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 Pattern based texture descriptors are widely used in Content Based Image 

Retrieval (CBIR) for efficient retrieval of matching images. Local Derivative 

Pattern (LDP), a higher order local pattern operator, originally proposed for 

face recognition, encodes the distinctive spatial relationships contained in a 

local region of an image as the feature vector. LDP efficiently extracts finer 

details and provides efficient retrieval however, it was proposed for images 

of limited resolution. Over the period of time the development in the digital 

image sensors had paid way for capturing images at a very high resolution. 

LDP algorithm though very efficient in content-based image retrieval did not 

scale well when capturing features from such high-resolution images as it 

becomes computationally very expensive. This paper proposes how to 

efficiently extract parallelism from the LDP algorithm and strategies for 

optimally implementing it by exploiting some inherent General-Purpose 

Graphics Processing Unit (GPGPU) characteristics. By optimally configuring 

the GPGPU kernels, image retrieval was performed at a much faster rate. The 

LDP algorithm was ported on to Compute Unified Device Architecture 

(CUDA) supported GPGPU and a maximum speed up of around 240x was 

achieved as compared to its sequential counterpart.  
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1. INTRODUCTION 

In Content Based Image Retrieval (CBIR), images are indexed automatically by their own visual 

content instead of the text-based key words. The basic step involved in CBIR is extracting and indexing the 

visual content (low level features) from the images. Feature vector extraction is performed as a pre-

processing step in most of the CBIR systems. An efficient image feature descriptor must have excellent 

discrimination property to discriminate various image classes and it must be computationally inexpensive. 

Different feature descriptors like color, shape and texture are used for efficient image retrieval in CBIR 

systems. Among the various visual feature descriptors, texture descriptor plays a significant role in feature 

extraction and it refers to the visual patterns that have homogeneity property. Texture descriptor represents 

structural arrangement of surfaces in relation to the surrounding environment. Pattern based texture features 

like Local Binary Pattern (LBP) [1] represents images based on the first order derivative micro patterns 

which apparently fail to extract detailed information contained in the images. Researchers therefore, further 

investigated the possibility of using higher order operators for capturing more detailed information.  

 LDP operator proposed by Zhang et al. [2] is a texture descriptor which encodes higher order 

derivative information. LDP represents the higher order pattern information of a local region by encoding the 

change in the neighbourhood derivative directions and therefore contains more detailed discriminative 

features than the first order derivatives used in LBP. However, LDP being a higher order operator produces a 
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very large feature vector which makes the algorithm computationally very expensive. Currently, with the 

advancements in the digital signal technology images are being captured at a very high resolution and 

extracting LDP features using the current general-purpose hardware from large databases of such high-

resolution images becomes very challenging. This limits the applicable domains of this powerful algorithm 

with high discriminative property. LDP like most image processing algorithms perform the same 

computation on a number of pixels, which is a typical data parallel operation. Therefore, computing the LDP 

features from different regions of the high-resolution image in parallel will reduce the computation time of 

the algorithm thereby making it efficient for real time applications. 

 Currently, Graphics Processing Unit (GPU) has entered the General-Purpose Computing Domain 

(GPGPU). In comparison to the single processor CPU, GPGPUs have very high computation power. They 

are inexpensive and scalable than CPUs. The highly data parallel image processing algorithms exploits the 

Single Instruction Multiple Data (SIMD) architecture and can be efficiently parallelized on a GPGPU [3]. 

However, traditional GPGPU development is based on graphics function library like OpenGL and Direct 3D, 

which restricts its use by professionals, who are familiar with graphics API. The emergence of Compute 

Unified Device Architecture (CUDA), NVIDIA’s parallel architecture implementation, removes these 

inconveniences as it provides APIs for programmers to develop parallel applications using the C 

programming language. GPUs are inexpensive, scalable and have very high computation power compared to 

single processor CPUs. GPUs have been widely used now for accelerating many efficient CBIR algorithms 

[4], [5] in the field of image vision, medical imaging [6], remote sensing [7] etc. This paper proposes a 

parallel implementation of the LDP algorithm on NVIDIA GPUs. The implementation exploits the features 

like the global memory, shared memory, L1 cache, CUDA streams and optimal use of registers. We have 

measured the GPU implementations on Fermi as well as the latest Kepler architecture. To the best of our 

knowledge this is the first reported effort to parallelize the LDP algorithm using GPUs. Main contributions of 

the paper are summarized as follows: (1) We present an efficient strategy for parallel calculation of the LDP 

feature vector of an image by optimally using the GPU global memory and the faster shared memory (2) We 

have further tuned the speedup of LDP computations by using the L1 data cache. (3) We have accelerated the 

GPU operations using the concept of CUDA streams. (4) We have exploited the asynchronous nature of the 

CUDA kernel calls by deploying calculation on host while the device executes the GPU kernels thereby 

extracting enhanced parallelism. 

 The rest of the paper is organized as follows. We begin with a discussion on the related work in 

section 2. Section 3 reviews the mathematical foundation of the LDP algorithm and describes the main 

concepts of programming GPUs using NVIDIA’s CUDA model. In section 4, we present our approach for 

computing the LDP using the GPU. Finally, section 5 presents the experiments done and a detailed analysis 

of the results that demonstrates the efficiency of our GPU algorithm and section 6 draws some conclusions 

about the presented work and suggests some optimizations as future work. 

 

 

2. RELATED WORK 

The most computationally expensive part of the CBIR algorithms is the feature extraction. Color, 

texture or shape features or a combination of these are generally extracted from the images for efficient 

image matching and retrieval. GPGPUs are now being efficiently used for implementing this computationally 

expensive feature extraction task as well as the matching task in CBIR algorithms. It is a well-known fact 

that the GPUs perform much faster than CPUs and attain excellent speedup for image processing applications 

which are specifically tailored for parallel programming. Several notable works showing the advantage of 

using a GPU and the substantial amount of speed up obtained over the sequential version, for such 

applications are available in the literature. Basic image processing algorithms like histogram equalization, 

Discrete Cosine Transform (DCT) encode and decode, cloud removal etc. are efficiently parallelized using 

CUDA and is reported to have attained excellent speedup [8]. In Ref. [9] a parallel version of the fractal 

image encoding algorithm is built on the GPU and the results indicate the encoding was achieved in 

milliseconds time without compromising on the quality of the decoded image. Tek et al. [10] efficiently 

parallelized a face recognition framework using CUDA and reported a speedup of 29x. Gangodkar et al. in 

[11] implemented a parallel version of fast normalized cross correlation for real time template matching 

which attained a speedup of 17x compared to the sequential execution. In Ref. [12] a parallel algorithm for 

accelerating the image inpainting process is proposed. The intense computational task of processing the 

fourth order PDE equations is accelerated by 36x using the NVIDIA GEFORCE GTX 670 GPU card. A 

parallel implementation of content-based video search and retrieval of videos is proposed in Ref. [13]. The 
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authors achieved around 80% accuracy in video search and retrieval and a speedup of 5x compared to the 

sequential version of the algorithm. In Ref. [14] a parallel implementation of the audio compression 

algorithm Apple Lossless Audio Codec (ALAC) is presented and a speedup of 80-90% is achieved. Heidari 

et al. [15] proposed a parallel implementation of color moments and texture feature and achieved a speed up 

of 144x over the sequential implementation. Zhu et al. [16] have parallelized the SURF algorithm and have 

achieved a speedup of 15x over its sequential counterpart. In [17] Priscariu and Reid have implemented 

Histogram of Oriented Gradients (HOG) in GPU and have achieved a speedup of 67x. In [18] Park et al. 

explored the design and implementation issues of image processing algorithms on GPUs with CUDA 

framework. They have selected multi view stereo matching, linear feature extraction, JPEG2000 image 

encoding non-photorealistic rendering as example applications and efficiently parallelized them on the GPU. 

In [19] the authors proposed an implementation of Ising simulation work using the CUDA framework. They 

have attained a performance improvement of 20-40 times compared to the conventional CPU 

implementation. In [20] the authors have implemented a parallel algorithm in GPU for value prediction and 

speculative execution. They have observed that software value prediction techniques did not attain much 

performance gain whereas the software speculation techniques attained considerable performance gain. 

However, optimizing a parallel GPU code is not a trivial task. To achieve good performance the programmer 

should fine tune the code taking into account the underlying architecture.  

Several tuning strategies using different aspects of the GPU architectures have been discussed in the 

standard CUDA books [21]-[23]. In [24] authors give insights into the relationship between occupancy, 

thread block size and shape, cache hierarchy configuration and thread access pattern to global memory. By 

taking simple matrix multiplication as an example they relate the thread block size and shape to both cache 

misses and occupancy. Lobeiras et al. in [25], by taking Fast Fourier Transform (FFT) algorithm as an 

example, have analyzed different aspects of the GPU architectures, like the influence of memory access 

patterns and register pressure on performance. They have shown that the performance of register-based 

solutions is much better than the shared memory due to the higher register bandwidth. In [26] Liang et al. 

have fine tuned their 3D localization application in GPU by optimizing the number of threads per thread 

block and registers per thread. By experimenting with different values of the thread block size and the 

number of registers they have found an optimal setting which gives the best performance. Torres et al. in [27] 

have studied the relation between different thread block sizes and shapes with the global memory and the 

cache memory access patterns. In [28] Lee et al. have discussed optimization strategies for compute bound as 

well as memory bound algorithms. They have optimized the compute bound algorithms by reducing the 

number of registers and by increasing the thread block size whereas memory bound algorithms are optimized 

by storing the data in limited GPU resources like constant or shared memory in an optimized way. 

 

 

3. LDP DESCRIPTOR AND USAGE FOR IMAGE RETRIEVAL 

LDP algorithm contains very detailed discriminative features of an image as it encodes the higher 

order derivative information. For an image 𝐼(𝑍) , the first order derivatives along 0°, 45° , 90° and 

135°directions are denoted as 𝐼∝
′ (𝑍) where α= 0°, 45° , 90° and 135°. Let us consider a pixel 𝑍0 in 𝐼(𝑍) and 

its eight neighbors 𝑍𝑖 , where 𝑖=1… 8 as shown in Figure 1a. The four first order derivatives [2] for the pixel 

𝑍0 along the four different directions are given as in (1) to (4). 

 
𝐼0°
, (𝑍0) = 𝐼(𝑍0) − 𝐼(𝑍4) ;  (1) 

 

 𝐼45°
, (𝑍0) = 𝐼(𝑍0) − 𝐼(𝑍3); (2) 

 

 𝐼90°
, (𝑍0) = 𝐼(𝑍0) − 𝐼(𝑍2); (3) 

 

𝐼135°
, (𝑍0) = 𝐼(𝑍0) − 𝐼(𝑍1)   (4) 

 

The directional differential channels for the four directions are as shown in Figure 1b. 

The second order directional [2] LDP, for the pixel 𝑍0  𝐿𝐷𝑃∝
2(𝑍0 ), in α direction is given as in (5). 

 

𝐿𝐷𝑃∝
2(𝑍0) = {

𝑓(𝐼∝
′ (𝑍0), (𝐼∝

′ (𝑍1)), 𝑓(𝐼∝
′ (𝑍0), (𝐼∝

′ (𝑍2))

… , 𝑓(𝐼∝
′ (𝑍0), (𝐼∝

′ (𝑍8))
}  (5) 
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where 𝑓(. , . ) is a binary encoding function which determines the transitions in the local pattern and is given 

as in (6). 

 

𝑓(𝐼𝛼
′ (𝑍0), 𝐼𝛼

′ (𝑍𝑖)) = { 
0, 𝑖𝑓 𝐼𝛼

′ (𝑍𝑖). 𝐼𝛼
′ (𝑍0) > 0

1 , 𝑖𝑓 𝐼𝛼
′ (𝑍𝑖). 𝐼𝛼

′ (𝑍0) ≤ 0
  (6) 

 

i=1, 2 ...8.  

where ‘.’ represents multiplication operator. The third order local derivative pattern is computed using the 

second order derivatives. The third order directional LDP [2], for the pixel 𝑍0  𝐿𝐷𝑃∝
3(𝑍0 ), in α direction is 

given as in (7). 

 

𝐿𝐷𝑃∝
3(𝑍0) = {

𝑓(𝐼∝
′′(𝑍0), (𝐼∝

′′(𝑍1)), 𝑓(𝐼∝
′′(𝑍0), (𝐼∝

′′(𝑍2))

… , 𝑓(𝐼∝
′′(𝑍0), (′′(𝑍8))

}  (7) 

 

In general, the nth order LDP is computed using the (n-1) th order derivatives. The nth order directional LDP 

[2], for the pixel 𝑍0, 𝐿𝐷𝑃∝
𝑛(𝑍0 ) in α direction is given as in (8). 

 

𝐿𝐷𝑃∝
𝑛(𝑍0) = {

𝑓(𝐼∝
𝑛−1(𝑍0), (𝐼∝

𝑛−1(𝑍1)), 𝑓(𝐼∝
𝑛−1(𝑍0), (𝐼∝

𝑛−1(𝑍2))

… , 𝑓(𝐼∝
𝑛−1(𝑍0), (𝐼∝

𝑛−1(𝑍8))
}  (8) 

 

 

 

 
(a) (b) 

 

Figure 1. (a) Schematic showing the location of the pixel 𝑍0 and the neighboring pixels Z1...Z8 used in the 

LDP algorithm [2], (b) Schematic showing four directional differential channels 

 

 

Higher order LDPs extract higher spatial frequencies that contain finer details of an image. This is 

very useful for image retrieval and pattern matching operations. However, if the image contains noise the 

higher order LDPs also enhances the noise, especially from the fourth order and above. LDP thus represents 

the higher order pattern information by labeling the pixels of an image by comparing two derivative 

directions at neighboring pixels and concatenating the results into a 32-bit binary sequence. Figures 2b and 

2c show the visualization of the second order and third order LDP in zero direction respectively for an 

example image shown in Figure 2a. As shown in figures the third order LDP gives more detailed information 

than the second order. We have used the third order LDP in our experiments as it extracts higher spatial 

frequencies thereby extracting finer details of an image. As our preliminary work we have implemented the 

LDP algorithm for medium sized images using only the GPU global memory [29]. The pseudo code of the 

LDP algorithm is given in Table 1 and its implementation using the global memory space can be  

found in [29]. 

 

3.1. GPU and NVIDIA CUDA 

An overview of the basic GPGPU architecture is presented in this section. GPGPU generally consists of 

hundreds of Streaming-Processors (SPs) called cores which are further grouped into Streaming Multi 

Processors (SMPs) [21]. The cores perform data processing in the Single Instruction Multiple Thread (SIMT) 

model. Mapping of the algorithm to the GPU is done by first identifying the highly parallel phases of the 

algorithm. Those parallel phases are then offloaded to the GPU and are then called the CUDA kernels. The 

rest of the phases are mapped onto the CPU. On completion of execution of a CUDA kernel the CPU collects 

the execution results and the GPU is then scheduled with a new kernel for execution. CUDA exploits data 

level parallelism by making every thread work on a different set of data. The light weight CUDA threads 

combine to form thread blocks and the thread blocks combine to form a computational grid. The grids and 

the threads can be arranged in one, two or three dimensions. Each thread and thread block can be identified 

by unique ids and the kernel is launched by a grid of thread blocks. 
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(a) (b) (c) 

 

Figure 2. (a) Sample query image from Corel database, (b) Second order LDP of the query image in zero 

direction. Decimal equivalent of the binary pattern is shown, (c) Third Order LDP of the query image in zero 

direction. Decimal equivalent of the binary pattern is shown 
 

 

Fermi [30] the world’s first complete GPU architecture was a significant leap forward from the G80 

chipset series. The SMPs in the Fermi architecture consists of 32 cores and each of these can execute  

one floating-point or integer instruction per clock. Kepler architecture launched in 2010 is the latest NVIDIA 

generation of GPU architectures and is built based on the foundation of Fermi. Each SMP in Kepler 

architecture has 192 single precision CUDA cores, each one with floating-point and integer arithmetic logic 

units. Tesla K40c launched in 2012 is NVIDIA’s flagship compute GPU, based on the Kepler GK110 

architecture [31]. With 5GB or 6GB of GDDR5 memory, they provide up to 3.95 TFLOPS single precision 

and 1.33TFLOPS double precision floating point performance. To hide the long off chip memory access 

latencies NVIDIA Fermi and Kepler GPUs include software managed caches, the shared memory and the 

hardware managed caches, the L1 data caches. Shared memory is on chip and the CUDA C compiler treats 

variables in the shared memory different from the typical variables. It creates a copy of the variable for each 

block that is launched on the GPU. Every thread in the block shares the memory and thus can communicate 

and collaborate on the computations done. Furthermore, shared memory and L1- D cache on a GPU utilize 

the same physical storage and their capacity can be configured at runtime [32]. Each SM in the Fermi and 

Kepler architecture has 64KB of on-chip memory, divided into shared memory and L1 cache. The 

programmers may choose between the two configurations: 48KB of shared memory and 16KB of L1 cache 

or 16KB of shared memory and 48KB of L1 cache. However, an increase in cache memory reduces the 

amount of shared memory to 16KB, which can lead to the reduction in occupancy of the SMs. 

In addition to shared memory and L1 cache, CUDA streams [33], [34] also plays an important role 

in accelerating the computations done on the GPU. CUDA stream represents a queue of GPU operations that 

get executed in a specific order. Both kernels launch, and memory copies can be added into a stream. The 

order in which the operations are added to the stream specifies the order in which they will be executed. 

When using streams, instead of copying the input buffers entirely to the GPU, they are split into smaller 

chunks and the memory copies to and from the GPU as well as the kernel launches are performed  

on each chunk. 
 

 

Table 1. The pseudo code for the LDP calculation [29] 
Algorithm: Pseudo code for the LDP calculation 

Input: Query Image; Output: retrieval result  

Step 1: Divide the input image of 𝑁 × 𝑁 pixels into blocks of 𝑘 × 𝑘 sub- images. Each sub image has 
𝑁

𝑘 
×
𝑁

𝑘
 pixels. 

Step 2: For i= 1 to 𝑘2 do steps 3 to 5 

Step 3: For the image pixel 𝐼(𝑍0), the location of which is as shown in Fig.1, calculate the first order derivatives along 00, 

450, 900 and 1350 directions as given in eqs.1 to 4. 

Step 4: Calculate binary encoding function as given in eq.6. 

Step 5: Calculate the histograms of the binary patterns. 

Step 6: Concatenate the histograms of all the sub images to construct the feature vector of the image.  

 

 

4. OPTIMUM SIZING OF EES 

The approach adapted to parallelize the LDP algorithm is to break the data level parallelism 

involved in the algorithm. The algorithm is divided into two parts: CPU (Host) and GPU (Device) processing 

as shown in Figure 3. The image is read by the host, copied to the device memory, spatial histograms of the 

image is computed and is copied back to the host memory. The images are divided into 16x16 sub blocks and 

the blocks are processed by the GPU. To show the computation of LDP a sample 7x7 block size is taken as 

shown in Figure 4. A block of 9 threads is required to calculate the third order LDP of the black square 

region in Figure 4. The LDP patterns for the block are calculated using the binary encoding functions given 

Zero direction
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in Equation 7. The binary encoding functions for the pixel 𝑍16 , the position of which is shown in Figure 4, 

for the four different directions 0°,45° , 90° and 135°is given as in (9). 

 

𝐿𝐷𝑃∝ 
3(𝑍16)  =  

{
 
 

 
 𝑓(𝐼∝

′′(𝑍16), 𝐼∝
′′(𝑍8)), 𝑓(𝐼∝

′′(𝑍16), 𝐼∝
′′(𝑍9))𝑓(𝐼∝

′′(𝑍16), 𝐼∝
′′(𝑍10)) 

𝑓(′′(𝑍16), 𝐼∝
′′(𝑍17))𝑓(𝐼∝

′′(𝑍16), 𝐼∝
′′(𝑍24))𝑓(𝐼∝

′′(𝑍16), 𝐼∝
′′(𝑍23))

𝑓(𝐼∝
′′(𝑍16), 𝐼∝

′′(𝑍22))𝑓(𝐼∝
′′(𝑍16), 𝐼∝

′′(𝑍15))

where α =  0°, 45° , 90° and 135° }
 
 

 
 

  (9) 

 

4.1. GPU and NVIDIA CUDA 

This section describes how our implementation parallelizes the LDP algorithm. The algorithm is 

divided into two main steps the LDP histogram calculation and the histogram intersection. Out of the two the 

most critical step in total execution time is the LDP histogram calculation and therefore all optimizations are 

done to speedup this kernel. The GPU algorithm thus consists of two kernels to execute the operations of the 

two basic steps of the LDP algorithm. 

The LDP_compute kernel computes the LDP values of all the pixels in the 16x16 block of the image 

along all the four directions 0°, 45° , 90° and 135°. The sum of the decimal equivalent of the patterns is then 

used to form the LDP histogram. Threads are allocated for each pixel of the image block and each thread 

calculates and stores the LDP histogram values. The histogram values are then transferred to the host for 

normalization. 

 

 

 
 

Figure 3. Steps in the computation of LDP 

 

 

 
 

Figure 4. Image block of size 7x7 to demonstrate the computation of a thread block. 

LDP of the region in black rectangle is to be computed 

 

 

The Hist_intersect kernel computes the histogram intersection of the normalized query image LDP 

histogram and the database image histogram. Histogram intersection [2] is used to measure the similarity 

between two histograms and is given by the (10). 

 

 𝑆𝐻𝐼(𝐻, 𝑆) = ∑ min (𝐻𝑖𝑆𝑖
𝐵
𝑖=1 )  (10) 

 

where 𝑆𝐻𝐼(𝐻, 𝑆) is the histogram intersection statistic. This measure calculates the common parts of two 

histograms. Histogram intersection thus finds the common parts of the query image histogram and the 

database image histograms. Depending upon the size of the histograms threads are allocated for comparing 

the elements in the query and the database image histograms. 
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4.2. Design Space Exploration and Optimization 

In the following sections we discuss in detail the architecture related design space exploration and 

optimization focusing mainly on the CUDA thread block sizes, registers, memory spaces and CUDA streams. 

 

4.2.1 Thread Block Size 

The general methodology adapted when optimizing a GPU accelerated application is to increase the 

occupancy of the SMPs. It is essential to run as many threads as possible on the SMPs to hide the long 

memory latency. To increase occupancy either the number of registers per thread has to be decreased or the 

number of threads in the thread blocks has to be adjusted according to the number of registers per thread. The 

occupancy of a GPU of compute capability 2.1 for 42 registers per thread is more than 68% using 128,192 

and 256 threads whereas with 64 threads it is 33%. We explore the optimum thread block size for different 

image sizes that gives the maximum occupancy as well as the least execution time. 

 

4.2.2 Registers 

Reducing the number of registers used by the threads is another option to increase occupancy. The 

CUDA nvcc compiler performs large scale register allocation to remove instruction dependencies and to 

maximize single thread performance [27], [35]. Registers being a limited resource for a block an incremental 

increase in register allocation will lead to running fewer thread blocks. Thus, there is a tradeoff between the 

single thread performance and the number of active threads at a time. In [35] the authors have used a metric 

RegRatio which is the ratio of the registers used per thread to the maximum allowed registers per thread. 

Using this metric, we have optimized the usage of the registers. We keep the RegRatio value between 0 and 1 

and choose a high value of RegRatio so that there is a good tradeoff between the single thread performance 

and the number of simultaneously active threads. For a particular kernel the maximum number of registers per 

thread can be specified to the nvcc compiler at compile-time using the maxrregcount option. Theoretically, 

the actual register use might be less than the limit. We have also verified the performance gain achieved by 

RegRatio using a heuristic approach where for each image size, thread size and block size the number of 

registers is varied and the combination which gives the maximum occupancy and minimum kernel execution 

time is found.  

 

4.2.3 Shared Memory and L1 Cache 

To further improve the performance of the LDP algorithm, in the next step we make use of the faster 

on chip shared memory. The number of registers and the thread block size is kept at an optimum value 

obtained from the earlier study. Further we choose between the two configurations: 48KB of shared memory 

and 16KB of L1 cache or vice versa to study the performance improvement obtained by using L1 cache 

instead of shared memory. 

 

4.2.4 CUDA Streams 

Fermi and Kepler architecture-based GPUs support device overlap which is the capacity to 

simultaneously execute a CUDA kernel while performing a memory copy operation between device and host 

memory. This is facilitated using CUDA streams. The use of streams is very profitable in applications where 

input data instances are independent. A stream is a sequence of commands that is executed in order. By 

default, a CUDA program has only one stream called the default stream [22], [23]. When multiple streams 

are involved the order in which the operations are done becomes an important issue. There are two basic 

approaches used to order the operations, breadth first and depth first. In depth first approach all operations of 

a given stream are grouped together and in breadth first approach similar operations of different streams are 

grouped together. Correct results are obtained with both approaches though both perform differently on the 

specific generation of GPU [34]. In [35] the authors have shown that for a certain application which uses D 

input data instances and defines B blocks of threads for kernel execution the data instances can be broken 

into nStream streams. Therefore, each stream now works with D/nStream data instances and B/nStream 

blocks and the memory copy of one stream overlaps the kernel execution of the other stream achieving a 

performance improvement. In our application depending on the size of the image the value of nStream varies. 

 

 

5. EXPERIMENTS AND ANALYSIS OF RESULTS  

All experiments in this paper are done on two different machines. Preliminary experiments are done 

on Intel Core i3-2375M with 4GB RAM and Geforce720m (GPU 1) and are further repeated on Intel Xeon 

CPU E5-1650 with 64GB RAM and Tesla K40C (GPU 2). The authors in the original paper [2] have reported 

the CPU execution time for the sequential LDP algorithm as 0.18sec for an image of size 88 x 88 pixels on a 

PC with 3 GHz CPU and 2 GB RAM. In our experiments we have used our own sequential implementation of 
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the algorithm. Using our implementation, the time taken for 88x88 pixels on GPU 1 is 0.078sec and the time 

taken on GPU 2 is 0.036sec. We have used high resolution images ranging from sizes 256x256 to 4096x4096 

for our experiments. The experiments for medium image sizes using the global memory on GeForce 720m is 

presented in [29]. In this paper the LDP algorithm is implemented on large sized images using the fast-shared 

memory and further improved using the concept of L1 data cache and CUDA streams. High resolution images 

ranging from size 256x256 to 4096x4096 pixels are considered in this paper.  

Geforce 720m is a card of compute capability 2.1 and a thread block can contain a maximum of 1024 

threads and every SMP can process a maximum of 1536 threads whereas Tesla K40C is a card of compute 

capability 3.5, in which a thread block can contain a maximum of 1024 threads and every SMP can process a 

maximum of 2048 threads. The test images are taken from Corel database [36] and Essex face database [37]. 

Corel database consists of various categories like animals, cars, distractions and transport. For our 

experiments we have collected 1000 images from various categories of the Corel database to form the dataset. 

The Essex face database consists of 20 images each of 153 persons. We have taken 10 images of each 153 

persons for our experiments. The approach followed in our parallel implementation is to achieve almost the 

same retrieval results as that of the sequential implementation. The images are divided into non-overlapping 

image blocks of size 16x16. The experiment is repeated for different image sizes and the performance gain of 

the kernel is analyzed. CUDA Visual Profiler is used to analyze the CUDA kernel performance [38]. We have 

developed two kernels for image retrieval, one for LDP histogram computation and another for the similarity 

matching using histogram intersection. For the implementation the query image is copied to the GPU global 

memory. The image is divided into 16x16 blocks and the LDP histogram values of each block are calculated. 

We have chosen a block size of 256 threads so that every SMP in GPU1 with compute capability 2.1 can 

schedule six blocks whereas GPU2 with compute capability 3.5 can schedule eight blocks by optimum 

resource utilization. The kernel is launched with the necessary threads to calculate the LDP histogram values. 

The computed LDP histogram is then transferred back to the CPU for normalization. The matching is then 

done by the second kernel using the histogram intersection method.  

To avoid the CPU from being idle when the GPU is calculating, we efficiently divide the task of 

histogram intersection between the two in such a way that in minimum time the calculation is completed. This 

is done by launching the kernel asynchronously, i.e. whenever the kernel is executing in the GPU, the CPU is 

not blocked and is free to perform its own computations. Our strategy for balancing the work load between 

CPU and GPU is given below. Let R be the ratio of the time taken by the CPU to perform the task to the time 

taken by the GPU to perform the task. If T is the total number of images to be processed then images to the 

GPU is given by 
𝑇∗𝑅

1+𝑅
 and images to the CPU is given by 

𝑇

1+𝑅
 where R=

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝐶𝑃𝑈

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝐺𝑃𝑈
 .  

Figure 5 shows the percentage of allocation of the images to the CPU and GPU. The ratios 

CPU/T=1/1+R and GPU/T = R/1+R are plotted against the logarithmic values of the speedup. From Figure 5 

it can be seen that if the execution time taken by the CPU and the GPU is almost the same then the images 

can be equally divided between the CPU and the GPU. In our experiments we allotted 50 images of size 

256x256 pixels to the CPU and 950 images to the GPU. For images of size 4096x4096 we allotted 30 images 

to the CPU and 970 to the GPU. As GPU2, the Tesla machine is more powerful and more suitable for 

scientific calculations we have done all the computations in the GPU. In the following section we discuss the 

performance improvement achieved by our design space exploration. 

 

 

 
 

Figure 5. Optimal work load balance between CPU and GPU 
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5.1. Optimizing the Number of Threads and Registers 

We have found optimized values for registers using the method discussed in section 4.1.2. We 

consider threads per thread block (N) and register allocation per thread (R) as input variables. The default 

register use (without register limit) of our LDP implementation is 42. The maximum value for N is 768 due 

to the constraint of register use. We explore various combinations of N and R values and analyze the 

performance improvement. Only a subset of the results is displayed here. As shown in Figures 6a and 6b the 

design space exhibits high variation in terms of execution time. The overall performance critically depends 

on both N and R. For example, for an image of size 256x256 the optimal setting is N=128 and R=23, whereas 

for an image of size 1024x1024 the optimal setting is at N=256 R=32. We have done an optimal choice by 

taking into consideration the maximum occupancy and minimum time. With the default number of registers, 

42 in our case, the maximum number of active threads per multiprocessor is limited to 768 in a device of 

compute capability 2.1. By decreasing the number of registers to the optimal value i.e. 23 and a thread block 

size of 128, the active number of threads per multiprocessor is increased to 1024. In a device of compute 

capability 3.5 the number of threads is increased from 1280 to 2048 with the optimal choice of the number of 

registers per thread and the number of threads per thread block. 

Combining the aforementioned various renewable energy resources with energy storage systems and 

diesel engine generator in an interconnected system, the generated electric energy can be effectively 

distributed and controlled to meet the energy requirement of the connected loads. 
 

 

  
(a) (b) 

 

Figure 6. (a) Optimal no. of registers and thread block size for an image of size 256x256, 

(b) Optimal no. of registers and thread block size for an image of size 1024x1024 
 

 

5.2. Implementation using Global Memory 

The first version of the algorithm was implemented using the global memory space. The detailed 

implementation procedure of the LDP algorithm using the global memory and the time comparison between 

the sequential and parallel version for medium image sizes on GPU1 was presented in [29]. Optimized 

number of registers and threads were considered for each image size. Figure 7 shows the time comparison of 

LDP_compute on GPU2 for image sizes 256x256, 512x512, 1024x1024, 2048x2048 and 4096x4096. As 

shown in Figure 7 the CUDA kernel gives more performance gain for higher size images than smaller 

images. This is because the host memory to device memory copy takes considerable amount of time and the 

speedup obtained must payoff for this copy overhead. In case of smaller sized images such as 256x256 pixels 

or 512x512 pixels, the speedup obtained is not enough to payoff for this copy overhead. However, as the 

image size increases to 2046x2046 pixels and 4096x4096 pixels this overhead is paid off and the 

performance gain increases.  
 

 

 
 

Figure 7. Time comparison between sequential version and parallel version in Tesla K40c  

when global memory is used. Logarithmic scales are used for plotting 
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This shows that the GPUs give excellent performance for large workloads which are highly parallel 

and throughput oriented. However, the large number of registers required by the thread will limit the number 

of active threads per multiprocessor. By reducing the number of registers per thread and by selecting an ideal 

thread block size the number of active threads per multiprocessor can be increased which in turn will increase 

the overall performance. 

 

5.3. Imlementation using Shared Memory and L1 Cache 

The next optimization done is to use the software managed faster on chip shared memory instead of 

the global memory. Shared memory enables inter thread data reuse as the threads in the thread block share the 

data stored in the shared memory. In our implementation we have carefully divided the images in such a way 

that the 48KB per block constraint of shared memory is never violated and also we use the maximum shared 

memory available for processing. The image is divided into 16x16 tiles and seven such tiles are copied to the 

shared memory for LDP computation. The sums of the LDP values in the four directions are then written to 

the shared memory for further use. Total amount of shared memory used per block is 7KB. We have taken the 

thread block size as 128 in GPU 1 so that 6 blocks are active in one SMP and the total shared memory used 

per SMP is 42KB. This falls within the 48KB limit at the same time schedules the maximum number of 

threads possible. The speedup obtained for in GPU1 when shared memory is used is shown in Table 2a. In 

GPU2 the thread block size is taken as 256 and 6 blocks are active in one SMP and the total shared memory 

used per SMP is 42KB. The speedup obtained in GPU2 when shared memory is used is shown in Table 2b.  

The time taken for the computation when shared memory is used is much less compared to the 

parallel version which uses the global memory. This is because as the shared memory is on-chip it is much 

faster thanthe global memory. However, to ensure correct results there must be synchronization between the 

threads which share the memory. CUDA’s simple barrier synchronization primitive __syncthreads ()  

is used for this. 

This avoids the race condition as the thread’s execution proceed past a __syncthreads () barrier only 

after all the threads in the block have executed the barrier synchronization.  

We have further studied the option of using a larger L1 cache in place of shared memory and its 

effect on improving the performance of the LDP_compute kernel. Default L1 size is 16KB but in cases when 

register spilling is problematic increasing the size of L1 to 48KB improves the performance. The 

cudaDeviceSetCacheConfig function is used to set preference between the shared memory and L1 cache. The 

slight improvement in speedup obtained by using L1 cache when compared to shared memory for the two 

GPUs is as shown in Tables 3a and 3b. The L1 cache version shows only a slight performance improvement 

when compared to the shared memory version.  

 

5.4. Implementation using Streams 

LDP_compute kernel is further optimized using streams. To allocate operations to different streams 

the input image is divided into small chunks and the required operations are performed on each chunk. The 

three main operations in the LDP computation is memory copy from host to device, execution of the kernels 

and copying the result back from device to host. For an input image of size say N= 256x256 size, the staged 

execution of nStreams, transfers chunks of N/nStreams size i.e. 128x128 pixels. If B blocks are used for the 

computation of the whole image in the non-staged version then in the staged execution of nStreams, 

B/nStreams blocks are used for computation. Also, while the first chunk is being computed by the B/nStreams 

blocks, the second chunk is being transferred thereby giving an improvement in performance. Figure 8a 

shows such a concurrency between transfer and computation with nStream set as 4. The host memories are 

allocated as page locked. We have assumed that the kernel execution and memory copies take roughly the 

same execution time. The execution time line is as shown in Figure 8b. The inter engine dependencies are 

highlighted with arrows. On a GeForce 720m there is only a single copy engine and single kernel engine. 

Depth first approach does not give any speedup whereas breadth first search gives a speedup as shown in 

Table 4a. In K40c there are two copy engines one for host to device transfer and another for device to host 

transfer and a single kernel engine. Both depths first and breadth first achieve the same speedup. The 

operations are queued across the streams in such a way that the operation of one stream does not block the 

operation of the other streams. This allows the GPU to execute copies and kernels in parallel, allowing the 

application to run faster as shown in Table 4b.  

 The image retrieval results using the parallel implementation of LDP is given in Table 5. The 

performance evaluation was done by calculating two parameters- true positive rate (TPR) and false positive 

rate (FPR) given by 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) where TP is True Positive, FN is 

False Negative, FP is False Positive and TN is True Negative. The four parameters TP, FN, FP, TN are 

evaluated as follows: Firstly, the Ground Truth (GT) for all the images in the database is recorded as TRUE 

or FALSE depending on whether the image belongs to the TRUE class or the FALSE class. In the second 
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step the histogram intersection of the LDP of the query image and the database images are calculated using 

the Equation 10. The histogram intersection values fall within the range 0 and 1. If the value is above a pre-

determined threshold then the Test Outcome (TO) is deemed to be TRUE else the TO is FALSE. If both the 

TO and the GT are TRUE, then the TP count is incremented by 1. If both the TO and the GT are false, then 

the TN count is incremented by 1. If the TO is true and the GT is FALSE, then the FP count is incremented 

by 1. If TO is FALSE and GT is TRUE, then the FN count is incremented by 1. The TPR and FPR values for 

the two databases are calculated and the Receiver Operating Characteristic (ROC) curves obtained using 

these values are shown in Figures 9a and 9b. The threshold of the point that is closest to the top leftmost 

point (0, 1) is chosen as the one which gives the maximum TPR and minimum FPR (shown in circles in 

Figures 9a and 9b). These optimum threshold values are used to obtain the results shown in Table 5. The 

representative images from the two databases are shown in Figures 10a and 10b. Example retrieval 

 results for a given query image from the two databases Corel and Essex using LDP is shown in Figures 11 

and 12 respectively. 
 

 

Table 2. (a) The time comparison for different image sizes when shared memory is used (GeForce 720m) 
Image size CPU time (sec) GPU time (sec) Speedup 

256x256 0.209 0.003318 62.98x 

512x512 0.834 0.013184 63.25x 

1024x1024 3.574 0.05238 68.23x 

2048x2048 14.988 0.209413 71.57x 

4096x4096 61.459 0.838844 73.25x 

 

 

Table 2. (b) The time comparison for different image sizes when shared memory is used (TeslaK40c) 
Image size CPU time (sec) GPU time (sec) Speedup 

256x256 0.092 0.00048 190.95x 

512x512 0.35 0.00178 195.75x 

1024x1024 1.4 0.00696 201.17x 

2048x2048 5.6781 0.02759 205.76x 

4096x4096 22.944 0.11004 208.51x 

 

 

Table 3. (a) Time comparison for different image sizes when L1 cache is used (GeForce 720m) 
Image size CPU time (sec) GPU time (sec) Speedup 

 256x256 0.209 0.003233 64.64x 

 512x512 0.834 0.012733 65.49x 

1024x1024 3.574 0.05 70.46x 

2048x2048 14.988 0.202673 73.957x 

4096x4096 61.459 0.810159 75.86x 

 

 

Table 3. (b) Time comparison for different image sizes when L1 cache is used (TeslaK40c) 
Image size CPU time (sec) GPU time (sec) Speedup 

256x256 0.092 0.00048 192x 

512x512 0.35 0.001648 212.378x 

1024x1024 1.4 0.006275 223.107x 

2048x2048 5.6781 0.024649 230.358x 

4096x4096 22.944 0.098124 233.826x 

 

 

Table 4. (a) Time comparison for different image sizes when streams is used (GeForce 720m) 
Image size CPU time (sec) GPU time (sec) Speedup 

256x256 0.209 0.003175 65.836x 

512x512 0.834 0.012572 66.337x 

1024x1024 3.574 0.049687 71.93x 

2048x2048 14.988 0.19974 75.0375x 

4096x4096 61.459 0.7973 77.0839x 

 

 

Table 4. (b) Time comparison for different image sizes when streams is used (TeslaK40c) 
Image size CPU time (sec) GPU time (sec) Speedup 

256x256 0.092 0.000479 192.067x 

512x512 0.350 0.001772 197.52x 

1024x1024 1.4 0.006927 202.11x 

2048x2048 5.6781 0.02734 207.684x 

4096x4096 22.944 0.1082 211.052x 
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(a) (b) 

Figure 8. (a) Computation on six image blocks for non-streamed and streamed execution (b) Execution 

timeline using multiple CUDA streams with arrows indicating inter engine dependencies. 

 

 

Table 5. Retrieval results for the two databases 

Databases TP FN FP TN TPR FPR 

Corel 41 11 322 626 0.79 0.34 

Essex 10 0 0 1520 1 0 

 

 

  
(a) (b) 

Figure 9. (a) ROC curves for the Corel database; the point with the optimum threshold is circled, 

 (b) ROC curves for the Essex face database; the point with the optimum threshold is circled 

 

 

6. POWER SYSTEM MODELLING 

In this paper, we presented the design and implementation of a texture based CBIR algorithm called 

Local Derivative Pattern in GPGPU. We have implemented a parallel version of the LDP algorithm for high 

resolution images and showed the performance gain achieved. By using the fast on chip shared memory a 

speedup of around 240x times is achieved without compromising on the performance of the LDP algorithm. 

The parallel version of the algorithm is further revised to enable the use of additional parallelism in an 

attempt to improve the performance. We have achieved a slight improvement in the speedup when the 

hardware managed L1 data cache is used instead of the software managed cache. The synchronous parallel 

version was further revised to make use of the asynchronous programming using CUDA streams and a 

significant performance improvement was achieved over the sequential version. Our future work includes 

further further optimization of the algorithm using one image in one SMP. We will also be focusing on an in 

depth study into the tradeoffs between the shared memory and L1 cache. 
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(a) (b) 

 

Figure 10. (a) Representative images from Corel database,  

(b) Representative images from Essex face database 
 

 

 
 

Figure 11. Top 5 images retrieved from Corel database using LDP, top leftmost is the query image 
 

 

 
 

Figure 12. Top 5 images retrieved from Essex face database using LDP, top leftmost is the query image. 
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