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 Electricity markets are different from other markets as electricity generation 

cannot be easily stored in substantial amounts and to avoid blackouts, the 

generation of electricity must be balanced with customer demand for it on a 

second-by-second basis. Customers tend to rely on electricity for day-to-day 

living and cannot replace it easily so when electricity prices increase, 

customer demand generally does not reduce significantly in the short-term. 

As electricity generation and customer demand must be matched perfectly 

second-by-second, and because generation cannot be stored to a considerable 

extent, cost bids from generators must be balanced with demand estimates in 

advance of real-time. This paper outlines a a forecasting algorithm built on 

artificial neural networks to predict short-term wholesale prices on the Irish 

Single Electricity Market so that market participants can make more 

informed trading decisions. Research studies have demonstrated that an 

adaptive or self-adaptive approach to forecasting would appear more suited 

to the task of predicting energy demands in territory such as Ireland. We 

have identified the features that such a model demands and outline it here. 
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1. INTRODUCTION 

The increasing percentage of electricity generated through renewable sources tends to invalidate the 

assumption of correlation between electricity spot prices and the price of the mix of commodities utilized to 

supply generators (e.g. gas, coal, oil-depending on the generating asset composition on the specific grid). 

The variable nature of production of renewable energy sources also increases the volatility of system 

marginal prices (SMPs) on markets based on a mandatory central pool model. European countries have 

undertaken substantial investments to boost the amount of energy produced through renewable generation. 

Ireland in particular is aiming at 40% of its power needs being met by renewable sources by 2020. In this 

environment, we can expect the wholesale, fine granularity (e.g. half hourly) wholesale price of electricity to 

become more volatile over time.  

The ability to operate effectively on electricity spot markets relies on the capability to devise 

appropriate bidding strategies. These in turn can benefit from the inclusion of a reliable forecast of short term 

system marginal prices (SMPs). In a market with an increasing percentage of renewable generators, reliable 

forecasts must necessarily take into account additional factors such as meteorological forecasts, forecasted 

demand and constraints imposed by network topology [1], [2]. Traditional time series forecasting algorithms 

(e.g. based on AutoRegressive Integrated Moving Average models) can perform reasonably well in this 

context but rely on assumptions being made on behavior over different temporal windows to yield consistent 

results [3], [4]. 
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There is a small number of companies providing or working on a robust approach to forecasting 

both renewable power output and/or marginal prices for electricity. Alba Soluzioni are an independent 

consultancy providing information, training and bespoke consultancy services in the European gas and power 

markets [5]. Their primary publication to date is considered a reference on Italian gas & power markets. They 

currently provide a short-term marginal price forecast service. MKOnline provides online market intelligence 

services to provide clients with timely and high-resolution forecasts of fundamentals and prices for the short, 

mid and long term horizon. It also offers a complementary weather service [6]. 

Meteologica supply forecasts of business variables related to weather through the provision of 

integrated forecasting solutions, unique to each client. Meteologica specializes in wind and solar power 

forecasting services all around the world [7]. Their forecasts are utilized by hundreds of plant owners, power 

traders and grid operators to optimize their business activities. From preliminary conversations as a potential 

supplier of renewable power output data, Meteologica is currently working on an SMP forecasting service. 

Meteogroup is a global private weather business with offices around the world [8]. They aim to combine 

experience and global coverage with local expertise to offer our customers highly accurate and bespoke 

weather services. Meteogroup has recently launched a portal aimed at presenting meteorological information 

useful to energy traders.  

Used ANN-based load forecasting methods for 24-hour-ahead peak load forecasting by using 

forecasted temperature [9]. They proposed a one hour-ahead load forecasting method using the most 

significant weather data. In the proposed forecasting method, weather data is first analyzed to determine the 

most correlated factors to load changes. The most correlated weather data is then used in training, validating 

and testing the neural network. Correlation analysis of weather data was used to determine the input 

parameters of the neural networks and they tested it on actual load data from the Egyptian Unified System. 

Outline a neural network approach for forecasting short-term electricity prices using a back-

propagation algorithm [10]. The results obtained from their neural network show that the neural network-

based approach is more accurate.  Present an ANN based short-term load forecasting model for a substation 

in Kano, Nigeria [11]. The recorded daily load profile with a lead time of 1-24 hours for the year 2005 was 

obtained from the utility company. The Levenberg-Marquardt optimization technique was used as a back-

propagation algorithm for the Multilayer Feed Forward ANN. The forecasted next day 24 hourly peak loads 

were obtained based on the stationary output of the ANN with a performance Mean Squared Error (MSE) of  

5.84e-6 and compared favorably with the actual Power utility data. The results showed that their technique is 

robust in forecasting future load demands for the daily operational planning of power system distribution 

sub-stations in Nigeria. 

Short-term load forecast is therefore an essential part of electric power system planning and 

operation. Forecasted values of system load affect the decisions made for unit commitment and security 

assessment, which have a direct impact on operational costs and system security. Conventional regression 

methods are used by most power companies for load forecasting. However, due to the nonlinear relationship 

between load and factors affecting it, conventional methods are not sufficient enough to provide accurate 

load forecast or to consider the seasonal variations of load.  

We believe artificial neural networks (ANN) based load forecasting methods can deal with 24-hour-

ahead load forecasting by using forecasted weather input variables, which can lead to high forecasting errors 

in case of rapid weather changes [12], [13]. ANNs permit modelling of complex and nonlinear relationships 

through training with the use of historical data and can therefore be used in models based on weather 

information without the need for assumptions for any functional relationship between load and weather 

variables. We outline here a novel neural network-based approach for short-term load forecasting that uses 

the correlated weather data for training, validating and testing of a neural network. Correlation analysis of 

weather data determines the input parameters of the neural networks. The suitability of the proposed 

approach is illustrated through an application to the actual load data of the Irish Electricity Market.  

This paper is organised as follows: Section 2 provides a background to the Single Electricity market in 

Ireland, section, section 3 introduces Artificial Neural Networks & Short-term Load Forecasting, section 4 

presents the short-term forecasting model and section 5 provides a conclusion. 

 

 

2. SINGLE ELECTRICITY MARKET 

The Single Electricity Market (SEM) is the wholesale electricity market for the island of Ireland, 

regulated jointly by the CER and its counterpart in Belfast, the Utility Regulator. The Commission for 

Energy Regulation (CER) is the independent body responsible for regulating the natural gas and electricity 

markets in Ireland. By combining what were two separate jurisdictional electricity markets, the SEM became 

one of the first of its kind in Europe when it went live on 1st November 2007 [14]. The SEM is designed to 

provide for the least cost source of electricity generation to meet customer demand at any one time across the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 :  4060 - 4078 

4062 

island, while also maximising long-term sustainability and reliability. The SEM is operated by SEMO, the 

Single Electricity Market Operator, a joint-venture between EirGrid and SONI, the transmission system 

operators in Ireland and Northern Ireland respectively. SEMO [15] is responsible for administering the 

market, including paying generators for their electricity generated and invoicing suppliers for the electricity 

they have bought [14].  

SEM consists of a centralised and mandatory all-island wholesale pool (or spot) market, through 

which generators and suppliers trade electricity. Generators bid into this pool their own short-run costs for 

each half hour of the following day, which is mostly their fuel-related operating costs. Based on this set of 

generator costs and customer demand for electricity, the System Marginal Price (SMP) for each half-hour 

trading period is determined by SEMO, using a stack of the cheapest all-island generator cost bids necessary 

to meet all-island demand [16]. It is these more efficient generators which are generally run to meet demand 

in the half hour in what is known as the “Market Schedule”. More expensive or inefficient generators are 

“out of merit” and hence they are not run and are not paid SMP, keeping customers’ bills down as shown in 

Figure 1.  

 

 

 
 

Figure 1. The role of System Marginal Price 

 

 

The SMP for each half hour is paid to all generators that are needed to meet demand. Suppliers, who 

sell electricity direct to the final consumer, buy their electricity from the pool at this common price, as 

illustrated in Figure 2. Overall the SEM facilitates the running of the cheapest possible generators, 

determined by the stack of generation cost bids, to meet customer demand across the island. This mandatory 

centralised pool model in SEM, in which all key generators and suppliers must participate, differs from most 

other European markets in which most trade takes place bilaterally between generators and suppliers. In these 

bilateral markets only, a residual amount of electricity is traded in an exchange, primarily for balancing 

purposes. In contrast all key players must trade in SEM, so there is more transparency associated with SEM 

prices and market outcomes.  

 

 

 
 

Figure 2. Wholesale and retail market 
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Generators operating within the SEM also receive separate capacity payments which contribute 

towards their fixed costs, if they are available to generate. The capacity payment pot of money for generators 

is set ahead of time by the SEM Committee and is calculated based on the relatively low fixed costs of a 

peaking plant. As a result, the payments generally cover only a portion of the fixed costs involved in building 

most plants. Suppliers also pay for these capacity payments and any other system charges, which are 

typically passed through to customers. To sell electricity into the SEM pool, generators must submit cost bids 

to SEMO the day before the physical trade/generation takes place, known as D-1. The bids submitted are 

primarily based on a generator’s running or Short Run Marginal Cost (SRMC), i.e. the cost of each extra 

MW it could produce excluding its fixed costs. The SRMC reflects the opportunity cost of the electricity 

produced, which is the economic activity that the generator forgoes to produce electricity. For example, in 

the case of a generator fuelled by gas, the opportunity cost includes the price of gas on the day that it is 

bidding in, because if the generator was not producing electricity it could sell its gas in the open market. 

Generator bids also include a generator’s start-up costs, which are costs it faces if it needs to be turned on 

after a period of inactivity, as well as generator no-load costs which are (mostly fuel) costs which are 

indifferent to output levels. 

The generators submit these bids to SEMO up until Gate Closure, currently at 10:00am on D-1. 

Software is then run by SEMO to determine a Market Schedule which forecasts the SMP for each half hour 

trading period for the following day. However, no software can predict with complete accuracy what will 

happen in reality: real-time factors such as a change in wind generation or customer demand, which can 

affect SMP, must be accounted for. For this reason, SEMO completes two more software runs reflecting the 

reality of what happened in generator dispatch, one on the day after the trading day (D+1), and another four 

days after (D+4), to calculate the final SMP for each half hour of the trading day. This D+4 price is the one 

that is paid to generators and paid by suppliers. The Market Schedule identifies the lowest cost solution at 

which generation can meet demand for each half hour trading period. It ranks generators with the lowest bids 

first until the quantity needed for the demand is met - see blue shaded bars in  

Figure 3. The marginal generator needed to meet the demand sets the SMP for that trading period. 

The other generators who have submitted SRMC bids lower than this price are deemed to be “in merit” and 

will also be scheduled to run. All generators who have submitted bids which are higher than this price (SMP) 

are deemed to be “out of merit” and will not be scheduled to run - see the green bar in Figure 3. These tend to 

be old or inefficient plants.  

 

 

 
 

Figure 3. Market schedule 

 

 

All generators who have submitted a bid which is under the SMP earn a profit, known as 

“inframarginal rent”, on the difference between their SRMC bid offer and the SMP. This is illustrated in red 

shaded bars in the graph. The plant that sets the marginal price in a half hour, i.e. the one with the highest 

running costs among those that are scheduled to run, does not receive any infra-marginal rent. However, this 

is typically a peaking plant which, while it has high short-run costs, has low fixed costs. Hence its costs are 

covered through the SMP and the capacity payments it receives. Infra-marginal rent is needed for most 

generators that are run, including efficient modern gas plants and wind farms, because while such plants have 

relatively low running costs (SRMC), they have much higher fixed costs which the (relatively low) capacity 

payment does not fully cover. Without infra-marginal rent, it would not be economic to build modern 

efficient power plants or wind farms, threatening security of electricity supply and driving higher prices in 

the long-run.  

Wind farms are an example of electricity generators that have very low SRMC-the wind is  

free-and so typically they receive a higher rate of infra-marginal rent than other electricity generators, which 
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in turn is needed to pay for their much higher fixed costs. If a generator was dispatched more than it was 

scheduled to in the Market Schedule, for example to compensate for another (cheaper) generator not being 

brought online due to a network failure or “constraint”, it is “constrained on”. This means it receives its bid 

cost to compensate for the extra MW it must produce, though it does not receive infra-marginal rent. 

Generators who were originally included in the Market Schedule, but not actually run for reasons outside of 

their control, for example due to a network fault, are said to be “constrained off”. They receive the SMP less 

their bid, i.e. the infra-marginal rent they would have received in the market had they been run. Constraints 

costs also cover costs associated with “reserve”. This is where, to ensure the continued security of the system, 

for example in the event of a generator tripping, some generators are instructed to run at lower levels than 

indicated in the Market Schedule. This means there is spare generation capacity available (reserve) which can 

be quickly brought online if needed. To maintain the demand-supply balance, this reserve means that some 

generators will be constrained down while others may be constrained on/up, again leading to the actual 

dispatch deviating from the Market Schedule [14]. 

 

 

3. ARTIFICIAL NEURAL NETWORKS & SHORT-TERM LOAD FORECASTING 

In machine learning and cognitive science, artificial neural networks (ANNs) are a family of models 

inspired by biological neural networks (the central nervous systems of animals, in particular the brain) and 

are used to estimate or approximate functions that can depend on a large number of inputs and are generally 

unknown [17]. Artificial neural networks are generally presented as systems of interconnected "neurons" 

which exchange messages between each other [18]. The connections have numeric weights that can be tuned 

based on experience, making neural nets adaptive to inputs and capable of learning. For example, a neural 

network for handwriting recognition is defined by a set of input neurons which may be activated by the pixels 

of an input image. After being weighted and transformed by a function (determined by the network's 

designer), the activations of these neurons are then passed on to other neurons [19]. This process is repeated 

until finally, an output neuron is activated. This determines which character was read. Like other machine 

learning methods – systems that learn from data-neural networks have been used to solve a wide variety of 

tasks that are hard to solve using ordinary rule-based programming, including computer vision and speech 

recognition [20]. 

For short-term load forecasting, the Back-Propagation Network (BP) network is the most widely 

used one. Due to its ability to approximate any continuous nonlinear function, the BP network has 

extraordinary mapping (forecasting) abilities. The BP network is a kind of multilayer feed forward network, 

and the transfer function within the network is usually a nonlinear function such as the Sigmoid function. The 

typical BP network structure for short-term load forecasting is a three-layer network, with the nonlinear 

Sigmoid function as the transfer function [21].  Fully connected BP networks need more training time and are 

not adaptive enough to temperature changes therefore some have moved to using non-fully connected BP 

models [22]. Although a fully connected ANN can capture the load characteristics, a non-fully connected 

ANN is more adaptive to respond to temperature changes. Results also show that the forecasting accuracy is 

significantly improved for abrupt temperature changing days. There is also merit in combining several sub-

ANNs together to give better forecasting results such as using recurrent high order neural networks 

(RHONN) [23]. Due to its dynamic nature, the RHONN forecasting model can adapt quickly to changing 

conditions such as important load variations or changes of the daily load pattern [22]. A back-propagation 

network is a type of array which can realize nonlinear mapping from the inputs to the outputs. Therefore, the 

selection of input variables of a load forecasting network is very important. In general, there are two selection 

methods. One is based on experience and the other is based on statistical analysis such as the ARIMA and 

correlation analysis. 

For instance, we can denote the load at hour k as l(k) so a typical selection of inputs based on 

operation experience will be l(k-1), l(k-24), t(k-1), where t(k) is the temperature corresponding to the load 

l(k). Unlike those methods which are based on experience, we can apply auto-correlation analysis on the 

historical load data to determine the input variables. Auto-correlation analysis should show that correlation of 

peaks occurs at the multiples of 24-hour lags. This indicates that the loads at the same hours have very strong 

correlation with each other. Therefore, they can be chosen as input variables. In addition to using 

conventional information such as historical loads and temperature as input variables, wind-speed, sky-cover 

can also be used. Potential input variables could be historical loads, historical and future temperatures, hour 

of day index, day of week index, wind-speed, sky-cover, rainfall and wet or dry days.  There are no hard-fast 

rules to be followed to determine input variables. This largely depends on engineering judgment and 

experience. [24] found that for a normal climate area, historical loads, historical & future temperatures, hour 

of day and day of week index are sufficient to give acceptable forecasting results. However, for an extreme 
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weather-conditioned area the other input variables classes were recommended, because of the highly 

nonlinear relationship between the loads and the weather conditions. 

 

 

4. A SHORT-TERM ELECTRICITY MARKET FORECASTING MODEL 

Artificial Neural Networks (ANNs) can only perform what they were trained to do. Therefore, to 

achieve short term load forecasting, the selection of the training data is a crucial one. The criteria for 

selecting the training set is that the characteristics of all the training pairs in the training set must be like those 

of the day to be forecasted. Choosing as many training pairs as possible is not the correct approach for a 

number of reasons. On reason is load periodicity. For instance, each day of the week has different patterns. 

Therefore, using Sundays' load data to train the network which is to be used to forecast Mondays' loads 

would lead to wrong results. Also, as loads possess different trends in different periods, recent data is more 

useful than old data. Therefore, a very large training set which includes old data is less useful to track the 

most recent trends.  

To obtain good forecasting results, day type information must be considered. We can achieve this by 

constructing different ANNs for each day type and feeding each ANN the corresponding day type training 

sets [25], [26]. Another way is to use only one ANN but contain the day type information in the input 

variables [27]. The two methods have their advantages and disadvantages. The former uses a number of 

relatively small size networks, while the latter has only one network of a relatively large size. The day type 

classification is system dependent e.g. the load on Monday may be like that on Tuesdays but not always. 

Therefore, one option is to classify historical loads into classes such as Monday, Tuesday-Thursday, Friday, 

Saturday, and Sunday/Public holiday. The Back-Propagation algorithm is widely used in short-term load 

forecasting and has some good features such as, its ability to easily accommodate weather variables, and its 

implicit expressions relating inputs and outputs, but it is also a time-consuming training process and its 

convergence to local minima [28], [29]. The determination of the optimal number of hidden neurons is a 

crucial issue. If it is too small, the network cannot possess sufficient information, and therefore yields 

inaccurate forecasting results. On the other hand, if it is too large, the training process will be very long [30]. 

Other key factors are to determine how big the prediction window should be. For instance, it could 

possibly be cold in one month so is this valid 12 months later. The forecast horizon is day + 1 - and for 

remainder of day. This is for the next available market. The model may also provide predictions for 48/72 

hours. This will lead of course to dimensioned results, but we associate a corresponding error value. Not all 

electricity markets follow the same slots so in practice we aim to weather forecast, model network topology 

and more. Some of the main factors for forecasting are demand forecast, estimated power production 

capability and available interconnection capacity. Outliers include weather events, solar eclipses so we must 

also be careful not to factor into our model. The initial stage involves determining the input variables from 

the demand, power production and price prediction data we download from SEMO [15] can see in Table 1. 

 

 

Table 1. Key data fields 
Variables name The unit of measurement Example 

Trade date Day of month 1 Feb 2016 

Delivery date Half Hour 1 Feb 2016 06:00 

Jurisdiction  ROI/NI 

Forecast MW Megawatts 2551.98 

Solarpower Megawatts 0 

Solarpower Utilization % 0 

Windpower Megawatts 2022 

Windpower Utilization % 81 

SMP Euro 18.9 

Shadow Price Euro 18.809999 

 

 

We plot a subset of data. Figure 4 shows Solar power production in Northern Ireland. The value of 

horizontal axis is time domain from 1st Feb 2016 to 9th Feb 2016. The Red line indicates the solar power 

production (MW) in Northern Ireland and the blue line indicates the solar power utilization rate (%) in 

Northern Ireland. 

In Figure 5, the Red line indicates the wind power production (MW) in Northern Ireland and the 

blue line indicates the wind power utilization rate (%) in Northern Ireland. In Figure 6, the Red line indicates 

the wind power production (MW) in the Republic of Ireland and the blue line indicates the wind power 

utilization rate (%) in the Republic of Ireland. There is no solar power production in the Republic of Ireland. 

Figure 7 shows the demand prediction (Megawatts) of the Republic of Ireland and Northern Ireland. The Red 

line indicates the demand (MW) in Republic of Ireland and the blue line indicates the demand (MW) in 
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Northern Ireland. Figure 8 shows the SMP for North and South. The Red line indicates the SMP (Euro) in the 

Republic of Ireland and the blue line indicates the shadow price (Euro) in the Republic of Ireland. 

 

 

 
 

Figure 4. Solar power production in Northern Ireland 

 

 

 
 

Figure 5. Wind Production power in Northern Ireland 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Forecasting Short-term Wholesale Prices on the Irish ... (Francesco Arci) 

4067 

 
 

Figure 6. Wind Production power in Rep. of Ireland 

 

 

 
 

Figure 7. Demand prediction in Republic of Ireland 
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Figure 8. SMP in Northern Ireland and Republic of Ireland 

 

 

Time series prediction is one of the most important prediction that collect past observations of a 

variable and analyze it to obtain the underlying relationships between historical observations, but time series 

has properties such as nonlinearity, chaotic, non-stationary and cyclic which cause problems. An adaptive 

neural network based fuzzy inference system (ANFIS) is where the learning processes are performed by 

interleaving the optimization of the antecedent and conclusion parts parameters. The ANFIS model we are 

using is a Takagi-type Neuro-fuzzy Network which combines neural networks and fuzzy systems. Fuzzy 

reasoning and network calculation will be available simultaneously. 

Before we employ the ANFIS method to forecast the daily electricity SMP data, the raw data needed 

to be preprocessed to get the proper input and we need to determine the data input variables.  One input data 

sample input consists of Production Forecasting (D-2), Load Forecasting (D-2) and Previous Prices Window 

(D-9… D-2). The data of production forecasting and load forecasting can be obtained from the Ex-Ante lag-2 

file. The data of previous prices window can be obtained from the Ex-Ante files of lag-2, lag-3, …, lag-9. 

Production forecasting includes 9*2*48 variables, Load Forecasting includes 4*2*48 variables and Previous 

Prices Window includes 7*2*48 variables. Output (D) includes 48 variables to compare with control data. 

This output can see in Table 2.. 

 

 

Table 2. Four Day Rolling Load Forecast Sample 

 
Production 

Forecasting 
Load Forecasting Previous Prices Window Output Control Data (Output) 

Data Sample 1 
D-2 

(9-day Forecasting) 

D-2 

(4-day Forecasting) 

EA(D-9), EA(D-8), …, 

EA(D-2) 
D EA(D)= (H1, H2 ,…) 

Data Sample 2 D-3 D-3 
EA(D-10), EA(D-9), …, 

EA(D-3) 
D-1 EA(D-1) 

 

 

We experimented with other algorithm to determine the parameters of the ANFIS model (Grid 

Partitioning, subtractive clustering and FCM clustering), training method (SOM algorithm, Levenberg-

Marquardt algorithm, Bayesian Regularization and Scaled Conjugate Gradient), AR model, state space model 

and ARIMAX model, Neural Network and Fuzzy Inference System. 

Next, we examine our feature selection methodology. Feature selection is the process of selecting a 

subset of relevant features for use in model construction. Feature Selection is placed into two main 

categories, wrapper methods and filter method. Wrapper methods evaluate multiple features using procedures 

that add and/or remove predictors to find the optimal combination that maximizes model performance.  We 

use Recursive Feature Elimination with Backwards Selection in our feature selection model and use Random 
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Forecast Method as the forecasting algorithm. An obvious concern is that too few variables are selected or 

that the selected set of input variables is not sufficiently informative. Half-hourly SMP itself can be divided 

between the shadow price and uplift price.  

The SMP follows customer demand, as a more expensive stack of generators is needed to meet 

demand when it is high, whereas at low demand times demand can be met with cheaper generators. 

Approximately 80% of the island’s electricity generation comes from imported fossil fuels, with most this in 

the form of gas-fired generation plants, though the amount of renewable generation (especially wind) is 

increasing. The start date of training date was 20-11-2016 and the last date of training date was 20-1-2017. 

The preprocessing included normalization, separation of input and output, removal of the column with near 

zero variance and removal of the column with high correlation. The inputs were ["Delivery_Date", 

"Delivery_Hour","Delivery_Interval","SMP_D_Euro","SMP_D_Minus_6_Euro","SMP_D_Minus_13_Euro"

, "LoadDemand", "Power_Production_Ireland", "Output_SMP_Euro"].  The resampling method is cv (cross 

validation), the number of divided blocks is 9. The WM method tuning Grid of num.label is 5,7,9,11. The 

notation used throughout the paper is provided in Table 3. The training data is shown in Table 4. The WM 

methods are shown in Table 5 and Table 6 shows the neural networks methods. 

 

 

Table 3. Nomenclature used 
Notation Meaning 

D Report date, such as 11/25/16 

D+2 The delivery date of predicted SMP, such as 11/27/16 (7:00am – 6:30am+1) 

SMPD+2hh The output (7:00am – 6:30am+1) 

DemandD+2hh The Demand corresponding to the output (7:00am – 6:30am+1) 

Power_IrelandD+2hh The power summation of Solar power and wind power production in the whole Ireland (7:00am – 6:30am+1) 

Power_UKD+2hh 
The power summation of Solar power and wind power production in the whole UK mainland (7:00am – 

6:30am+1) 

SMPD+1hh The SMP tomorrow (7:00am – 6:30am+1) 

SMPD-5hh The week-ahead SMP of the predicted date 

SMPD-12hh The 2-week ahead SMP of the predicted date 

SMPD+1hh-1 The SMP of previous half hour 

SMPD+1hh-2 The SMP of previous hour 

 

 

Table 4. Training data set 
SMP 

D 

Euro 

SMP 

D-1 

Euro 

SMP 

D-2 

Euro 

SMP 

D-3 

Euro 

SMP 

D-4 

Euro 

SMP 

D-5 

Euro 

SMP 

D-6 

Euro 

SMP 

D-13 

Euro 

SMP 

HH-1 

Euro 

SMP 

HH-2 

Euro 

Load 

Demand 

Power 

Prod 

Ireland 

Power 

Prod 

UK 

Output 

SMP 

Euro 

34.11 56.12 35.58 35.45 35.45 33.85 36.02 37.27 38.56 40.22 3332.99 2632 6432 26.82 

34.96 53.31 34.96 36.22 35.67 33.85 39.60 37.22 34.11 38.56 3617.22 2632 6432 33.29 

37.35 52.05 35.93 36.22 37.65 33.93 48.55 40.12 34.96 34.11 4044.04 2622 6301 33.37 

46.83 48.49 36.95 45.34 49.53 41.99 58.69 48.23 37.35 34.96 4598.26 2622 6301 44.12 

53.00 45.41 39.11 58.81 54.65 50.07 49.99 52.00 46.83 37.35 4794.32 2588 6213 36.26 

53.00 42.83 45.16 59.50 54.65 50.07 48.91 53.24 53.00 46.83 4848.44 2588 6213 36.26 

 

 

Table 5. WM Methods 
Wang and Mendel Fuzzy Inference System Wang and Mendel Fuzzy Rules 

Num labels RMSE RSquared Num Labels RMSE RSquared 

5 0.08085976391 0.6164148104 5 0.08243602951 0.4944017323 

7 0.08348111341 0.5985532171 7 0.08034681858 0.5329743329 

9 0.08282707433 0.6045367775 9 0.06520352477 0.5802984609 

11 0.08351732060 0.6031938904 11 0.06158859213 0.6117265554 

13 0.08297830444 0.6087738091 13 0.06288671368 0.5995754154 

15 0.08141637713 0.6133514129 15 0.06096258818 0.6064996381 

 

 

Table 6. Neural Network Methods 
Neural Network Neural Network with Feature Extraction 

Size Decay RMSE RSquared Size Decay RMSE RSquared 

7 0.1 0.05270524894 0.6929778933 7 0.1 0.05089153350 0.7208933843 

7 0.2 0.05347311140 0.6888295076 7 0.2 0.05167995561 0.7140019128 

7 0.3 0.05453963414 0.6838997251 7 0.3 0.05250239843 0.7054384820 

7 0.4 0.05573614668 0.6818432270 7 0.4 0.05310788152 0.6991367997 

7 0.5 0.05697179184 0.6792381810 7 0.5 0.05352101625 0.6939291592 

9 0.1 0.05271452634 0.6927232380 9 0.1 0.05119465918 0.7175199801 

9 0.2 0.05344611869 0.6889050040 9 0.2 0.05164156293 0.7146256683 

9 0.3 0.05437667388 0.6856260338 9 0.3 0.05240655299 0.7054188336 
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Table 6. Neural Network Methods 
Neural Network Neural Network with Feature Extraction 

Size Decay RMSE RSquared Size Decay RMSE RSquared 

9 0.4 0.05541222294 0.6832885298 9 0.4 0.05300188523 0.6998314790 

9 0.5 0.05666255577 0.6808368771 9 0.5 0.05348630999 0.6950229190 

11 0.1 0.05270600467 0.6927112655 11 0.1 0.05163404149 0.7143136221 

11 0.2 0.05338348384 0.6890494993 11 0.2 0.05159720638 0.7150221137 

11 0.3 0.05428912207 0.6860951090 11 0.3 0.05238156971 0.7062859365 

11 0.4 0.05526530966 0.6838981978 11 0.4 0.05307634772 0.6988441224 

11 0.5 0.05649060682 0.6814349601 11 0.5 0.05339202900 0.6959431786 

13 0.1 0.05267401075 0.6930661064 13 0.1 0.05111346554 0.7186556348 

13 0.2 0.05332159021 0.6898724679 13 0.2 0.05154455074 0.7152574599 

13 0.3 0.05414921928 0.6870251648 13 0.3 0.05250977982 0.7055231884 

13 0.4 0.05518955461 0.6841764190 13 0.4 0.05300783963 0.6996952093 

13 0.5 0.05629418211 0.6822628708 13 0.5 0.05341948835 0.6956999722 

15 0.1 0.05265961271 0.6931825427 15 0.1 0.05098003722 0.7217784390 

15 0.2 0.05330512595 0.6899778133 15 0.2 0.05137956282 0.7174058104 

15 0.3 0.05411134212 0.6871732710 15 0.3 0.05240654610 0.7056927565 

15 0.4 0.05508926487 0.6847492765 15 0.4 0.05293500471 0.7004590233 

15 0.5 0.05619344396 0.6827220878 15 0.5 0.05324102449 0.6970127299 

 

 

4.1. Rule-Based Models 

The Wang-Mendel (WM) method [31] was one of the first methods to design fuzzy systems from 

data [32]. Others known as “neuro-fuzzy” methods were [33]. The method has been applied to a variety of 

problems and is one of the benchmark methods in the field [34]. In the WM Fuzzy Inference model, RMSE 

was used to select the optimal model using the smallest value which was 0.08085976391 (5). In the WM 

Fuzzy Rules model, the final values used for the model were num.labels=15 and type.mf=GAUSSIAN.  

In the Subtractive Clustering and Fuzzy c-Means RMSE was used to select the optimal which was r.a=0.3, 

eps.high=0.3 and eps.low=0.2 as shown in Table 7. 

 

 

Table 7. Subtractive Clustering and Fuzzy c-Means Rules 
r.a, eps.high/low RMSE Rsquared 

0.3,0.3,0.10 0.06477678 0.5755458 

0.3,0.3,0.15 0.06477678 0.5755458 

0.3,0.3,0.20 0.06477678 0.5755458 

0.3,0.5,0.10 0.06477678 0.5755458 

0.3,0.5,0.15 0.06477678 0.5755458 

0.3,0.5,0.20 0.06477678 0.5755458 

0.3,0.7,0.10 0.06477678 0.5755458 

0.3,0.7,0.15 0.06477678 0.5755458 

0.3,0.7,0.20 0.06477678 0.5755458 

0.5,0.3,0.10 0.06752837 0.5593372 

0.5,0.3,0.15 0.06752837 0.5593372 

0.5,0.3,0.20 0.06752837 0.5593372 

0.5,0.5,0.10 0.06752837 0.5593372 

0.5,0.5,0.15 0.06752837 0.5593372 

0.5,0.5,0.20 0.06752837 0.5593372 

0.5,0.7,0.10 0.06752837 0.5593372 

0.5,0.7,0.15 0.06752837 0.5593372 

0.5,0.7,0.20 0.06752837 0.5593372 

0.7,0.3,0.10 0.06858001 0.5591306 

0.7,0.3,0.15 0.06858001 0.5591306 

0.7,0.3,0.20 0.06858001 0.5591306 

0.7,0.5,0.10 0.06858001 0.5591306 

0.7,0.5,0.15 0.06858001 0.5591306 

0.7,0.5,0.20 0.06858001 0.5591306 

0.7,0.7,0.10 0.06858001 0.5591306 

0.7,0.7,0.15 0.06858001 0.5591306 

0.7,0.7,0.20 0.06858001 0.5591306 

Normalised Error 

Test 0.05450646 

Training 0.02600927 

Actual Error 

Test 16.124102 

Training 7.694062 
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4.2. Neural Network Models 

Next, we tried Neural Networks with 2916 samples, 13 predictors and no pre-processing.  

The resampling was Cross-Validated (9 fold) with sample sizes: 2592, 2592, 2592, 2592, 2592, 2592. In the 

Neural Network model, RMSE was used to select the optimal model using the smallest value which was 15 

and decay=0.1 and in the Neural Network with feature extraction, the final values used for the model were 

size=7 and decay=0.1. The first experiment was the Bayesian Regularization for Feed-Forward Neural 

Networks model. The input variables are: [SMP_D_Minus_13_Euro, SMP_D_Euro, LoadDemand, 

SMP_D_Minus_1_Euro]. RMSE was used to select the optimal model using the smallest value which was 

neurons=11 as shown in Figures 9 and 10. 

 

 

 
 

Figure 9. Subtractive Clustering and Fuzzy c-Means Rules 

 

 

 
 

Figure 10. Bayesian Regularization for Feed-Forward Neural Networks 
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The next experiment was the multi-layer perceptron model. The input variables are: 

SMP_D_Minus_13_Euro, LoadDemand, SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_ 6_Euro, 

SMP_D_Minus_2_Euro, SMP_D_Minus_3_Euro, SMP_D_Minus_5_Euro, SMP_HH_Minus_1_Euro, 

SMP_ D_Minus_4_Euro, SMP_HH_Minus_2_Euro, Power_Prod_ IRL]. The best result was neurons = 15 as 

shown in Tables 8 and 9. 

 

 

Table 8. Bayesian Regularization for Feed-Forward Neural Networks 
Neurons RMSE Rsquared 

11 0.07401631 0.5261056 

13 0.09454580 0.4266669 

15 0.08705493 0.4360314 

Normalised Error 

Test 0.05517338 

Training 0.04931483 

Actual Error 

Test 16.32139 

Training 14.58831 

 

 

Table 9. Multi-layer perceptron 
Neurons RMSE Rsquared 

11 0.05250854 0.7048104 

13 0.05307737 0.7005197 

15 0.05249322 0.7026434 

Normalised Error 

Test 0.04292271 

Training 0.04648640 

Actual Error 

Test 12.69740 

Training 13.75161 

 

 

In the Neural Networks experiment, the input variables are: [LoadDemand, 

Power_Production_Ireland, SMP_D_Minus_ 13_Euro, SMP_HH_Minus_2_Euro, SMP_D_Minus_2_Euro, 

Power_Production_UK, SMP_D_Minus_5_Euro, SMP_D_ Minus_3_Euro, SMP_D_Minus_4_Euro, 

SMP_D_Euro, SMP_ D_Minus_6_Euro]. RMSE was used to select the optimal model using the smallest 

value which was neurons=11 and decay=0.02 as shown in Figures 11 and 12. 

 

 

 
 

Figure 11. Multi-layer perceptron 
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Figure 12. Neural Network 

 

 

In the Neural Networks with Feature Extraction experiment, the input variables are: 

[SMP_D_Minus_13_Euro, LoadDemand, SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_2 Euro]. 

RMSE was used to select the optimal model using the smallest value which was size = 13 and decay = 0.02 

as shown in Tables 10 and 11. 

 

 

Table 4. Neural Network 
size/decay RMSE Rsquared 

11 0.010 0.05248126 0.7161288 

11 0.015 0.05235626 0.7148340 

11 0.020 0.05235063 0.7133702 

13 0.010 0.05282604 0.7118659 

13 0.015 0.05235792 0.7148175 

13 0.020 0.05235315 0.7133737 

15 0.010 0.05283664 0.7116809 

15 0.015 0.05242537 0.7139332 

15 0.020 0.05236808 0.7133572 

Normalised Error 

Test 0.04594939 

Training 0.04620509 

Actual Error 

Test 13.59275 

Training 13.66839 

 

 

Table 5. Neural Networks with Feature Extraction 
size/decay RMSE Rsquared 

11 0.010 0.06011476 0.6211297 

11 0.015 0.05982740 0.6250083 

11 0.020 0.06159925 0.6027796 

13 0.010 0.06854780 0.5366326 

13 0.015 0.05902941 0.6339155 

13 0.020 0.05689748 0.6527683 

15 0.010 0.06493007 0.5633139 

15 0.015 0.06272061 0.5915866 

15 0.020 0.06343059 0.5956760 

Normalised Error 

Test 0.06434868 

Training 0.04389391 

Actual Error 

Test 19.03563 

Training 12.98470 
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In the Radial Basis Function Network experiment, the input variables are: 

[SMP_D_Minus_13_Euro, LoadDemand, SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_2_Euro, 

SMP_D_Minus_6_Euro, SMP_D_Minus_3_Euro, SMP_HH_Minus_1_Euro]. RMSE was used to select the 

optimal model using the smallest value which was size=11as shown in Figures 13 and 14. 

 

 

 
 

Figure 13. Neural Networks with Feature Extraction 

 

 

 
 

Figure 14. Radial Basis Function Network 

 

 

In the Multi-Layer Perceptron, with multiple layers experiment, the input variables are: 

[SMP_D_Minus_13_Euro, LoadDemand, SMP_D_Euro, SMP_D_Minus_1_Euro, SMP_D_Minus_2_Euro, 

SMP_D_Minus_6_Euro, SMP_D_Minus_3_Euro, SMP_D_Minus_5_Euro, SMP_HH_Minus_1_Euro, 
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SMP_D_Minus_4_Euro, SMP_HH_Minus_2_Euro, Power_Production_Ireland, Power_Production_UK]. 

RMSE was used to select the optimal model using the smallest value which were layer1 = 13, layer2 = 13 

and layer3 = 13 can see in Table 12 and Figure 15. 

 

 

Table 12. Radial Basis Function Network 
Size RMSE Rsquared 

11 0.06419983 0.6427550 

13 0.08197198 0.6383784 

15 0.07501390 0.6455758 

Normalised Error 

Test 0.04858537 

Training 0.05931154 

Actual Error 

Test 14.37252 

Training 17.54554 

 

 

Table 13. Wang and Mendel Fuzzy Rules 
Num labels RMSE Rsquared 

13 0.06502759 0.5887993 

15 0.06490675 0.5796969 

Normalised Error 

Test 0.05378375 

Training 0.02158287 

Actual Error 

Test 15.910308 

Training 6.384645 

 

 

In the Wang and Mendel Fuzzy Rules experiment, the input variables are: 

[SMP_D_Minus_13_Euro, SMP_D_Euro, LoadDemand, SMP_D_Minus_1_Euro]. The Tuning parameter 

'type.mf' was held constant at a value of GAUSSIAN. RMSE was used to select the optimal model using the 

smallest value which was num.labels=15 and type.mf=GAUSSIAN as shown in Table 13 and Figure 16.  

A comparison between the models is shown in Figure 17. 

 

 

 
 

Figure 15. Multi-Layer Perceptron, with multiple layers 
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Figure 16. Wang and Mendel Fuzzy Rules 

 

 

 
 

Figure 17. Comparison of Models 

 

 

5. CONCLUSION 

Short-term load forecast is an essential part of electric power system planning and operation. 

Forecasted values of system load affect the decisions made for unit commitment and security assessment, 

which have a direct impact on operational costs and system security. Conventional regression methods are 

used by most power companies for load forecasting. However, due to the nonlinear relationship between load 

and factors affecting it, conventional methods are not sufficient enough to provide accurate load forecast or 
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to consider the seasonal variations of load. ANN-based load forecasting methods can deal with 24-hour-

ahead load forecasting by using forecasted weather input variables, which can lead to high forecasting errors 

in case of rapid weather changes. An adaptive neural network based fuzzy inference system (ANFIS) is 

where the learning processes are performed by interleaving the optimization of the antecedent and conclusion 

parts parameters. We believe ANNs permit modelling of complex and nonlinear relationships through 

training with the use of historical data and can therefore be used in models based on weather information 

without the need for assumptions for any functional relationship between load and weather variables. 

This paper presents a novel neural network-based approach for short-term load forecasting that uses 

the correlated weather data for training, validating and testing of a neural network. Correlation analysis of 

weather data determines the input parameters of the neural networks. The suitability of the proposed 

approach is illustrated through an application to the actual load data of the Irish Electricity Market. We may 

also make use of Microsoft Azure Machine Learning and IBM APIs cognos for experimenting with different 

ML algorithms. Azure ML could be useful as quick and easy to export to web services and bring online with 

minimum fuss.  It has a wide range of plug-ins. A problem however is that it is a black box and but still 

potentially useful for early stage quick tests. 
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