛿₁ ∪ 𝛿₂ and 𝑓←(𝐴 ∧ 𝐵) = 𝑓←(𝐴) ∧ 𝑓←(𝐵) where {𝑓←(𝐴), 𝑓←(𝐵)}  ⊆ ℑ₁ ∪ ℑ₂ ⊆< ℑ₁, ℑ₂ >. This 

ends the proof. (𝑏) Let 𝐵 ∈ 𝛿₁ ∪ 𝛿₂. Without loss of generality we may assume that 𝐵 ∈ 𝛿₁. As 

𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy continuous, then 𝑓: (𝑋, ℑ₁) → (𝑌, 𝛿₁) is fuzzy continuous and hence 

𝑓←(𝐵) ∈ ℑ₁ ⊆ ℑ₁ ∪ ℑ₂. 
Theorem 3.3. Let (𝑋, ℑ₁, ℑ₂) be fuzzy bitopological space.  

(𝑎) If (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous, then (𝑋, < ℑ₁, ℑ₂ >) is homogeneous. 

(𝑏) If (𝑋, ℑ₁, ℑ₂) is homogeneous, then (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous. 

(𝑐) If (𝑋, ℑ₁, ℑ₂) is homogeneous, then (𝑋, ℑ₁) and (𝑋, ℑ₂) are homogeneous. 

Proof. (𝑎) Let 𝑥₁, 𝑥₂ ∈ 𝑋. As (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous, there exists a fuzzy pairwise 

homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥₁) = 𝑥₂. Lemma 3.2 (𝑎) ends the proof. (𝑏) Let 

𝑥₁, 𝑥₂ ∈ 𝑋. As (𝑋, ℑ₁, ℑ₂) is homogeneous, there exists a fuzzy homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) 

such that ℎ(𝑥₁) = 𝑥₂. Lemma 3.2 (𝑏) ends the proof. (𝑐) Let 𝑥₁, 𝑥₂ ∈ 𝑋. As (𝑋, ℑ₁, ℑ₂) is homogeneous, 

there exists a fuzzy homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥₁) = 𝑥₂. Therefore, we have 

ℎ: (𝑋, ℑ₁) → (𝑋, ℑ₁) and ℎ: (𝑋, ℑ₂) → (𝑋, ℑ₂) are fuzzy homeomorphisms. Hence (𝑋, ℑ₁) and (𝑋, ℑ₂) are 

homogeneous.  Implication (𝑎) of Theorem 3.3 is not reversible as the following example shows: 

Example 3.4. Let 𝑋 = {𝑎, 𝑏, 𝑐}, ℑ₁ = {0𝑋, 1𝑋, 𝒳{𝑎}}, ℑ₂ = {0𝑋, 1𝑋, 𝒳{𝑏}, 𝒳{𝑐}, 𝒳{𝑏,𝑐}}. Then < ℑ₁, ℑ₂ >=

{𝒳𝑌 ∶ 𝑌 ⊆ 𝑋} and hence (𝑋, < ℑ₁, ℑ₂ >) is homogeneous. If 𝑓: 𝑋 → 𝑋 is a bijection for which 𝑓(𝑎) = 𝑏, 

then we have 𝒳{𝑏,𝑐} ∈  ℑ₁ ∪ ℑ₂ but 𝑓→(𝒳{𝑏,𝑐}}) = 𝒳{𝑎,𝑓−1(𝑐)}  ∉  ℑ₁ ∪ ℑ₂ which shows that 𝑓 is not a fuzzy 

pairwise homeomorphism. Hence (𝑋, ℑ₁, ℑ₂) is not pairwise homogeneous.  

Implication (𝑏) of Theorem 3.3 is not reversible as the following example shows: 

Example 3.5. Let 𝑋 = ℝ, ℑ₁ = 𝐼𝑋 , ℑ₂ = {0𝑋, 1𝑋, 𝒳{2}}. It is not difficult to see that (𝑋, ℑ₁) is homogeneous 

and that (𝑋, ℑ₂) is not homogeneous. As ℑ₁ ∪ ℑ₂ = ℑ₁, then (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous. On the 

other hand, by Theorem 3.3 (𝑐), it follows that (𝑋, ℑ₁, ℑ₂) is not homogeneous.  

Implication (𝑐) of Theorem 3.3 is not reversible as the following example shows: 

Example 3.6. Let X= {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, ℑ₁ = {𝒳𝑌 ∶ 𝑌 ∈ {∅, 𝑋, {𝑎, 𝑏, 𝑐}, {𝑑, 𝑒, 𝑓}}}, and ℑ₂ = {𝒳𝑌 ∶ 𝑌 ∈
{∅, 𝑋, {𝑎, 𝑏}, {𝑐, 𝑑}}, {𝑒, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑒, 𝑓}, {𝑐, 𝑑, 𝑒, 𝑓}}. It is not difficult to see that (𝑋, ℑ₁) is 

homogeneous, (𝑋, ℑ₂) is homogeneous, and (𝑋, ℑ₁, ℑ₂) is not pairwise homogeneous and hence  

not homogeneous. 

Theorem 3.7. Let (𝑋, ℑ₁, ℑ₂) be a homogeneous fuzzy bitopological space having a minimal fuzzy 

open set. If 𝐴 ∈ ℑ₁ ∪ ℑ₂, then the following are equivalent: 

(𝑎) 𝐴 is an minmal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

(𝑏) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁) or 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₂). 
Proof. (𝑎)  ⇒  (𝑏) Obvious. (𝑏)  ⇒  (𝑎) Without loss of generality we may assume that 𝐴 is a minimal fuzzy 

open set in (𝑋, ℑ₁). Applying Proposition 1.4, there exists 𝑟₁ ∈ (0,1] and 𝑌₁ ⊆ 𝑋 such that 𝐴 = 𝑟₁𝒳𝑌1
. Take 

a minimal fuzzy open set 𝐵 of (𝑋, ℑ₁, ℑ₂). Then again by Proposition 1.4, there exists 𝑟₂ ∈ (0,1] and 𝑌₂ ⊆ 𝑋 

such that 𝐵 = 𝑟₂𝒳𝑌2
. Take 𝑦₁ ∈ 𝑌₁, 𝑦₂ ∈ 𝑌₂, and a fuzzy homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such 

that ℎ(𝑦₂) = 𝑦₁. Applying Theorem 2.11 (ii), it follows that ℎ→(𝐵) = ℎ→(𝑟₂𝒳𝑌2
) = 𝑟₂𝒳ℎ(𝑌₂) is a minimal 

fuzzy open set in (𝑋, ℑ₁, ℑ₂). Since 𝑦₁ ∈ 𝑌₁ ∩ ℎ(𝑌₂), then (𝑟₂𝒳ℎ(𝑌₂)}) ∧ (𝑟₁𝒳𝑌1
) ≠ 0𝑋. Since 𝑟₂𝒳ℎ(𝑌₂) and 

𝑟₁𝒳𝑌1
 are minimal fuzzy open sets in (𝑋, ℑ₁), then by Corollary 2.7 (ii), it follows that 𝑟₂𝒳ℎ(𝑌₂)  = 𝑟₁𝒳𝑌1

 and 

hence 𝐴 is a minmal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

Corollary 3.8. Let (𝑋, ℑ₁, ℑ₂) be an homogeneous fuzzy bitopological space having a minimal fuzzy 

open set and 𝐴 ∈ ℑ₁ ∪ ℑ₂. Then the following are equivalent: 

(𝑎) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

(𝑏) 𝐴 is a minimal fuzzy open set in (𝑋, 〈ℑ₁, ℑ₂〉). 

(𝑐) 𝐴 is a pairwise minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂). 

(𝑑) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁) or 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₂). 

(𝑒) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₁). 

(𝑓) 𝐴 is a minimal fuzzy open set in (𝑋, ℑ₂). 

Proof. (𝑎)  ⇒  (𝑏) and (𝑏)  ⇒  (𝑐) Theorem 2.2. (𝑐)  ⇒  (𝑑) Corollary 2.9. (𝑑)  ⇒  (𝑎) Theorem 3.7. (𝑎)  ⇔
 (𝑒) 𝑎𝑛𝑑 (𝑎)  ⇔  (𝑓) Theorem 3.7. 

Theorem 3.9. Let (𝑋, ℑ₁, ℑ₂) be a pairwise homogeneous fuzzy bitopological space. If 𝐴 is a 

minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then there exist 𝑟 ∈ (0,1] and 𝑌 ⊆ 𝑋 such that 𝐴 = 𝑟𝒳𝑌. 

Proof. Suppose on the contrary that there exist two different points 𝑥₁, 𝑥₂ ∈ 𝑋 such that 0 < 𝐴(𝑥₁) < 𝐴(𝑥₂). 

Since (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous there exists a fuzzy homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) 

such that ℎ(𝑥₁) = 𝑥₂. As 𝐴 is pairwise minimal, then by Corollary 2.13 ℎ→(𝐴) is pairwise minimal. As (𝐴 ∧
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ℎ→(𝐴))(𝑥₂) = 𝑚𝑖𝑛{𝐴(𝑥₂), 𝐴(𝑥₁)} = 𝐴(𝑥₁) > 0, 𝐴 ∧ ℎ→(𝐴) ≠ 0𝑋. Therefore, by Theorem 2.6 0𝑋(𝐴) = 𝐴 

and hence 𝐴(𝑥₁) = (ℎ→(𝐴))(𝑥₁) = 𝐴(𝑥₂), a contradiction. 

In the sequel, GFPH(𝑋, ℑ₁, ℑ₂) will denote the group of all fuzzy pairwise homeomorphisms from 

(𝑋, ℑ₁, ℑ₂) onto itself. Theorem 3.10. Let (𝑋, ℑ₁, ℑ₂) be a pairwise homogeneous fuzzy bitopological space. 

If  𝑟𝒳𝑌 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then the family {𝑟𝒳ℎ(𝑌): ℎ ∈ 𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂)} is the set 

of all pairwise minimal fuzzy open sets in (X,ℑ₁,ℑ₂). Proof. Let 𝐴 be a pairwise minimal fuzzy open set of  

(𝑋, ℑ₁, ℑ₂). Choose 𝑥 ∈ 𝑋 such that 𝐴(𝑥) > 0 and 𝑦 ∈ 𝑌. As (𝑋, ℑ₁, ℑ₂) is pairwise homogeneous, there 

exists a fuzzy pairwise homeomorphism ℎ: (𝑋, ℑ₁, ℑ₂) → (𝑋, ℑ₁, ℑ₂) such that ℎ(𝑦) = 𝑥. Applying corollary 

2.13, it follows that ℎ←(𝐴) is pairwise minimal. As ((𝑟𝒳ℎ(𝑌)) ∧ ℎ←(𝐴))(𝑦) = 𝑚𝑖𝑛{𝐴(𝑥), 𝑟} > 0, 𝐴 ∧

ℎ←(𝐴) ≠ 0𝑋. Therefore, by Theorem 2.6 ℎ←(𝐴) = 𝑟𝒳𝑌  and hence 𝐴 = ℎ→(𝑟𝒳𝑌) = 𝑟𝒳ℎ(𝑌). 

Recall that a partition ℬ𝑋 on a nonempty set 𝑋 is called a regular partition  if for any two  

elements 𝑈, 𝑉 ∈ ℬ𝑋, |𝑈| = |𝑉|. Theorem 3.11. Let (𝑋, ℑ₁, ℑ₂) be a pairwise homogeneous fuzzy 

bitopological space. If 𝑟𝒳𝑌 is a minimal fuzzy open set in (𝑋, ℑ₁, ℑ₂), then the family {ℎ(𝑌): ℎ ∈
𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂)} forms a regular partition on 𝑋. Proof. It is clear that ℎ(𝑌) ≠ ∅ for every ℎ ∈
𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂). Suppose for some 𝑓, 𝑔 ∈ 𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂), 𝑓(𝑌) ∩ 𝑔(𝑌) ≠ ∅. Choose 𝑥 ∈ 𝑓(𝑌) ∩
𝑔(𝑌), 𝑦 ∈ 𝑌, and ℎ ∈ 𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂) such that ℎ(𝑥) = 𝑦. By Corollary 2.13, both (ℎ ∘ 𝑓)→(𝑟𝒳𝑌) and (ℎ ∘
𝑔)→(𝑟𝒳𝑌) are pairwise minimal fuzzy open sets. Since ((𝑟𝒳𝑌) ∧ (ℎ ∘ 𝑓)→(𝑟𝒳𝑌) ∧ (ℎ ∘ 𝑔)→(𝑟𝒳𝑌))(𝑦) =
𝑟 > 0 then by Theorem 2.6, it follow that 𝑟𝒳𝑌 = (ℎ ∘ 𝑓)→(𝒳𝑌) and 𝑟𝒳𝑌 = (ℎ ∘ 𝑔)→(𝑟𝒳𝑌) and hence 

(ℎ ∘ 𝑓)→(𝑟𝒳𝑌) = (ℎ ∘ 𝑔)→(𝑟𝒳𝑌). Thus, 𝑟𝒳(ℎ∘𝑓)(𝑌) = 𝑟𝒳(ℎ∘𝑔)(𝑌) and hence (ℎ ∘ 𝑓)(𝑌) = (ℎ ∘ 𝑔)(𝑌). 

Therefore, 𝑓(𝑌) = 𝑔(𝑌). To see that ∪ {ℎ(𝑌): ℎ ∈ 𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂)} = 𝑋, let 𝑧 ∈ 𝑋. Pick 𝑤 ∈ 𝑌 and ℎ ∈
𝐺𝐹𝑃𝐻(𝑋, ℑ₁, ℑ₂) such that ℎ(𝑤) = 𝑧. Thus, 𝑧 ∈ ℎ(𝑌) which completes the proof. 

 

 

4. CUT FUZZY BITOPOLOGICAL SPACES   

Theorem 4.1. If 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy pairwise continuous (homeomorphism), then for 

every 𝑎 ∈ [0,1), 𝑓: (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑎) → (𝑌, (𝛿₁)𝑎, (𝛿₂)𝑎) is pairwise continuous (homeomorphism). 

Proof. Let 𝑎 ∈ [0,1) and let 𝑉 ∈ (𝛿₁)𝑎 ∪ (𝛿₂)𝑎). Then there is 𝐵 ∈ 𝛿₁ ∪ 𝛿₂ such that 𝑉 = 𝐵⁻¹(𝑎, 1]. Since 

𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is fuzzy pairwise continuous, then 𝑓←(𝐵) ∈ ℑ₁ ∪ ℑ₂ and so (𝑓←(𝐵))⁻¹(𝑎, 1] ∈
(ℑ₁)𝑎 ∪ (ℑ₂)𝑎. Since 𝑓⁻¹(𝑉) = 𝑓⁻¹(𝐵⁻¹(𝑎, 1]) = (𝑓←(𝐵))⁻¹(𝑎, 1], then 𝑓⁻¹(𝑉) ∈ (ℑ₁)𝑎 ∪ (ℑ₂)𝑎. It follows 

that 𝑓: (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑎) → (𝑌, (𝛿₁)𝑎, (𝛿₂)𝑎) is pairwise continuous. 

Corollary 4.2. If (𝑋, ℑ₁, ℑ₂) is a pairwise homogeneous fuzzy bitopological space, then for every 

𝑎 ∈ [0,1) the bitopological space (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑎) is pairwise homogeneous. The following example shows 

that the converse of each of Theorems 4.1 and Corollary 4.2 need not to be true in general: Example 4.3. Let 

𝑋 = {1,2}, ℑ = {0𝑋, 1𝑋, 𝐴, 𝐵, 𝐶, 𝐷} where 𝐴 = {(1,0), (2,1)}, 𝐵 = {(1,1), (2,0)}, 𝐶 = {(1, (1/2)), (2,1)}, 𝐷 =
{(1, (1/2)), (2,0)}. Define ℎ: 𝑋 → 𝑋 by ℎ(1) = 2 and ℎ(2) = 1. Then for every 𝑎 ∈ [0,1), ℎ: (𝑋, ℑ𝑎, ℑ𝑎) →
(𝑋, ℑ𝑎, ℑ𝑎) is pairwise continuous while ℎ: (𝑋, ℑ, ℑ) → (𝑋, ℑ, ℑ) is not fuzzy pairwise continuous. 

Therefore, the converse of Theorem 4.1 is not true in general. For every 𝑎 ∈ [0,1), ℎ: (𝑋, ℑ𝑎, ℑ𝑎) →
(𝑋, ℑ𝑎, ℑ𝑎) is pairwise homeomorphism with ℎ(1) = 2 and ℎ⁻¹(2) = 1 and so (𝑋, ℑ𝑎, ℑ𝑎) is pairwise 

homogeneous. On the other hand, it is not difficult to check that (X,ℑ,ℑ) is not pairwise homogeneous. This 

shows that the converse of Corollary 4.2 is not true in general. Lemma 4.4. [26] If 𝑓: (𝑋, ℑ) → (𝑋, ℑ) is a 

fuzzy continuous (homeomorphism) map, then for all a ∈[0,1), 𝑓: (𝑋, ℑ𝑎) → (𝑋, ℑ𝑎) is continuous 

(homeomorphism). 

Theorem 4.5. If 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is a fuzzy continuous (homeomorphism) function, then 

for all 𝑎, 𝑏 ∈ [0,1), 𝑓: (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑏) → (𝑌, (𝛿₁)𝑎, (𝛿₂)𝑏) is continuous (homeomorphism). Proof. We 

prove only the continuity part. Suppose that 𝑓: (𝑋, ℑ₁, ℑ₂) → (𝑌, 𝛿₁, 𝛿₂) is a fuzzy continuous function. Then 

both 𝑓: (𝑋, ℑ₁) → (𝑌, 𝛿₁) and 𝑓: (𝑋, ℑ₂) → (𝑌, 𝛿₂) are fuzzy continuous. Therefore by Lemma 4.4, 

𝑓: (𝑋, ℑ𝑎) →  (𝑋, ℑ𝑎) and 𝑓: (𝑋, ℑ𝑏) →  (𝑋, ℑ𝑏) are continuous. It follows that 𝑓: (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑏) →
(𝑌, (𝛿₁)𝑎, (𝛿₂)𝑏) is continuous. Corollary 4.6. If (𝑋, ℑ₁, ℑ₂) is a homogeneous fuzzy bitopological space, 

then for all 𝑎, 𝑏 ∈ [0,1) the bitopological space (𝑋, (ℑ₁)𝑎, (ℑ₂)𝑏) is homogeneous. The following example 

will show that the converse of Corollary 4.6 need not to be true in general: 

Example 4.7. Let 𝑋 = {1,2} and 

 

 ℑ = {𝐵: 𝐵(𝑋) ⊆ [0, (1/2)]} ∪ {𝐵: 𝐵(𝑋) ⊆ [(1/2),1]} ∪ {𝐵: 𝐵(1) ≤ 𝐵(2)}. 

 

It is not difficult to check that ℑ is a fuzzy topology on 𝑋 and that ℑ𝑎 is the discrete topology on 𝑋 

for all 𝑎 ∈ [0,1). Thus, we have (𝑋, ℑ𝑎 , ℑ𝑏) is a homogeneous bitopological space for all 𝑎, 𝑏 ∈ [0,1). On the 

other hand, if (𝑋, ℑ, ℑ) is a homogeneous fuzzy bitopological space, then there is a fuzzy homeomorphism 
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ℎ: (𝑋, ℑ, ℑ) → (𝑋, ℑ, ℑ) such that ℎ(1) = 2. So ℎ: (𝑋, ℑ) → (𝑋, ℑ) is a fuzzy homeomorphism. 

Let 𝐵 = {(1,0), (2,1)}, then 𝐵 ∈ ℑ and so ℎ←(𝐵) ∈ ℑ. But ℎ←(𝐵) = 𝐵 ∘ ℎ = {(1,1), (2,0)} ∉ ℑ. It follows 

that (𝑋, ℑ, ℑ) is not homogeneous. 
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