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ABSTRACT

In this paper, a denoising method for heart sound signal based on empirical mode decompo-
sition (EMD) is proposed. To evaluate the performance of the proposed method, extensive
simulations are performed using synthetic normal and abnormal heart sound data corrupted
with white, colored, exponential and alpha-stable noise under different SNR input values.
The performance is evaluated in terms of signal-to-noise ratio (SNR), root mean square er-
ror (RMSE), and percent root mean square difference (PRD), and compared with wavelet
transform (WT) and total variation (TV) denoising methods. The simulation results show
that the proposed method outperforms two other methods in removing three types of noises.
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1. INTRODUCTION
Cardiovascular disease (CVD) has long been the leading cause of death throughout the world with an estimate

of 17.3 million people died in 2008 and is predicted to reach 23.3 million in 2030 [1]. According to WHO report,
more than three quarters of the death takes place in low- and middle-income countries [2]. A low-cost and non-invasive
diagnosis system based on heart sound can be used to minimize the risk of patients going into severe condition and
reduce the financial burden through an early accurate diagnosis followed by appropriate treatment. This electronic
auscultation technique utilizes advanced signal processing with fast computation capability, thanks to the advancement
of computer technology.

However, to produce an accurate diagnosis result is not an easy task since, in practice, heart sound signal is
always contaminated with noise and interference from various sources such as background noise, power interference,
breathing or lung sounds, and skin movements in the surrounding environment. Thus, signal denosing method is of
paramount importance to remove all these unwanted noise. A poor signal denoising method can lead to catastrophic
result.

The most widely used method for denoising heart sound signal is based on wavelet transform (WT) [3–5], a
powerful signal analysis tool with the ability to represent a signal simultaneously in the time and frequency. Despite
the fact that the wavelet based denoising method has been proven to be able to provide good denoising performance,
however, it suffers from several limitations. It requires predefined basis function selection (from too many choices)
suited to signal under consideration, which limits the flexibility of the method. In addition, the decomposition level
and thresholding technique of wavelet denosing also need to be carefully considered. Failing to choose the right de-
composition level and thresholding technique will result in bad denoising performance. Varghees and Ramachandran
employed another alternative method based on Total Variation (TV) [6]. TV method has been mostly used for image
denoising due to its great benefit of preserving and enhancing important features such as edge in images. Even though
it can be used for denoising 1D signal, nevertheless, there are very few literatures exploiting TV method for deonising
heart sound. The highly non-stationary property of heart sound signal is not suitable to the nature of TV method which
performs best on piecewise constant signals [7]. In addition, Figueiredo et. al. mentioned that the performance of TV
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method could produce better result than older wavelet based methods, but it was outperformed by recent state-the-art
wavelet based methods [8].

Empirical mode decomposition (EMD), a relatively new non-linear and non-stationary signal analysis method
[9], offers interesting feature of adaptive and data-driven decomposition capability. Since its inception, EMD has
attracted many researchers around the globe to utilize it as denoising method [10–12]. However, the mechanism of
discriminating the noise and useful information within decomposed signal and fitting it to heart sound signal to get
good signal reconstruction performance remains challenging.

In this paper, we propose an EMD based denoising method for heart sound signals. To measure the per-
formance of our proposed method, we perform repeated simulation over normal and abnormal synthetic heart sound
signal burried under different types of noise with SNR input values ranging from 0 to 15 dB. The qualitative evalu-
ation is performed by visual inspection while quantitative evaluation is carried out by using three standard metrics:
signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD).

The rest of this paper is organized as follows. Section 2. describes EMD denoising method with brief intro-
duction to its theoritical background and mathematical notation. Section 3. explains the imulation setting and data.
The simulation results and performance analysis of both qualitative and quantitative are given in Section 4. Finally the
conclusion is drawn in Section 5.

2. EMD DENOISING METHOD
2.1. Empirical Mode Decomposition (EMD)

Empirical mode decomposition (EMD), since firstly proposed by Huang in 1998 [9], has gained popularity as
data analysis method especially for non-stationary and non-linear signals such as biomedical (including heart sound)
signals. EMD, in contrast to other methods such wavelets and fourier which require predefined basis function, is
fully data-driven method that does not require any a priori known basis. EMD adaptively decomposes a signal into a
series of simple oscillatory AM-FM components called as intrinsic mode functions (IMFs) through iterative procedure
(known as sifting). An IMF is defined as a function that satisfies two conditions: the number of extrema (maxima and
minima) and zero crossing must be equal or differ by at most 1; and the average value of the envelopes derived from
local maxima and minima is (approximately) zero.

Despite EMD still being lack of a solid mathematical foundation which could be used for theoritical analysis
and performance evaluation, it has been proven to provide interesting and useful results. The sifting procedure of
EMD for decomposing the signal x(n) into IMFs is systematically described as follows:

1. Specify all the local extrema (maxima and minima) of x(n)

2. Interpolate between local maxima using cubic spline line to form upper envelope emax(n) and local minima to
form lower envelope emin(n)

3. Calculate the local mean based on formed upper and lower envelopes, m(n) = (emax(n) + emin(n))/2

4. Substract this mean from the original signal to extract the detail d(n) = x(n)−m(n). If d(n) does not satisfy
IMF conditions (stopping criteria), the procedure 1) to 4) are iterated with new input signal d(n)

5. If d(n) satisfies the criteria of an IMF, it is stored as an IMF, hi(n) = d(n) where i refers to ith IMF. Residue
signal is obtained by substracting the IMF from the original signal, r(n) = x(n)− hi(n)

6. Perform the same step from 1) with the new signal r(n) until the final residue signal is constant or monotonic
function.

After the completion of EMD process, the original signal can be written in terms of its IMF and residue signal
as follows:

x(n) =

L−1∑
i=1

hi(n) + rL(n) (1)

where L refers to decomposition level and i denotes IMF order. Lower-order of IMFs contains fast oscillation modes
(high frequency) while higher-order of IMFs represent slow oscillation modes (low frequency).

2.2. EMD Denoising

EMD, whose decomposition is based on elementary substractions, enables perfect reconstruction of a signal.
The EMD denoising method starts by identifying which IMFs carry dominantly noise and which IMFs contain pri-
marily useful information. This is done by comparing the actual energy density with the estimated energy density (to
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form noise-only model [10]) of IMFs. The actual energy density of IMFs is calculated as follows

Ei =
1

N

N∑
n=1

hi(n), i = 1, 2, 3, · · ·L (2)

with i corresponds to IMF order. The estimated energy density (variance) of IMFs can be approximated using the
formula [13] below

V1 =

(
median(|h1 −median(h1)|)

0.6745

)2

(3)

Vi =
V1
β
ρ−j , i = 2, 3, 4, · · ·L (4)

where β and ρ equal to 0.719 and 2.01, respectively [10]. The IMFs whose actual energy density exceed the value
of their estimated energy density defined by noise-only model are categorized as information-dominated signal and
should be included in signal reconstruction step; otherwise those IMFs will be excluded.

Due to the fact that the noise embedded in IMFs is colored (not Gaussian distributed), even the information-
dominated IMFs still may contain noise having different energy density. To remove those colored noise, IMF-
dependent threshold value is required. Considering that IMFs have zero mean and in any interval of zero crossing
[zij z

i
j+1] the absolute amplitude of ith IMF is very small, the thresholding scheme will be based on the single extrema

hi(rij), where rij corresponds to the extrema’s time instance on this interval. The tresholding scheme which follows
the hard thresholding is expressed as follows

h̃i([zij z
i
j+1]) =

{
hi([zij z

i
j+1]), |hi(rij)| > Ti

0 , |hi(rij)| ≤ Ti
(5)

where hi([zij z
i
j+1]) represents the samples from time instant zij to zij+1 of tth IMF. The threshold value used in this

scheme is expressed below
Ti = C

√
Vi2 lnN, i = 1, 2, 3, · · ·L (6)

where C is 0.1 found by empirical simulations and Vi is estimated energy density (variance) of ith IMF. This thresh-
olding scheme which is inspired and adapted from wavelet [11] will set to zero all the samples from time instant
[zij z

i
j+1] if the single extrema amplitude below the theshold value meaning that there is no useful information (only

noise) in the specified time instant. Otherwise, all the samples will be retained.
The final signal reconstruction can be obtained by summing up all the included IMFs (whose actual energy

density exceeding its estimated estimated energy as described previously) using the following formula

ŷ =

q∑
i=p

h̃(n) (7)

where p and q indicates the lowest and highest index of included IMF.

3. SIMULATION SETTING
To evaluate the qualitative and quantitative performance of our proposed method, we performed repeated

simulations using synthetic heart sound data obtained from University of Michigan’s Heart Sound & Murmur Library
[14]. In this simulations, three types of heart sound signals used for simulations and their respective recording location
are ‘Normal S1 S2’ (Apex, Supine, Bell), ‘S3 Gallop’ (Apex, Left Ducubitus, Bell) and ‘S4 Gallop’ (Apex, Left
Ducubitus, Bell). These data are encoded in 44,100 Hz sample rate, 16 bits/sample, and 1 minutes of data length. The
data was then down-sampled into 2000 Hz to increase the computation process without violating Nyquist theorem,
since the frequency content of heart sound data is maximum at around 700 Hz. The simulations were carried out 100
times in each case using MATLAB 2015a which runs on Intel(R) Core(TM) i7-4790 CPU @3.6 GHz Windows 7
environment.To measure the performance under various noises, we added four types of noises, which are white, colored
(brown), exponential and alpha-stable noise to the clean input signal y(n) to form noisy signal x(n). In each noise
case, we used different input SNR level of 0, 5, 10, and 15 dB. The noisy heart sound signal, x(n), is expressed as

x(n) = y(n) + e(n), n = 0, 1, 2, · · ·N − 1 (8)

where y(n) and e(n) denotes the clean signal and noise, respectively.
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For the purpose of performance benchmark, we also performed simulations over the same data using Wavelet
Transform (WT) and Total Variation (TV) based denoising methods. In WT based simulation, Daubechies db10
wavelet function was used since it highly resembles the heart sound signal, which lead to yield better performance. In
addition, db10 wavelet has orthogonal property which enables perfect reconstruction of signal and have been reported
to produce best result among others [3]. The decomposition level, N = 5, is chosen as recommended in [4]. Hard
thresholding technique is selected as it provides better result compared to soft thresholding technique. MATLAB
has built-in function wden for wavelet denoising as described in [15]. Several input parameters and their setting
for this function are explained in Table 1 [16]. Parameter rigsure represents the selection using the principle of
Steins Unbiased Risk Estimate (SURE), h means hard thresholding, and mln denotes threshold rescaling using a
level-dependent estimation of the level noise.

Table 1. Input parameters setting

Parameter Description Chosen Setting
s original signal x(n)
tptr threshold selection rule rigsure
sorh thresholding technique h
scal threshold’s rescaling method mln
n decomposition level 5
wav (mother) wavelet function db10

As for TV based denoising method, a Majorization-Minimzation (MM) algorithm [7] was used to solve a
sequence of optimization problems. The parameter λ is set to 0.3 based on the experiment of and characteristic heart
sound signals. The algorithm is run for 50 iterations to find more accurate result.

4. RESULTS AND ANALYSIS
Figure 1(a) and Figure 1(b) shows ‘Normal S1 S2’ heart sound signal x(n) decomposition into 11 IMFs along

with its final residue signal and the IMFs’ energy density comparison under 0 dB level of white noise, respectively.
As shown in Figure 1(b), only information-dominated IMFs (number 3, 4, 5, 6, 7, and 11) will be processed for final
reconstruction, which leads to a term “partial reconstruction” of a signal.

The qualitative performance evaluation of our proposed method compared to other denoising methods were
performed by visual inspection and comparison. Figure 2 presents the input clean signal, noisy signal, and denoised
(reconstructed) signal of ‘S4 Gallop’ using wavelet, TV, and EMD denoising methods. In each noise case, only one
simulation result under 5 dB input SNR level is shown. Based on Figure 2, it is shown that EMD denosing method
performs better among others in three types of noises: white (a), brown (b) and exponential noise (c) as its denoised
signal most resembles the original signal. If we look closely and zoom in the figure, we will know that the amplitude
of denoised signal by TV method are slightly reduced. Even though the denoised signal by TV method keeps the
amplitude of its main components almost the same as original one, the amplitude outside the main components interval
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(b) Real vs estimated energy density of IMFs
Figure 1. Signal decomposition and energy density comparison of IMFs under 0 dB level of white noise
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(a) White noise with SNR 5 dB
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(b) Brown noise with SNR 5 dB
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(c) Exponential noise with SNR 5 dB
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(d) Alpha-stable noise with SNR 5 dB
Figure 2. Visual performance comparison of ‘S4 Gallop’ heart sound signal denoising methods

is slightly changed compared to the original signal. As for alpha-stable noise as shown in Figure 2(d), WT and TV
denoising methods pefrorms better than EMD method.

In order to obtain more exact comparison, a quantitative performance was evaluated based on three metrics
namely signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD),

Table 2. Performance comparison of denoising methods for ‘S3 Gallop’ heart sound data

Noise Input SNR (dB) RMSE PRD (%)
Type SNR WT TV EMD WT TV EMD WT TV EMD

White

0 8.9463 7.6747 9.9222 0.0391 0.0452 0.0352 35.7720 41.3448 32.1339
5 12.7895 11.8554 13.2863 0.0251 0.0280 0.0240 22.9760 25.5490 21.9542
10 16.6698 13.6183 17.6169 0.0161 0.0228 0.0145 14.6864 20.8534 13.2708
15 20.5798 14.2784 20.9220 0.0102 0.0211 0.0101 9.3646 19.3253 9.3160

Brown

0 -1.3465 -1.3822 0.58753 0.1329 0.1334 0.1071 121.4947 121.9054 97.8917
5 3.4123 3.1738 5.0755 0.0768 0.0786 0.0641 70.1732 71.8188 58.5944
10 8.3727 7.5069 9.8494 0.0431 0.0471 0.0374 39.4378 43.0857 34.1929
15 13.1883 10.8689 15.1542 0.0246 0.0316 0.0205 22.499 28.8733 18.6951

Exponential

0 -0.9209 -0.8023 6.2413 0.1217 0.1200 0.0537 111.2174 109.7049 49.0467
5 4.0152 4.1953 10.1811 0.0689 0.0675 0.0349 63.0014 61.7036 31.8804
10 8.8459 8.4530 14.5646 0.0395 0.0413 0.0223 36.1247 37.7918 20.3669
15 13.6832 11.6200 18.3461 0.0226 0.0287 0.0157 20.6983 26.2448 14.3572

Alpha-stable

0 9.8326 10.1323 8.0622 0.0440 0.0423 0.0564 40.2600 38.6638 51.5371
5 15.7833 13.0523 11.3505 0.0220 0.0272 0.0392 20.1374 24.8517 35.8671
10 20.1803 13.8206 14.2772 0.0158 0.0259 0.0336 14.4564 23.6848 30.6898
15 25.2577 14.3523 18.3497 0.0073 0.0213 0.0262 6.6370 19.4375 23.9710
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which are calculated as follows:

SNR = 10 log10

∑N
n=1[y(n)]

2∑N
n=1[y(n)− ŷ(n)]2

(9)

RMSE =

√∑N
n=1[y(n)− ŷ(n)]2

N
(10)

PRD =

√√√√∑N
n=1[y(n)− ŷ(n)]2∑N

n=1[y(n)]
2

× 100 (11)

where y(n) denotes the clean original signal, ŷ(n) refers to the denoised (reconstructed) signal, and N represents the
length of the signal.

SNR is defined as the ratio of the power of a signal (useful information) and the power of noise (irrelevant
signal). RMSE is used to measure the accuracy of denoising method in preserving the quality of information in the
denoised signal by calculating the sample standard deviation of the differences between denoised signal and original
signal. PRD is frequently used as a method of quantifying the distortion or the difference between the original and
the reconstructed signal. The PRD indicates reconstruction fidelity by point wise comparison with the original data.
A denoising method is said to perfom better if at a particular input SNR, the value of output SNR is larger while the
value of RMSE and PRD are smaller.

Comparative simulation results of three denoising methods (WT, TV, and EMD) over ‘S3 Gallop’ heart
sound data on the basis of SNR, RMSE, and PRD are shown in Table 2. The simulation result values were rounded
into 4 digits after comma. Highlighted (bold) values indicates the best performance among others. It is shown that
for three cases of noises (white, brown, and exponential) under different input SNR values (0, 5, 10, and 15 dB),
EMD denoising method consistently yields largest SNR value, and smallest RMSE and PRD values (see bold values).
For instance in white noisy environment with 0 dB input SNR level, EMD method shows SNR value 9.9222 dB,
RMSE 0.0352 and PRD 32.1339 % where as WT (TV) method shows 8.9463 (7.6747) dB SNR, 0.0391 (0.0452)
RMSE, and 35.7720 % (41.3448 %) PRD. The performance of EMD method in these three types of noises for other
heart sound signals (‘Normal S1 S2’ and ‘S4 gallop’) over input SNR level range (0 dB - 15 dB) is superior as well
compared to WT and TV methods. However, for heart sound signals contaminated with alpha-stable noise, EMD
method does not perform well compared to its counterparts especially for input SNR level 0 - 10 dB. In this type
of noise, on average, WT method outperforms other two methods, except for the case of 0 dB input SNR where TV
method produces the best performance on all three metrics. Alpha-stable noise being used in this simulation represents
the impulsive noise or disturbance characterized by high amplitude and short time duration within arbitrary location
along the data. This impulsive disturbance usually occurs when there is quick movement or friction between chest
skin and stethoscope during recording heart sound data. This alpha-stable noise has four parameters: α (characteristic
exponent), β (skewness), γ (scale) and δ (location) [17]. Parameter α indicates the tail of distribution while β specifies
whether the distribution is right- or left-skewed. In this simulation, we used α = 1.6, β = 1, γ = 0.1 and δ = 0.

Graphical visualization of comparative simulation results of ‘S4 Gallop’ heart sound signal under four types
of noises is depicted in Figure 3. Figure 3(a-c) shows the comparative output SNR, RMSE and PRD value of three
denoising methods with respect to different input SNR levels in white noisy environment. It is shown that EMD
method (blue line with triangle point) on avarege performs better than WT (black line with rectangle point) and TV
(red line with circle point), indicated by larger output SNR value and smaller RMSE and PRD values. The same
trend is also observed in simulation results over brown and exponential noisy signal as shown in Figure 3(d-f) and
Figure 3(g-i). EMD is equivalent to dyadic filter structure which can effectively decompose fractional Gaussian noise
processes such as white and colored (brown) noises. This leads to effective denoising method over different class
of fractional Gaussian noises [18–20]. Moreover, EMD method does not require any predefined basis function and
is fully data-driven which offers more flexibility and adaptability to any signal under consideration. However, EMD
method does not perform well compared to its counterparts under alpha-stable noise simulation as shwon in Figure
3(j-l). According to our observation during repeated simulations, we chose constant value C = 0.6 in threshold value
calculation within EMD denoising mechanism to obtain good performance. This constant value applies well on three
types of noises (white, brown and exponential). However, based on our simulation, the performance of EMD denoising
method under alpha-stable noise can be improved by increasing the constant value C up to 1.5. In addition, to mitigate
this impulsive disturbance in heart sound analysis, an adaptive selection algorithm based on Heron’s formula can be
employed in the subsequent process [21].
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Figure 3. Performance comparison over ‘S4 Gallop’ heart sound signal under (a-c) white (d-f) brown (g-i) exponential
and (j-l) alpha-stable noise
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5. CONCLUSION
Empirical Mode Decomposition (EMD) based denoising method is proposed in this paper. Its performance

and analysis compared to other two methods based on wavelet transform (WT) and total variation (TV) are presented.
Four types of noises with input SNR level 0 dB, 5 dB, 10 dB and 15 dB are artificially added to clean original nor-
mal and abnormal heart sound signals obtained from the University of Michigan Health System. Based on extensive
simulations, our proposed EMD based denoising method consistently yields better performance in terms of three stan-
dard metrics: signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference
(PRD) under white, colored (brown) and exponential noises. As for alpha-stable noise, on average, WT and TV based
denoising methods perform better than EMD method.
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