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 In this paper, we concentrate on the variety impacts of incident plane wave 
on multiconductor transmission lines, utilizing Branin’s method, which is 
alluded to as the method of characteristics. The model can be directly used 
for the time-domain and frequency-domain analyses, Moreover,  it had the 
advantage of being used without the need of setting the  preconditions of  the  
charges  applied  to  its  ends; this permits it to be effortlessly embedded in 
circuit simulators, for example Spice, Saber, and Esacap. This model validity 
is affirmed by contrasting our simulation results under ESACAP and 
different results, and we will talk about variety impacts of incident plane 
wave. 
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1. INTRODUCTION 

A significant percentage of electric and electronic systems communicate through interconnecting 
wiring harnesses that can be vulnerable to external electromagnetic (EM) interference. Consequently, it is 
thusly profoundly vital for Electromagnetic Compatibility (EMC) studies to develop software tools capable 
of predicting induced effects in cables configurations [1],[2]. 

The forecast of these disturbances, which are typically impelled by outside fields or lumped sources, 
is an established issue which can be managed in an assortment of ways. Henceforth, it can be dealt with in 
the frequency domain, and therefore the induced responses of cables are fathomed by utilizing 
Multiconductor transmission line (MTL) theory [3],[4]. 

In a pioneering work, Taylor [5] exploited the transmission line (TL) theory to predict the response 
of a TL excited by an external electromagnetic field. The case studied was a two-wire line system in free 
space excited by a plane wave field. Since then, many other authors contributed to the refinement of the 
method. In particular, Paul [6] extended the work of Taylor to the case of (MTLs) and later, Agrawal [7] 
formulated field-to-wire coupling in terms of the electric field only. 

As of late, a considerable measure of researches have been done on the advancement of simulation 
program with integrated circuit emphasis (SPICE) equal circuit models for MTL energized by an episode 
electromagnetic field [8]. In any case, the proposed models depend on one supposition that the TLs are 
lossless. After then, some lossless models have been proposed to consider the variety impacts of the 
occurrence plane wave on a MTL [9].These models can be implemented to compute transient responses 
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without the inverse Fourier Transform (IFT), and directly connected to nonlinear and time-varying 
terminators with the models already available in SPICE. 

In this paper, an equivalent circuit model for the analyses of the radiated susceptibility of lossy 
MTL, the model is substantial in the time and frequency domain with linear and nonlinear loads and 
effortlessly brought into the circuit simulators, such as Spice and ESACAP [10],[11]. The variation effect of 
incident plane wave on coaxial cable is studied with the proposed model. The method is validated by 
comparing results with other methods. 
 
 
2. DESCRIPTION OF MTL 

 
2.1. Model of MTL 

The Telegrapher’s  equations  for  a  MTL in  the  presence  of external  electromagnetic  radiation,  
such  as  those  radiated by  the plane wave are  written as 
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Where  1 2( , ) ( , ),  ( , ),..., ( , )
T

NV z t V z t V z t V z t and  1 2( , ) ( , ),  ( , ),..., ( , )
T

NI z t I z t I z t I z t represent the 

voltage (with respect to the ground) and current vectors of the line, and L , C , R   and  G  are the per-unit-
lenght (p.u.l) inductance, capacitance, resistance, and conductance matrices of the line, respectively. 

The n x 1 vectors, ( , )fV z t  and ( , )fI z t  , are  distributed  sources that  represent  external  

excitation  of  the  transmission  line  and  are resolved  utilizing  a  proper  coupling  model.  There  are  a  
few  alternatively  equivalent,  usually utilized coupling models created by Taylor  et  al.  [5], Agrawal et  al.  
[7], and Rachidi  [12].  In  this  paper, we  are  utilizing the  extended  version of the  formulation  developed  
by  Taylor,  Satterwhite, and  Harrison. In this model, the  dispersed excitation  sources  are depicted as far as 
the  vertical  and  horizontal  component  of  the  incident  electric  field.  For MTL, as appeared in Figure 1. 
We have: 
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Where  h  is  the  height  of  the  line,  and   ( , , )inc

zE h z t  and ( , , )inc
xE x z t   are the  horizontal  

and vertical  components  of  the  incident  electric field,  respectively. The incident field, in the absence of 
the line, as shown in Figure 2, can be written in the following frequency form 
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Figure 1. A Multiconductor transmission line over an infinite and perfectly conducting ground 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 2. Definitions of the parameters characterizing the incident field as a uniform plane wave 
 

 

Where xe , ye and ze are three unit vectors in the Cartesian coordinate system given by: 
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The angle E  defines the polarization type. The polarization is horizontal if E  is equal to zero and 

vertical if it is equal to 90°. The angle p  determines the elevation relative to the ground. This angle is 

commonly called the incident angle. The angle p  gives the propagation direction relative to the axis Oz.

 The components of the phase constant along those coordinate axes are: 
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The phase constant is related to the frequency and properties of the medium as:               
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  is the phase velocity in the space and the medium is characterized by the permeability 

0 r     and permittivity 0 r   .                    
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                 For the situation where the line is situated over a ground plane, as appeared in Figure 3, the 
connected field turns into the total of the incident field and the ground-reflected field     
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totaleE E E 
  

                                                                                             (8) 

 
These field components are as follows: 
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Figure 3. Configuration with the presence of a perfectly conducting ground plane 
 
 
The total field is defined by: 
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2.2. Equivalent Circuit Model for Lossy MTL   

The equations in (1) are coupled sets of partial differential equations. To decouple them a similar 
transformation is required [3],[13]. Characterizing the change to mode amounts as 
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Substituting (15) into (1) gives, the system of equations for the inner conductors becomes     
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Where                
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Both mL   and mC   are diagonal matrices of dimension NxN, VT
 
and IT  are selected so that the 

matrices mL  and  mC  are diagonals.  After calculating mL  , mC and mR  matrices, we calculate the mode 

characteristic impedance, utilizing the primary term of the Taylor series expansion, we get 
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The characteristic impedance in this case, is presented as a characteristic resistance 
icmR  and capacity
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 , as shown in Figure 4. With the same approximation, the constant of propagation becomes: 

 

2
ii

i i i ii ii

i

m
m m m m m

cm

R
j j L C

R
                                                                           (20) 

 
The solution of (16) in the frequency domain can be found in [11],[14]. And is given by    
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Where the modal chain-parameter submatrices become  
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( )ftmV L  and ( )ftmI L are the total modal forcing functions due to the incident field, and are given by  
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Substituting (22) into (21) gives 
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Recognizing the basic time-delay transformation: 
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These become, in the time domain, 
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Were Tm is the one-way delay of the wires, and is denoed by m m mT L L C . The additional sources are 
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The terms of the 'controlled' generators of voltage and current placed in each conductor of the cell are: 
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Figure 4. Circuit model of lossy multiconductor transmission line 
 
 
3. SIMULATION RESULTS AND VALIDATION 

 
3.1. Radiated Susceptibility Analysis of Three conductors 

The analysis of the radiated immunity is carried out on three conductors excited by an incident plane 
wave as shown in Figure 5. The length L and the radius r of the lines are 0.2mm and 2m, respectively. The 
distance d between the two wires is 1.27mm, the dielectric thicknesses t is 0.25mm, and the dielectric 
constant εr is 3.5. The loads R1 , R2 , R3 , and R4 of the lines are 500Ω. The external field, oriented along x 
and propagating along z axis (Ex–Kz). The variation of the electric field is defined by a ramp rise time tr = 1ns 
and the amplitude E0 = 1V /m, as shown in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. (a) Geometrical cross-section of wires. (b) Configuration of the simulation for radiated analysis 
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Figure 6. Electric field variation is defined by ramp rise time tr=1ns 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The near-end voltage of the line obtained by the proposed model is shown in Figure 7b together with 
the result derived by the FDTD [1], where the “FDTD” implies the finite difference time domain solution to 
the transmission-line equations of the cable. The different solutions are in a very good agreement.  

Figure 7a demonstrates the magnitude of the frequency responses of the near-end voltage acquired 
by the proposed model. The outcomes acquired by the ESACAP test system are in great concurrence with the 
analytical solution [13]. 

 
3.2. Radiated Susceptibility Analysis of Three conductors 

The configuration used for the radiated susceptibility analysis is shown in Figure 8. The height h and 
the length L are 2cm and 1m, respectively. The wire radius r is 0.25mm, and the relative permittivity 

r  is 

2.25. the line is terminated with short circuit at the far-end (
bZ  = 0.5 Ω). The per-unit-length dc resistance of 

the wire is rdc=1.3Ω/m. The normalized incident field E = 1V/m. 
The Analysis performed for three reference field directions as described in Figure 8 are as follow: 
a) Ex, Kz is the vertical electric field (parallel to terminations) and propagation vector along the line. 
b) Ex, Ky is the vertical electric field  and propagation vector horizontal and orthogonal to the line 
c) Ez, Kx is the horizontal electric field ( parallel to line) and propagation vector vertical to GND-plane 
 

Figure 9 demonstrates that the voltage reaction at the cable ends in the frequency analysis with the 
incident wave. For all cases, when the line is ended with short circuit at the far-end and open circuit at the 
near-end (Z1=5.108Ω and Z2=0.5Ω), the line resonates at  8 4f n 3 10  . , n=1,3,5…(f1=75MHz, 

f2=225MHz, f3=375MHz…). The configuration with both sides associated with the ground (Z1=Z2=0.5Ω), for 
cases (a) and (c), eliminates practically all resonance, and the immunity is enhanced more than 50 dB. For 
case (b), the resonances are located at  8 2f n 3 10  . , n=1,3,5… (f1=150MHz, f2=450MHz...). The 

simulations have affirmed that the perfect configuration requests the establishing of the line at both sides. 
 

Figure 7b. Voltage responses at the near-end in 
the transient analysis when the incident wave 

propagates along the z-axis obtained by 
different methods

Figure 7a. Voltage responses at the near-end in the 
frequency analysis when the incident wave 

propagates along the z-axis obtained by  
different methods
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4. CONCLUSION 

Circuit models for the examination of the radiated and conducted susceptibilities for lossy MTL 
have been exhibited. The principle point of interest of these models comprises in the likelihood of utilizing 
them as a part of frequency and time domains, with linear and non linear loads individually. A detailed 
description of MTL has been presented. The legitimacy performed by contrasting the circuit test system 
results and the arrangements inferred by alternate techniques has uncovered an agreeable precision. 

For the variation effects of the incident angle on a MTL line, a model of a transmission line 
referenced to a ground plane excited by an external plane wave is studied. We can find that the best 
arrangement requests the grounding of the line at both sides. It is easy to extend the models to 
Multiconductor shielded cables excited by a uniform and non-uniform incident wave. This inquiry will be 
talked about in a further study. 
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