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 Oil fields produce associated petroleum and wet gas, which can be mixed 
with commercial natural gas as fuel. Associated petroleum and wet gas are a 
low cost, low quality fuel, whereas commercial natural gas is the opposite. 
Two parameters are affected by this mixture: the fuel cost and the power – 
steam output of gas turbine – heat recovery steam generators. This research 
develops a Unit Commitment and Optimal Power Flow model based on 
Mixed Integer Nonlinear Programming to optimize combined heat and power 
cost by considering the optimal mixture between associated petroleum - wet 
gas and commercial natural gas. A thermodynamic model is used to represent 
the performance of gas turbine–heat recovery steam generators when 
subjected to different fuel mixtures. The results show that the proposed 
model can optimize cost by determining the most efficient power – steam 
dispatch and optimal fuel mixture. Furthermore, the optimization model can 
analyse the trade-off between power system losses, steam demand and 
associated - wet gas utilization. 
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1. INTRODUCTION 

Associated petroleum gas (APG) is natural gas that is produced as an oil field by-product. APG can 
be dissolved in oil or accumulated as a gas cap inside the oil reservoir [1]. In addition to APG, oil fields 
produce wet gas from small size/marginal gas reserves. Due to the high gas processing cost and low gas 
quantity, wet gas and APG are used as fuel in oil field operations [1, 2].  In a conventional operation, APG 
used to be flared. Due to environmental constraints, oil companies must find a way to monetize APG and wet 
gas, with gas to wire (GTW) electricity generation as one promising alternative [3].  

APG quality is much lower compared to commercial natural gas. It has low heating content, high 
inert, high hydrogen sulfide and unstable volume and composition. The direct use of APG and wet gas as 
power generation fuel is limited by its low methane content and unstable gas composition. Wet gas contains 
higher hydrocarbons which can cause thermal regime failure in gas turbines [4]. The low heat content of 
APG and wet gas may affect the gas turbine’s performance. A gas turbine requires a higher mass flow of 
APG and wet gas compared to natural gas to produce the same power output [2]. Thus, APG and wet gas can 
be combined with commercial natural gas to minimize the effect on turbine parts and maintain reliable 
performance.  

 Several studies investigate the use of low quality gas for power generation. Panjaitan [5] conducted 
an experiment of running a generator with biogas fuel. The result showed that the generator output power has 
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lower frequency when compared to high quality fuel. In terms of associated and wet gas utilization, 
Anosike [2] conducted a techno-economic study to evaluate APG utilization for power plants. Watanabe [6] 
proposed a gas turbine combined cycle system with high-voltage direct current (HVDC) transmission to 
monetize associated and stranded gas reserves. Arutyunov [7] proposed the conversion of APG to syngas for 
better performance. Gorbachev [8] utilized 2.5 and 6 MW gas turbine generators fueled by APG. 
Guryanov [9] conducted a thermo-physical analysis of a combustion chamber and engine operation and made 
recommendations on conditions and restrictions on gas turbines running with APG. Vanadzina [10] proposed 
power generation as an effective solution for APG utilization in the reformed electricity market. Rajovic [11] 
conducted a life cycle assessment of APG utilization for combined heat power plants and heat boilers in an 
oil field. Although extensive research has been done, to the best of our knowledge, there has not been any 
study related to power & steam dispatch optimization that considers multiple fuel streams: APG, wet gas and 
commercial natural gas.  

A mature oil field utilizes an enhanced recovery method where the produced steam is injected into 
the ground to reduce oil viscosity and ease the oil flow to the surface. Combined heat and power (CHP) 
system produces steam by utilizing hot exhaust gas from the gas turbine. The thermal efficiency of this 
system is very high, up to 80 % compared to 36-50% of open cycle power generation [12]. This scheme can 
be implemented by connecting heat recovery steam generators (HRSG) to a gas turbine exhaust. Some 
HRSGs are equipped with additional duct burners (DB) to increase steam production. In addition to the CHP 
system, steam is also produced from gas-fired boilers. 

In previous studies, CHP optimization is based on empirical objective functions and constraints. 
Roijers and Amerongen [13] model the objective function, fuel vs. power and steam, as a second order 
polynomial.  The thermodynamic process constraint is modeled by Guo [14] using feasible operating regions 
(FOR) which comprise several linear equations. Heuristic and deterministic methods have been used to solve 
CHP optimization. Some examples of heuristic algorithms to address the CHP problem are as follows: ant 
colony [15], evolutionary programming [16, 17], particle swarm optimization [18, 21], self-adaptive genetic 
algorithm [19], bee colony [20], opposition-based group search [22], differential evolution [23] and 
gravitational search algorithm [24, 25]. Some deterministic methods that have been implemented for CHP 
optimization are linear programming [26], Lagrangian relaxation [27], and Bender’s decomposition [28].  Shi 
[29] and Abdullah [30] included power system losses as constraints of CHP optimization. Kim [31] 
introduced a thermodynamic model in a combined heat and power economic dispatch (CHPED) in which 
objective function is to maximize revenue by exporting electricity in a deregulated market. These studies use 
a constant and predefined fuel price with a single fuel source. The effect of fuel mixture has not been 
discussed as yet and it is assumed that all gas turbines and HRSGs have a single fuel source of a constant 
quality. 

This research focuses on combined heat and power (CHP) optimization with multiple fuel sources: 
commercial natural gas, APG and wet gas in a mature oil field operation. For convenience, the term “field 
gas” will be used to represent APG and wet gas. The term “natural gas” will be used to represent commercial 
natural gas. 

The contribution of this research is a Unit Commitment and Optimal Power Flow analysis with the 
following novelties: 
a. The use of thermodynamic model which considers multiple streams of fuel input: natural and field gas. 

For processes that operate over a wide range of operating condition, empirical models are unsuitable to 
represent the process dynamics [31]. The empirical model on fuel vs. power vs. heat produced can no 
longer give a close approximation, since a field and natural gas mixture may have a large variance of gas 
compositions and heating content.  

b. Previous unit commitment problems have dealt with load demand, renewable generation, unit 
availability and energy prices as uncertainties [32]. This optimization model will deal with new 
uncertainty factor, which is the fuel mixture between high-quality high-price natural gas with low-
quality low-price field gas. The fuel cost will depend on optimum fuel mixture.   

c. A model that is able to analyze the tradeoffs between steam production, power system losses and field 
gas utilization. Steam production depends on power dispatch, which will affect the power system voltage 
profile and losses. Power dispatch depends on fuel quality, which is determined by mixture between 
natural and field gas.  

The case studies use a simplified CHP system in one of South East Asia’s oil field.  
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2. RESEARCH METHOD 
2.1.   System overview 

The system consists of 21 gas turbines, 5 HRSGs without duct burners and 3 HRSGs with duct 
burners. The gas turbines supply an island power system with 450 MW average load, 13 substations, three 
voltage levels: 230, 115, 13.8 kV, and 280 km length of transmission lines. Table 1 shows gas turbine 
capabilities, base load heat rate and steam production capabilities. Figure 1 shows the single line diagram.  

 
 

Table 1. Gas Turbine Generator Capability, Steam Production Capability and Heat Rate 

Unit TYPE 
NO. OF 

UNITS 

ACTIVE 

POWER 

(MW) 

Reactive 
Power 

(MVAR) 

Base load 
Heat rate  

(GJ/MWH) 

Steam 
Prod.  

(m3 cwepd) 
Fuel 

DG 1-3 Gas Turbine Type 1 3 100 75 10.44 15,900 NG 
AG1-5  Gas Turbine Type 2 5 25 18 11.94 1,590 NG + FG 
CG Gas Turbine Type 2 1 25 18 11.94  NG 
MG1-5 Gas Turbine Type 3 5 15 12 15.14  NG + FG 
MG6-8  Gas Turbine Type 2 3 25 18 11.94  NG + FG 
MG9-11 Gas Turbine Type 4 3 38 26 11.45  NG + FG 
GB Gas Boiler 10 - - - 795 NG 

           NG = Natural Gas   FG = Field Gas 
 
 

 
Figure 1. Simplified single line diagram 

 
 

There are four gas turbine types in the system: Types 1-4, with different capabilities and base load 
heat rate. The base load heat rate indicates gas turbine efficiency. The most efficient gas turbine is DG1-3 
(Gas Turbine Type 1), while the least efficient is MG1-5 (Gas Turbine Type 3). The gas turbines are divided 
into six groups; each group comprises identical gas turbines. For example, MG 1-5 consists of five identical 
Type 3 gas turbines. Gas turbines AG 1-5 and DG 1-3 have the capability to produce steam. DG 1-3 have 
additional duct burners installed to produce more steam. Ten gas-fired boilers (GB) are also utilized to 
produce steam.  

Gas turbines AG1-5, MG1-5, MG6-8, MG9-11 have two fuel sources: natural gas and field gas. 
Other gas turbines and gas boilers only have natural gas as single fuel source. Each field gas stream has an 
average production volume, shown in Table 2. Total field gas production volume is 37,357 cubic meters per 
hour at standard condition (15oC temperature, 1 atm pressure). Table 2 shows significant difference between 
natural and field gas in terms of heating value.  

 
 

Table 2. Natural and Field Gas Data towards AG1-5, MG1-5, MG6-11 

Parameter Unit 
Natural 

Gas 
Field Gas 

AG1-5 
Field Gas 
 MG1-5 

Field Gas 
MG6-11 

Density (std) kg/m3 0.785 0.928 0.96 1.282 
Volume (std) m3/hour swing 15,612 4,130 17,615 
Low Heating Value (mass) kJ/kg 44,821 32,394 30,932 20,466 
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2.2.  Gas and thermodynamic analysis 
Firstly, the optimization model analyzes the composition of each gas stream (natural gas and field 

gas). The net heating value per mass unit is calculated as follows: 
 
𝐿𝐻𝑉௠,௠௜௫ =

௪ಿಸ

௪ಿಸା௪ಷಸ
𝐿𝐻𝑉௠,ேீ +

௪ಷಸ

௪ಿಸା௪ಷಸ
𝐿𝐻𝑉௠,ிீ      (1) 

 
Subscript NG and FG correspond to natural gas and field gas, respectively. Mass flow for natural and field 
gas is the optimization’s control variable. Then, the LHV value becomes the input for GT-HRSG 
thermodynamic equations. GT-HRSG thermodynamic equations are based on the model proposed by 
Kim [31]. The model calculates the final output of the gas turbines and HRSG in terms of power and steam. 
 
2.2.1. Gas turbine model 

The gas turbine is modeled using the following formulas. 
a. Air mass flow entering compressor (kg/s): 

 

𝑊௖ = ൬
ெௐೌ೔ೝ

ோ೒
൰ ቀ

௉೎௏೎

೎்
ቁ        (2) 

 
b. Air volumetric flow (m3/s): 

 

𝑉௖ = 𝑉௖௡
ୱ୧୬ (ఏ಺ಸೇିఏ೘೔೙)

ୱ୧୬ (ఏ೘ೌೣିఏ೘೔೙)
         (3) 

 
c. Compressor outlet temperature (K): 

 

𝑇ௗ = 𝑇௖ ቀ1 +
௫೎ିଵ

ఎ೎
ቁ               𝑥௖ = ቀ𝑃𝑅

ௐ೎

ௐ೎೙
ቁ

ം೎షభ

ം೎   (4) 

 
d. Turbine inlet temperature (K): 

 

𝑇௙ = 𝑇ௗ + ൬
ఎ೎೚೘್௅ு௏೘,೘೔ೣ

஼೛೓
൰ ൬

௪೑,ಸ೅

௪೑,ಸ೅ାௐ೎
൰           𝑤௙,ீ் = 𝑤ிீ + 𝑤ேீ   (5) 

 
The gas composition and mass flow play an important role in determining LHVm,mix value. 

e. Turbine outlet temperature (K) 
 

𝑇௘ = 𝑇௙ ቀ1 − ቀ1 −
ଵ

௫೓
ቁ 𝜂௧ቁ                                  𝑥௛ = ൬𝑃𝑅

௪೑,ಸ೅ାௐ೎

௪೑,ಸ೅೙ାௐ೎೙
൰

ം೓షభ

ം೓  (6) 

 
Compressor and turbine efficiency is assumed constant throughout the operating region. 

f. Gas turbine power output (MW): 
 

𝑃 ் = ൣ൫𝑊௖ + 𝑤௙,ீ்൯𝐶௣௛൫𝑇௙ − 𝑇௘൯ − 𝑊௖𝐶௣௖(𝑇ௗ − 𝑇௖)൧ 1000⁄    (7) 
 
Fuel consumption can be converted to volume (standard meter cubic per second) as given: 
 

𝑉ிீ = 𝑤ிீ  𝜌ிீ⁄    𝑉ேீ = 𝑤ேீ  𝜌ேீ⁄     (8) 
  
2.2.2. HRSG and duct burner model  

HRSG and the duct burner are modelled with these formulas: 
a. HRSG inlet temperature (K): 

 

𝑇ூே = 𝑇௘ +
ఉಹ

ఈಹ
൬

௪೑,ವಳ

௪೑,ವಳା௪೑,ಸ೅ାௐ೎
൰       (9) 

 
𝛼ு = 𝜂ுோௌீ𝐶௣௛                        𝛽ு = 𝜂ுோௌீ𝜂஽஻𝐿𝐻𝑉௠,௠௜௫   (10) 
 
for HRSGs which are not equipped with duct burners, the value of wf,DB=0. 
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b. HRSG steam production (kg/s): 
 

𝑊ௌு =
ఈಹ൫ௐ೎ା௪೑,ಸ೅ା௪೑,ವಳ൯(்಺ಿି்ಶ೉)

ுೄಹିுಶ಴
        (11) 

 
c. HRSG steam production can be converted to cold water equivalent meter cubic per second by using 

cold water density value at 1000 kg/m3: 
 

𝑊ௌ௏ு =  𝑊ௌு 1000⁄         (12) 
 
2.2.3. Gas-fired boiler model 

The gas-fired boiler is modelled as follows: 
a. Gas boiler steam production (kg/s) 

 

𝑊ௌ஻ =
ఈಸಳ௪೑,ಸಳ

ுೄಹିுಶ಴
              𝛼ீ஻ = 𝜂ீ஻𝐿𝐻𝑉௠,ேீ     (13) 

 
b. Gas boiler steam production converted to cold water equivalent meter cubic per second: 

 
𝑊ௌ௏஻ =  𝑊ௌ஻ 1000⁄         (14) 

 
2.3. Optimization formulation  

In general, optimization is divided into two stages: 
a. Unit Commitment: to determine which gas turbine and gas-fired boiler units should be on/off based on 

predicted load and steam demand. The gas turbine, HRSG and gas boiler on / off status becomes input 
for the next optimization stage (Optimal Power Flow).  

b. Optimal Power Flow: to calculate the most optimal output of the gas turbines, HRSG and gas-fired 
boilers while still meeting power system constraints, such as generator active and reactive power limits, 
transformer taps and bus voltages. Optimal power flow analysis is needed to understand the tradeoff 
between power system losses, voltage and power-steam dispatch. 

 
2.3.1. Objective functions 

The objective function is the minimum cost for power and steam generation, while still meeting 
power system constraints. The total fuel consumption for gas turbines, duct burners and gas-fired boilers is 
formulated as follows: 
a. Total fuel for gas turbine ($): 

 
𝐹 ் = ∑ 𝑠ீ்,௜[൫𝑤ிீ,௜𝐿𝐻𝑉௠,ிீ,௜𝑝𝑟ிீ൯ + ൫𝑤ேீ,௜𝐿𝐻𝑉௠,ேீ,௜𝑝𝑟ேீ൯]

ேಸ೅
௜ୀଵ             (15) 

 
where NGT is the total number of gas turbines. 

b. Total fuel for duct burners ($): 
 

𝐹஽஻ = ∑ 𝑠஽஻,௜൫𝑤௙,஽஻,௜𝐿𝐻𝑉௠,ேீ𝑝𝑟ேீ൯
ேವಳ
௜ୀଵ                (16) 

 
where NDB is the total number of duct burners. 

c. Total fuel for gas-fired boilers ($): 
 

𝐹 ஻ = ∑ 𝑠ீ஻,௜൫𝑤௙,ீ஻,௜𝐿𝐻𝑉௠,ேீ𝑝𝑟ேீ൯
ேಸಳ
௜ୀଵ        (17) 

 
where NGB is the total number of gas boilers. 

The objective function can be formulated as: 
 
min 𝐹 ் + 𝐹஽஻ + 𝐹 ஻        (18) 
 
The sGT,i, sDB,i and sGB,i variables are binary numbers, which indicate the running status for gas 

turbines, duct burners and gas boilers. Thus, the optimization is a mixed integer non-linear programming 
problem. After securing the status of the gas turbines, duct burners and gas boilers, optimization is refined 
using the Combined Heat and Power Optimal Power Flow model. The objective function is still the same 
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with equation (16)-(18), only the binary variables have been attained from 1st stage optimization. Natural and 
field gas prices are assumed to be 5$/GJ and 1$/GJ, respectively.  
 
2.3.2. Constraints 

The constraints for 1st stage optimization are: 
a. Spinning reserve 

 
𝑃௟௢௔ௗ

௣௘௔௞
≤ ∑ 𝑃 ்,௜

௠௔௫ேಸ೅
௜ୀଵ + 𝑆𝑅        (19) 

 
b. Real power balance 

 
∑ 𝑃 ்,௜

ேಸ೅
௜ୀଵ = 𝑃௟௢௔ௗ          (20) 

 
c. Steam demand and supply balance 

 
∑ 𝑊ௌ௏ு,௜

ேಹೃೄಸ
௜ୀଵ + ∑ 𝑊ௌ௏஻,௜

ேீ஻
௜ୀଵ ≥ 𝑊ௌ௏஽        (21) 

 
where NHRSG is the total number of HRSG. 

d. Real power capability limit 
 
𝑃 ்,௜

௠௜௡ ≤ 𝑃 ்,௜ ≤ 𝑃 ்,௜
௠௔௫         (22) 

 
e. Field gas availability limit 

 
𝑉ிீ,௜ ≤ 𝑉ிீ,௜

௠௔௫          (23) 
 

f. Steam production capability limit 
 
𝑊ௌ,௜

௠௜௡ ≤ 𝑊ௌ,௜ ≤ 𝑊ௌ,௜
௠௔௫         (24) 

 
g. Turbine inlet temperature 

 
𝑇௙,௜

௠௜௡ ≤ 𝑇௙,௜ ≤ 𝑇௙,௜
௠௔௫          (25) 

 
h. Fuel mass flow limit 

 
𝑤௙,௜

௠௜௡ ≤ 𝑤௙,௜ ≤ 𝑤௙,௜
௠௔௫         (26) 

 
The above (21)-(26) constraints are still maintained in the 2nd stage of optimization, with the following 

additional constraints: 
i. Power Flow Balance 

 

𝑃 ்,௜ − 𝑃௟௢௔ௗ,௜ − ∑ 𝑃௜
௜௡௝

௝∈௜ = 0        (27) 
 

𝑄ீ்,௜ − 𝑄௟௢௔ ,௜ − ∑ 𝑄௜
௜௡௝

௝∈௜ = 0       (28) 
 
𝑃௜

௜௡௝
= 𝑉௜

ଶ𝐺௜௜ + 𝑉௜𝑉௝ൣ𝐺௜௝ 𝑐𝑜𝑠൫𝜃௜ − 𝜃௝൯ + 𝐵௜௝ 𝑠𝑖𝑛൫𝜃௜ − 𝜃௝൯൧    (29) 
 

𝑄௜
௜௡௝

= −𝑉௜
ଶ𝐵௜௜ + 𝑉௜𝑉௝ൣ𝐺௜௝ 𝑠𝑖𝑛൫𝜃௜ − 𝜃௝൯ − 𝐵௜௝ 𝑐𝑜𝑠൫𝜃௜ − 𝜃௝൯൧    (30) 

 
j. Reactive power capability limit 

 
𝑄ீ்,௜

௠௜௡ ≤ 𝑄ீ்,௜ ≤ 𝑄ீ்,௜
௠௔௫         (31) 
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k. Voltage levels 
 
𝑉௜

௠௜௡ ≤ 𝑉௜ ≤ 𝑉௜
௠௔௫          (32) 

 
l. Limit of transformer tap changer 

 
𝑇௧௫,௜

௠௜௡ ≤ 𝑇௧௫,௜ ≤ 𝑇௧௫,௜
௠௔௫          (33) 

 
For unit commitment analysis, the model uses the BONMIN solver [33] which is provided in 

OPTI [34], a MATLAB-based optimization add-in. For the Combined Heat and Power Optimal Power Flow, 
the model uses three solvers: Interior Point (IPOPT) [35] provided in OPTI, Active Set (MATLAB 
Optimization Toolbox) and Sequential Quadratic Programming, provided in TOMLAB. These solvers are 
used for comparison purposes.  

Case studies are simulated based on steam and electrical load. Steam demand for high, medium and 
low categories are 2,319; 1,656 and 662 m3 cold water equivalent per hour, respectively. Electrical load for 
high and low categories are 450 and 350 MW. Thus, the simulation covers six scenarios, as follows: 

a. Scenario 1: high steam demand and high electrical load 
b. Scenario 2: medium steam demand, high electrical load 
c. Scenario 3: low steam demand, high electrical load 
d. Scenario 4: high steam demand and low electrical load 
e. Scenario 5: medium steam demand, low electrical load 
f. Scenario 6: low steam demand, low electrical load 

 
 
3. RESULTS AND ANALYSIS 

First, we discuss the unit commitment result shown in Table 3, which calculates the number of gas 
turbines running. DG-Type 1 gas turbines have the lowest heat rate; thus they are the most efficient. 
Furthermore, these units can also deliver steam. Hence, it is recommended that all three DG Type 1 gas 
turbines run in every scenario. 

 
 

Table 3. Number of Gas Turbine Running 

Scenario 
High Steam–
High Load 

Med. Steam–
High Load 

Low Steam–
High Load 

High Steam–
Low Load 

Med Steam–
Low Load 

Low Steam–
Low Load 

DG -  Gas Turbine Type 1 3 3 3 3 3 3 
AG – Gas Turbine  Type 2 5 5 2 3 2 2 
MG- Gas Turbine Type 3 1 1 1 0 1 1 
MG- Gas Turbine Type 2 0 0 2 0 0 0 
MG – Gas Turbine Type 4 3 3 3 2 2 2 

Total Unit 12 12 11 8 8 8 

 
 

AG Type 2 gas turbines are always prioritized to run due to their steam production capabilities. 
AG Type 2 is only less prioritized when the steam demand is low. MG Type 4 gas turbines are the second 
most efficient. During high load scenarios, it is recommended that all three run.  In low load scenarios, MG 
Type 4 priority becomes lower/similar with AG Type 2 units, which have higher heat rate but are capable of 
producing steam.  

Only one out of five MG-Type 3 units that is recommended to run in most scenarios. Even though 
MG Type 3 is the least efficient unit, it still has higher prioritization compared to the other gas turbines which 
have lower heat rates. This prioritization is due to the availability of dedicated field gas for MG-Type 3, as 
shown in Table 2. Further simulation shows that the power dispatch for MG Type 3 is equal to its available 
field gas supply.  

Figure 2 shows the real power dispatch. DG Type 1 units are running on base load in all scenarios 
due to their low heat rate. AG Type 2 can produce steam and their power dispatch depends on the steam 
demand. MG units, which do not have a steam production capability, only provide an additional power 
supply to meet electrical load demand. 

All MG units’ power dispatch increases significantly in low steam demand scenarios. Table 4 shows 
that there is a significant change in power system losses in low steam demand scenario. As shown in 
Appendix Tables 10 and Table 11, the majority of the load is in F, G, H, I, J, K, L, M substations, which are 
located closer to the MG units. When steam demand is low, there is no need to generate much power from 
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AG. Thus, the optimization model would rather prioritize MG units, which are located close to the load 
center, to significantly reduce power system losses. 

 
 

 
 

Figure 2. Real power dispatch (MW) 
 
 

Table 4. Power System Losses (MW) 

Scenario 
High Steam – 
High Load 

Med. Steam – 
High Load 

Low Steam – 
High Load 

High Steam – 
Low Load 

Med Steam – 
Low Load 

Low Steam – 
Low Load 

Losses 9.45 9.45 5.78 7.92 7.05 7.05 

 
 

Table 5 and Table 6 show the optimal fuel composition in terms of volumetric flow and mixture 
ratio, respectively. As shown in Table 2, the available field gas production from AG units is 15,612 standard 
m3 per hour. Table 5 shows that AG units utilize all available field gas in all scenarios. Steam production 
from AG units depends on their power dispatch. Natural gas acts as a “back up” fuel to provide additional 
power output to meet steam demand. During low steam demand, natural gas consumption decreases 
significantly. 

 
 

Table 5. Fuel Volumetric Flow (Standard m3 per Hour) 

Scenario 
AG Type 2 MG Type 3 MG Type 2&4 

NG FG NG FG NG FG 
High Steam – High Load 30,813 15,612 0 4,130 7,671 17,615 
Med Steam – High Load 30,813 15,612 0 4,130 7,671 17,615 
Low Steam – High Load 1,250 15,612 2,831 4,130 30,181 16,493 
High Steam – Low Load 6,810 15,612 0 0 0 13,458 
Med Steam – Low Load 1,044 15,612 0 4,130 0 15,265 
Low Steam – Low Load 1,044 15,612 0 4,130 0 15,265 

NG= Natural Gas       FG = Field Gas 

 
 

Table 6. Optimal Mixture of Consumed Natural Gas: Field Gas by Volume 

Scenario 
High Steam – 

High Load 
Med. Steam – 

High Load 
Low Steam – 

High Load 
High Steam – 

Low Load 
Med Steam – 

Low Load 
Low Steam – 

Low Load 
AG Type2 66%:34% 66%:34% 7%:93% 30%:70% 6%:94% 6%:94% 
MG Type 3 0%:100% 0%:100% 41%:59% 0%:0% 0%:100% 0%:100% 

MG Type 2&4 30%:70% 30%:70% 65%:35% 0%:100% 0%:100% 0%:100% 
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MG Type 3 units are the most inefficient unit based on heat rate value. In most scenarios, power 
dispatch on MG-Type 3 is recommended at 5.7 MW. The available field gas for MG Type 3 based on 
Table 2 is 4,130 standard m3 per hour. Table 5 and Table 6 show that in most scenarios, MG-Type 3 
consumes only the available field gas production, without consuming additional natural gas. Thus, this unit is 
running merely to consume field gas in the majority of scenarios. This result shows that apart from heat rate, 
low cost field gas availability also affects power dispatch optimization.  Inefficient units can be dispatched at 
the exact amount of equivalent available field gas energy. 

A different condition is found in the low steam-high load scenario. The optimization model 
recommends MG Type 3 consumes natural gas, with the purpose of boosting MG Type 3 output. As stated in 
the previous section, boosting the power output from MG units, including Type 3, will have a significant 
impact on loss reduction. In the high steam-low load scenario, it is not recommended that MG Type 3 to run. 
In this scenario, units that are capable to produce steam are prioritized. With high heat rate values, Type 3 is 
the unit given the lowest priority.   

MG Type 2 and Type 4 share the same field gas supply, as shown in Table 2. In the first two 
scenarios (high steam–high load and med steam-high load), field gas becomes the priority fuel. However, in 
low steam-high load scenarios, the optimization model chooses natural gas instead of using all the available 
field gas. Since natural gas has a better LHV value, selecting natural gas boosts the output of MG Type 4 and 
Type 2. Since MG units are closer to the load center, boosting the power output of MG Type 4 and 2 reduces 
power system losses significantly from 9.47 to 5.78 MW, as shown in Table 4.  

In all low loads scenarios, MG Type 2 and 4 only consume field gas. However, the consumed 
volume is less than the maximum available volume stated in Table 2. During low load scenarios, units that 
are capable of producing steam still have significant power dispatch to boost steam production. 
The remaining load that is supplied from MG Type 2 and 4 is not enough to consume all available field gas.  
Table 7 summarizes the percentage of total utilized field gas compared to available field gas production. 
Of the six scenarios, it is only in the high steam-high load and medium steam–high load scenarios that all the 
available field gas production is utilized as fuel. 
 
 

Table 7. Percentage of Field Gas Utilization by Volume in Each Scenario 

Scenario 
High Steam 
– High Load 

Med. Steam 
– High Load 

Low Steam 
– High Load 

High Steam 
– Low Load 

Med Steam 
– Low Load 

Low Steam 
– Low Load 

Utilized Field Gas m3/hr @ STD 37,357 37,357 36,235 29,070 35,006 35,006 
Available Field Gas m3/hr @ STD 37,357 37,357 37,357 37,357 37,357 37,357 
Field Gas % Utilization 100% 100% 97% 78% 94% 94% 

 
 

Figure 3 shows that steam demand has a significant impact on power system voltage quality. 
To boost steam production, power dispatch on DG and AG units must be increased. These units are located 
remotely from the load center. Thus, during high and medium steam demand, power system losses tend to be 
higher compared to the low steam demand scenario. This causes the voltage profile in high and medium 
steam demand scenarios to be lower compared to low demand scenario. 
 
 

 
 

Figure 3. Voltage profile (per unit) 

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

A B C D E F G H I J K L M

Vo
lta

ge
 P

ro
fil

e 
(p

u)

Substation

High Steam - High Load Med Steam - High Load
Low Steam - High Load High Steam - Low Load
Med Steam - Low Load Low Steam - Low Load



Int J Elec & Comp Eng  ISSN: 2088-8708  
 

Combined heat and power-optimal power flow based on thermodynamic…  (Priambudi Pujihatma) 

51

Steam production from HRSG, HRSG-DB and GB is shown in Table 8. It is recommended that GBs 
run only in high steam demand scenarios. Table 9 shows the objective function in each scenario. All three 
solvers produce the same optimal cost in all scenarios. 

 
 

Table 8. Steam Output (m3/hour) 

Scenario 
High Steam – 
High Load 

Med. Steam – 
High Load 

Low Steam – 
High Load 

High Steam – 
Low Load 

Med Steam – 
Low Load 

Low Steam – 
Low Load 

DG 1,829 1,346 793 1,829 1,553 793 
AG 311 311 104 145 103 103 
GB 179 0 0 345 0 0 

 
 

Table 9. Optimal Cost ($/hour) 

Scenario 
High Steam – 
High Load 

Med. Steam – 
High Load 

Low Steam – 
High Load 

High Steam – 
Low Load 

Med Steam – 
Low Load 

Low Steam – 
Low Load 

OPTI 37,075 29,781 22,935 33,092 25,410 17,050 
Matlab 37,075 29,781 22,935 33,092 25,410 17,050 
Tomlab 37,075 29,781 22,935 33,092 25,410 17,050 

 
 
4. CONCLUSION 

This paper presented an optimization model based on mixed integer nonlinear programming which 
can analyze the tradeoff between cost, steam production, losses and field gas utilization. The utilization of 
multiple fuel streams is a unique problem, the fuel mixture must be optimized to achieve the lowest fuel cost. 
The unit commitment result is not solely dependent on heat rate; rather, it also depends on field gas 
availability. A less efficient unit can be prioritized to run if there is a sufficient amount of field gas supply.   

There is a strong relationship between power dispatch, steam dispatch, field gas utilization and 
power system losses. With high steam demand, high losses are accepted as a consequence of maximizing 
steam production from gas turbines with HRSG. Steam demand also has a significant impact on power 
system voltage quality. Since the majority of the load is far from the steam-producing gas turbines, the 
voltage profile in high steam demand scenarios is lower compared to low steam demand scenarios.      

The simulation is able to find the most optimal fuel mixture. The optimal mixture does not always 
mean that all available low-cost field gas must be consumed. This demonstrates that there is a need to limit 
field gas production to just the right amount to avoid over production and ensure optimal cost. 
The optimization model is also able to give the most optimal steam dispatch to HRSG, HRSG-DB and GB. 
The simulation shows that GB is the least prioritized steam producer. 

The case studies in this work only focus on single objective optimization. For future work, this can 
be expanded to multi-objective optimization, with cost vs. loss, cost vs. emission or cost vs. system voltage 
stability as the objective functions. Regarding gas, this research only focuses on gas volume. In future work, 
this can be expanded to handle constraints in the gas distribution network. 
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APPENDIX 
Table 10. Transmission Line Parameter 

Line 
Distance 

(km) 
Z (Ω) 

Angle 
(deg) 

Line 
Distance 

(km) 
Z (Ω) 

Angle 
(deg) 

Line 
Distance 

(km) 
Z (Ω) 

Angle 
(deg) 

A-D 10 3.64 75.15 D-H* 70 13.4 75.95 G-H 8.5 3.09 75.15 
A-C 8.4 2.21 69.33 E-H 27 14.2 69.33 H-I 14.6 5.31 75.15 
B-D 4.4 1.6 75.15 F-I 3.1 1.63 69.33 H-L 12.6 4.58 75.15 
B-C 17.6 6.4 75.15 F-H 12.5 6.59 69.33 I-J 6.76 3.56 69.33 
C-E 24 12.6 69.33 G-L 4.4 2.32 69.33 J-M 4.8 2.53 69.33 
C-H 51 26.9 69.33 D-H base voltage is 230 kV, other lines’ base voltage is 115 kV 

 
 

Table 11. Substation Load 

Subs. 
Pload 

(MW) 
Qload 

(MVAR) 
Subs. 

Pload 
(MW) 

Qload 
(MVAR) 

Subs. 
Pload 

(MW) 
Qload 

(MVAR) 

A 67.5 37.9 E 3 2.7 J 24.1 16.7 
AG 52.1 35.4 F 23.5 17.1 K 20.4 11 
B 1 0.5 G 22.3 9.4 L 22.6 16.9 
C 37 25.3 H 47.7 23.2 M 59.8 35.4 
D 17.2 14.7 I 20.1 13.2 MG1 32.09 16.05 

 
 

Table 12. Transformer Data 

Transfo
rmer 

# of 
Units 

Base/Max 
Capacity 
(MVA) 

Z 
(%) 

Transfo
rmer 

# of 
Units 

Base/Max 
Capacity 
(MVA) 

Z 
(%) 

Transfor
mer 

# of 
Units 

Base/Max 
Capacity 
(MVA) 

Z 
(%) 

TD1 1 90/150 10 TM1 3 12/22 8 TA 5 15/28 9 
TD2 1 90/150 10 TM2 3 25/25 7.6 TC 1 15/28 8 
TD3 3 90/150 7 TM3 3 42/42 7.6 TH 2 90/250 19 

 
 

Table 13. Gas Turbine Data 

Parameter 
GT 

Type 1 
GT 

Type 2 
GT 

Type 3 
GT 

Type 4 
Parameter 

GT 
Type 1 

GT 
Type 2 

GT 
Type 3 

GT 
Type 4 

θmin 34 34 34 34 γc 1.4 1.4 1.4 1.4 

θmax 85 85 85 85 γh 1.309 1.309 1.309 1.309 

PR 13.53 9.81 5.21 11.14 Cpc 1.005 1.005 1.005 1.005 

Vcn 30000 10000 7850 11345 Cph 1.16 1.16 1.16 1.16 
Wcn 355.65 122 89.1 139 Tfmax 1533 1366 1377 1599 

wf,GTn 6.55 2.15 1.72 2.7232 Temax 801 777 777 836 

ηc 79% 81% 83% 71% ηcomb 99% 99% 99% 99% 

ηt 91% 85% 89% 93%      

 
 

Table 14. HRSG, Duct Burner, Gas-Fired Boiler Data 
Parameter HRSG-DB HRSG Gas Boiler Parameter HRSG-DB HRSG GB 

wf,DBn 4.7 0 
 wf,GBn 0 0 0.472 

ηDB 0.99 - 0.99 ηGB   91% 

ηHRSG 92% 54%  PEC 62 75 43 

TSH 533 542 530 HSH 2297 2307 2294 

TEC 339 352 345 HEC 277 330 301 

TEX 433 371 - SQ 70% 61% 70% 

PSH 35 54 30     
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Nomenclature 
Air molecular weight         MWair   
Bus angle (deg)         θi 
Cold end and hot end ratio specific heat (J/molK)      γc, γh 
Combustion chamber, duct burner, gas –fired boiler efficiency (%)   ηcomb, ηDB, ηGB 
Compressor air mass flow (kg/s)        Wc  
Compressor, turbine and HRSG efficiency (%)      ηc, ηt, ηHRSG  
Compressor inlet outlet temperature (K)       Tc, Td 
Compressor inlet pressure (bar)        Pc 
Conductance and susceptance between bus i and j (1/Ω)    Gij, Bij 
Density of field and natural gas at standard condition (kg/m3)    ρFG, ρNG 
Duct burner and gas boiler fuel mass flow (kg/s)      wf,DB, wf,GB   
Economizer and steam enthalpy (kJ/kg)       H,EC , H,SH 
Economizer inlet, steam header temperature (K)      TEC ,TSH 
Field & natural gas price ($/kJ)        prFG, prNG  
Field & natural gas mass flow (kg/s)       wFG, wNG   
Gas constant = 8.314 J/molK        Rg 
HRSG exhaust temperature (K)        TEX   
Inlet guide vane minimum, maximum, opening angle (Deg)     θmin, θmax, θIGV  
Low heating value (kJ/kg)         LHVm   
Nominal and actual compressor air volumetric flow (m3/s)     Vcn , Vc 
Nominal compressor air, duct burner fuel and gas turbine fuel mass flow (kg/s)  Wcn, wf,DBn, wf,GTn 
Pressure ratio          PR  
Reactive power (MVAR)         QGT   
Specific heat compressor inlet, turbine outlet (kJ/kgK)     Cpc, Cph 
Spinning reserve (MW)         SR 
Steam demand (m3 per second)       WSVD 
Steam header and economizer pressure (bar)      PSH, PEC   
Steam quality (%)         SQ 
Voltage at bus i (kV)         Vi 

 


