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Processing in the cerebellum is roughly described as feed forward processing
of incoming information over three layers of the cerebellar cortex that send
intermediate output to deep cerebellar nuclei, the only output from the
cerebellum. Beside this main picture there are several feedback routes, mainly
not included in models. In this paper we use new model for neuronal circuit of
the cerebellar granule cell layer, as collection of idealized granule cell-golgi
cell building blocks with capability of generating multi-dimensional receptive
fields modulated by separate input coming to lower dendrite tree of Golgi cell.
Resulting cerebellar model controller with two-phase learning will acquire
multitude of generalization capabilities when used as robot joint controller.
This will usually require more than one Purkinje cell per output. Functionality
of granule cell-Golgi cell building block was evaluated with simulations using
Simulink single compartment spiking neuronal model. Trained averaging
cerebellar model controller attains very good tracking results for wide range
of unlearned slower and faster trajectories, with additional improvements by
relearning at faster trajectories. Inclusion of new dynamical effects to the
controller results with linear growth in complexity for inputs targeting lower
dendrite tree of Golgi cell, important for control applications in robotics, but
not only.
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1. INTRODUCTION

Artificial neural networks are an important branch of information processing. It started with
inspiration from living neuronal circuits present in living organisms, as means for solving problems of technical
importance that seem to be handled so easily by them. Attractive was the way of solving problems by
mimicking the learning process, without explicitly dealing with the complexity of the problem. Despite initial
enthusiasm followed by disappointment and a period of almost abandoned artificial neural network research,
it revived and developed to powerful tool for solving wide range of technical problems.

Cerebellum played an important role in this process. It gave hope to decipher internal functional
principles of neuronal circuits [1], based on regular and simple layered arrangement of neurons across whole
cerebellar cortex, with well defined inputs and outputs, seemingly as uniform repetition of same elementary
cerebellar neuronal circuit between groups of neurons. After initial information about anatomy and physiology,
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two theories of cerebellar learning emerged, at 1969 by Marr [2] and at 1971 by Albus [3]. Both models
assumed existence of specific physiological changes at specific site during learning, fact discovered for the
first time at 1982 by Ito [4], and happening in the form of long-term depression (LTD), as predicted by Albus
[3]. Because of these contributions, sometimes it is referred to as the Marr-Albus-Ito theory [5]. Later at 1975
Albus formalized this theory with computational model, known as Cerebellar Model Articulation Controller
[6], with last attributes originating from assumed main functional involvement of the cerebellum in
coordinating complex multi-joint movements. This created new branch in the group of artificial neural
networks, the CMAC neural network, or simply CMAC. Since initial introduction, it was attractive for its fast
learning and possibilities for simple real-time implementations. Route of development, even thought initially
to be biologically based, followed with many variations not necessarily sticking to biological plausibility. Most
of CMAC applications are control based, as initial functional assumption for cerebellum, but they span wide
range of applications [7], similar to new findings for functional involvement of cerebellum to other functions,
beyond stereotyped one, up to cognition and emotion [8].

CMAC belongs to a family of neural networks with local learning. All of them suffer from exponential
increase in complexity when dimensionality of the input space increases. They partition multi-dimensional
input spaces into multi-dimensional partitions, e.g. hypercubes or hyper-spheres, whose number increases
exponentially while increasing number of input space dimensions. This was noted since initial model proposal
and some solution were given. Some of them reduce representation capabilities of the networks, while others
introduce possibility of interference between nonsimilar learning that is manifested as noise. Even a rough
partitioning of multi-dimensional input space may fast grow to impractical number of partitions. How brain
solves this problem while it handles much higher dimensions than we use for similar technical problems, like
in robotics? Since structural content of whole brain is not uniform, but with many variations to different parts
with presumed different function, brings the problem to relation between structure and function, and which
determines which [9]. Ultrastructural and molecular differences in the seemly similar brain circuits, specifically
to the cerebellum [10], may point to some more customized circuits for specific functions that would enable
more optimal solutions for specific problems. In this context applicability of learned information to similar
situations, i.e. generalization [11], is highly desirable property.

What is functional significance of granule cell layer for generalization abilities of the cerebellum can
be linked with attributed function of this layer within different (static) cerebellar models. General picture for
majority of cerebellar models is that all information entering the cerebellum through mossy fibers will target
granule cells and Golgi cells, residing in this layer, and deep cerebellar nuclei [12], [13], [14], [15]. This
incoming information is combinatorially expanded [2], [3] for several orders of magnitude at output of this
layer, being information carried by parallel fibers. Models assume that this is the place where activity sparse
higher-order representations are generated from lower-order representations on mossy fibers.

Sparseness [16] is considered as means for optimizing storage capacity of following network, and as
means to make learning easier. Other aspect of this layer is sparse connectivity present in granule cells, the
most numerous neurons in the brain, having in mean four short dendrites for receiving information from four
distinct mossy fibers. It was shown in [17] that for feedforward networks similar to cerebellar processing this
is required for efficient decorrelation and pattern separation. Many cerebellar models following CMAC assume
that information carried by mossy fibers is population coded, where each mossy fiber has receptive field
described with some one-dimensional basis function (e.g. square, triangular and Gaussian). Processing each
combination of mossy fibers inputs with multiplication operator is typical for models of granule cell layer,
resulting in output of corresponding number of multi-dimensional receptive fields at parallel fibers, making
generalization local. This is the place where sparse connectivity, present in biological equivalent, will help to
prevent combinatorial explosion. Extensions that change conventional CMAC structure, but keep feedforward
processing, modify the way the outputs of multi-dimensional receptive fields are processes. From simple
multiplication with corresponding weight, it is processed with multi-variable first-degree polynomial [18], or
similar [19], [20]. Constant member of polynomial preserves functionality of conventional CMAC. First order
terms introduce the need for additional inputs, being rate coded versions of information that transforms to
population code before entering the cerebellum as mossy fibers. These new inputs will weight linearly outputs
of the granule cell layer. Presence of mossy fibers with two types of coding, population coded and rate coded,
seen biologically poses no problem, since single population coded mossy fiber uses rate code to represent its
activity. Mossy fibers targeting directly locations beyond granule cell layer is not biologically plausible. New
model of processing in the granule cell layer gives particular importance to granule cell-Golgi cell neuronal
circuit [21], as basic building block of granule cell layer. Golgi cell, as central actor in this circuit, receives
excitatory feedback inputs from parallel fibers (through upper dendrite tree) and excitatory feedforward inputs
from mossy fibers (through lower dendrite tree). Later is typically considered to be from the same set of mossy
fibers that target granule cell that will be inhibited from same Golgi cell. New model assumes that mossy fibers
targeting lower dendrite tree is functionally distinct information from information carried by mossy fibers that
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target corresponding granule cells. Moreover coding in two sets of mossy fibers is different, being rate coded
for those targeting lower dendrite tree. Functionally this input will serve to control multiplicatively activity of
granule cell outputs forming circuit with corresponding Granule cell. Existence of these segregated and
functionally distinct sets of mossy fibers was later suggested in [22] as explanation for in vivo and in vitro
experiments they performed. They also name function of segregated connectivity as “parallel feedforward
inhibition”, contrasted to function of stereotyped connectivity as “classical feedforward inhibition”. This new
model puts polynomial processing of granule cell layer as biologically plausible and performed inside the same
layer [23]. It may also contribute to sparseness of activity issue at this layer that was recently challenged [24],
[25].

In this paper granule cell layer is considered as collection of granule cell-Golgi cell building blocks.
Capability of this block in generating multi-dimensional receptive fields modulated by separate input coming
to lower dendrite tree of Golgi cell was evaluated with simulations using Simulink single compartment spiking
neuronal model. Generalization capabilities of resulting averaging cerebellar model controller with two-phase
learning will be explored on a robot joint plant in computed torque configuration.

2. RESEARCH METHOD

Cerebellum, or little brain, is present in all vertebrates and in most cases weights about 10 percent of
total brain weight. On the other side it contains more than half of the total number of neurons in the
brain [26]. Functionally it is associated and is considered as part of motor structure. It is important in
maintaining posture and balance, in fluent execution of voluntary articulated movements, in motor learning,
and based on connections it makes with other parts of the brain it may be involved in many other functions, up
to the cognitive level [27], [8].

Spiking model of cerebellar granule cell layer for Simulink was developed to assess the ability of
granule cell-Golgi cell building block in generating modulated higher-order receptive fields. Averaging
functional equivalent is used to build new averaging cerebellar controller [28], [23]. Robot plant [28] for testing
global generalization property to joint speed and joint acceleration is presented.

2.1. Neuronal Circuit of the Cerebellum

In contrast to number of neurons contained in the cerebellum [26], number of neuron types is small,
common to all vertebrates. It hosts two extreme types of neurons by size, Purkinje cell and granule cell. First
is known as largest neuron in the brain, while second one as smallest and most numerous type. All of them are
arranged in highly organized three layer structure, named cerebellar cortex. Middle layer one-cell thick contains
only Purkinje cells. Next layer in the inner side mainly inhabits granule cells and Golgi cells. Third, outer layer
of cerebellar cortex is known as molecular layer. Typical for this layer is presence of huge number of parallel
fibers that cross at right angle through flat shaped dendrite trees of Purkinje cells. Parallel fibers are in fact
granule cell axons that rise vertically from granule cell layer, through Purkinje cell layer, and when reaching
the molecular layer bifurcate in T-shaped form. This description of granule cell axon is from final mature state
point of view. Biologically route is opposite [29], from neurogenesis at the temporary external granular layer,
through migration on molecular layer, to final state in the granular layer. All circuit formation process is very
well orchestrated in time and space, resulting in this sophisticated functional structure, initially thought simple
to discern, but it continues to surprise scientific community with finer structural details and molecular
diversities [10]. Present in molecular layer are also basket cells and stellate cells.

Simple sketch in Figure 1 (modified from [21]) gives connections between cerebellar neurons. There
are only two routes where information can enter cerebellum, mossy fibers and climbing fibers. Mossy fibers
form many contacts with granule cells, Golgi cells, and deep cerebellar nuclei. Climbing fiber splits in several
branches, and each branch makes very strong connection (composed of hundreds of contacts) with Purkinje
cell, but every Purkinje cell in mature state makes exclusive connection with only one climbing fiber. All
climbing fibers originate from inferior olivary nucleus residing outside of the cerebellum, but that is
reciprocally connected with deep cerebellar nuclei. Contacts between mossy fibers, granule cell dendrites, and
Golgi cell axons are done within glomeruli.

Sole output from the cerebellar cortex is through Purkinje cell axons. Most of them, after sending
collaterals back to cerebellar cortex, terminate to deep cerebellar nuclei, and from them to other parts of the
brain. Remaining part of them make similar neuronal circuits with vestibular nuclei. Groups of cerebellar
neurons with microcircuitry as in Figure 1 are organized at higher level in microzones [30], and even higher to
zones, that are thought to have specific functions depending on the input and output connections they receive
from, and send to other parts of the nervous system. There are very specific attributes of connections between
actors of the cerebellum. First, very high divergence of mossy fiber input information, from millions of mossy
fibers to billions of the granule cells [27]. Second, convergence from hundreds of thousands parallel fiber
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information to single output from Purkinje cell. Further convergence from several hundreds of Purkinje cells
outputs to one deep cerebellar nuclei. Relative number of divergence and convergence is preserved but numbers
are species dependent. Above numbers are for highly developed species, like humans.

Figure 1. Neuronal circuit of the cerebellum, neurons, connections, and signal routes (modified from [21]).
PC: Purkinje cell; GC: granule cell; GoC: Golgi cell; StC: stellate cell; BaC: basket cell; Gl: glomeruli; aa:
granule cell ascending axon; PF: parallel fibers; udt: Golgi cell upper dendritic tree; Idt: Golgi cell lower
dendritic tree; mfl, mf2, mf3: mossy fibers; CF: climbing fiber; PC axon: Purkinje cell axon; DCN: deep
cerebellar nuclei; 10: inferior olive; ML: molecular layer; PC: Purkinje cell layer; GL: granule cell layer;
WM: white matter

Ultrastructure of connections between different actors of the circuit is part of intensive research, and
could have important implications for possible attainable functional variations. In this sense mossy fibers,
according to [21], are separated into groups that can target differentially specific structures and/or specific
locations on them, based on actor and location specific molecular markers [10]. Set mfl of mossy fibers is
common one that target granule cells. They can target Golgi cells as well without consequences for new model.
Standard model assumes both targets. Specific to this model is set mf2 and mf3 of mossy fibers that target
lower dendrite tree of Golgi cells and deep cerebellar nuclei, respectively, but not the corresponding group of
granule cells. Specific functional importance was attributed for set mf2 mossy fibers in [21]. Later, authors of
[22] according to their findings suggest that separate sets of mossy fibers may target neighboring granule cells
and Golgi cells that are also functionally distinct.

2.2. Simulink Spiking Model for Granule Cells and Golgi Cells

To analyze information processing at granule cell layer, spiking models for two most wide spread
inhabitants of this layer was developed in Simulink, i.e. for granule cells and Golgi cells. Adopted model is
single compartment modified integrate-and-fire that computes membrane potential from [31], with parameters
from the same publication

dv,
C.— "= gAMPA(t)(EAMPA Vi )+

dt
gNMDA(t)goc,NMDA(Vm )(ENMDA _Vm )+
gGABA(t)(EGABA _Vm)+

Grest (Erest _Vm )

o))

This is a first order differential equation that accounts for chemical synapses (for AMPA, NMDA,
and GABA receptors) and leaking (resting conductivity Grest). Cr, is membrane capacitance. Nature of each
member in (1) is current and represents postsynaptic currents caused from ions passing through corresponding
ion channels. gampa, Onvpa and  geasa are conductances, and Eampa, Envpa and Ecaga are reversing potentials
for AMPA, NMDA and GABA receptors, correspondingly. Eresr is resting membrane potential. Conductance
of NMDA channel is dependent on membrane voltage [32] and is given as
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with constants equal to 0=62V, [Mg?*]=1.2mM and B=3.57mM. lon channel conductances are only time
dependant, like in spike response model [33], and are given as follows
Oicc (t):{

0 , t<t
Oicc(t)e e t2t

@)

where, ts denotes spike arrival time at presynaptic site. ICC stands for type of ion channel conductance, for
AMPA, NMDA, or GABA. Conductances are modeled as falling exponential functions with maximum values
gampa(ts), Onmpa(ts) and geasa(ts), and with time constants tavpa, Tnvpa and teasa, correspondingly. First two
conductances will result with excitatory and the last one with inhibitory postsynaptic current. Data used for
parameters in equations for granule cell and Golgi cell model are the one given in Table 1 and
Table 3 of [31]. Authors of the paper have collected these data from many sources, as mentioned at their Table
1. Figure 2 shows Simulink model for granule cell. Golgi cell Simulink model is similar, but it has two sets of
AMPA receptors, for upper and lower dendrite tree synapses, lack of NMDA receptors, and presence of leak
current and spontaneous oscillation [31, 34].
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Figure 2. Spiking granule cell Simulink model. Upper simulation diagram models channel conductance. At
left, first two blocks model excitatory postsynaptic currents, i AMPA and i_NMDA, genarated from
presynaptic pulse arriving at port 1 (Exc) from mossy fiber. Third block models inhibitory currents i GABA
from pulse at port 2 (Inh). Forth block models leaking current i_leak. Model of somatic action is at the
bottom right, with submodels for integration of currents, generation of spike, and generation of refractory
period

Model was built with objects that will allow processing of multidimensional inputs signals. Each
channel conductance is modeled according to upper simulation diagram. Four blocks at left model four sources
of synaptic currents according to (1). Model of somatic action is given at bottom right. Encircled are three
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submodels: for integration, spike generation and for refractory time. Spike is idealized as rectangular pulse of
unitary amplitude and with width (Sw) equal to 0.1 ms. Gain of ion channel conductance is scaled according
to these values. Propagation of spikes in the axon is not modeled. These models are encased inside two types
of neuron subsystem blocks with different processing of excitatory synaptic currents, Figure 3. First one,
GrC_ns, is model of a single neuron with n synaptic inputs. Second one, GrC_nn, is model for n neurons.
Summation of spikes targeting dendrite tree for later case is modeled out of neurons block. Number of synapses
in the first model and number of neurons in the second model will be determined by dimensionality of
corresponding input signal. Golgi cell will use model for single neuron with many synapses resulting to
GoC_ns subsystem model. It will have two excitatory inputs, from upper dendrite tree (udt) and lower dendrite
tree (Idt). Inhibitory inputs to Golgi cell [35] are not modeled.

@ (b)

[i_AMPA] >?ﬂ< [i_Exc] [i_AMPA] [i_Exc]

[i_NMDA] [i_NMDA]

2 Exc Axon 2| Exc Axon

GrC ns GrC nn

Figure 3. Two forms of granule cell subsystem blocks with different processing of excitatory currents
i_AMPA and i_NMDA to i_Exc: (a) processing that will generate model of single neuron with many
napses, subsystem GrC_ns; (b) processing that will generate model for many neurons. Number of synapses n
the first model and number of neurons in the second model will be determined by dimensionality of i_Exc

2.3. Simulink Spiking Model for Granule Cell-Golgi Cell Circuit

Spiking models of granule cell and Golgi cell are used to build Simulink spiking model of granule
cell-Golgi cell circuit shown in Figure 4, where GrC_nn is model for n granule cell neurons, GoC_ns is model
for single Golgi cell with n synapses. Summation block with four inputs, x1 L1 to x1_L4, represents granule
cell dendrites receiving inputs from four groups of population coded mossy fibers. Lower mossy fibers
correspond to one rate coded mossy fiber v1_R that connects to lower dendrite tree Idt of Golgi cell. Synaptic
strengths are assumed to be constant, with nominal value [31] set at corresponding neuron model. Gain blocks
S _MF-GrC,S_MF_GoC, and S_GoC-GrC, currently set to 1, represent relative synaptic strength. They can be
used to explore the range and effect of variable synaptic strengths. If synaptic strengths of different inputs to
granule cell are different, each input (of four of them in Figure 4) may have its own gain block S_ MF-GrCi,
and by removing S_MF-GrC block after summation block. Synaptic strength S_GrC-GoC is used to correct
effective synaptic strength [31] between granule cell axon and upper dendrite tree of Golgi cell in accordance
with number of granule cells targeting Golgi cell. Parallel fibers contain processed multidimensional receptive
fields (in case of two-dimensional input space they will be two-dimensional receptive fields, shown later in
Figure 5). Generation of information with population coded receptive fields that drive mossy fibers is thought
not to be part of the cerebellum and corresponds to pre-cerebellar structures.

2.4. Mossy Fibers and Information Entering the Cerebellum

There are two routes where information can enter the cerebellum, mossy fibers and climbing fibers.
In most cerebellar models later one are assumed to carry error information. Initial model and most of model
variations following assume that information carried by mossy fibers is population coded [6, 18]. In this case
unique input states are represented with unique activity in a subset of mossy fibers. Simplest one used is in
form of several one-dimensional layers composed from nonoverlapping receptive fields, with their activity
described by rectangular basis functions. In this case each layer will have only one of them active for certain
range of input values, where active means for output being equal to one and zero for inactive case.
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Figure 4. Simulation model of information processing in the single granule cell layer building block of the
cerebellum with spiking neuron models, with information route MF — GrC-GoC — PF
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This form of coding was proposed by Albus [6] and layers are known as Albus overlays, Figure 5.
Later layers were joined to a single layer of overlapping receptive fields, with extension to many shapes of
basis functions describing receptive field activity. Another view is thinking of each receptive field as one layer.
Regardless of how we view them, each signal (usually one-dimension, but not necessarily) will be coded with
a group of mossy fibers where subset of them (one or more) will be more or less active in a specific range
(typically form 0 to 1). Mossy fibers carrying rate coded information is common to some later versions of
cerebellar [19, 20] or hybridized fuzzy-cerebellar models [18]. Generation of population coded spiking mossy
fibers from input signal is done with two processing stages, upper part in Figure 6. First stage from input signal
will generate a number of new signals with selected basis function, where square, triangular and Gaussian
being most common.

Each signal is then converted to stream of pulses (spikes) at second stage, where pulse frequency is
proportional to amplitude of input signal. Rate coded spiking mossy fibers are generated by skipping the first
stage, i.e. by directly feeding input signal to second processing stage, lower part in Figure 6. As functional
model of the second stage a modified spiking neuron model from Section 2.3 was used. Modifications consist
on keeping only somatic action model, removing refractory period subsystem, and treating the input signal as
excitatory synaptic current with proper scaling, resulting in PulseGen (pulse generator) subsystem block.
Parameters were set to have mean output pulse frequency equal to control value at input. Internally a noise
generator was added, with parameters adjustable through mask of the corresponding block. Each pulse
generator block will have different seed for noise generator for uncorrelated noise between signals. Processing
of the first stage is done by passing input signal through center shifted group of selected basis function, block
1L_SBF for one layer of square basis functions in Figure 6.

Specific to this cerebellar model is that population coded mossy fibers (mfl in Figure 1) will target
granule cells, while separate set of rate coded mossy fibers (mf2 in Figure 1) will target lower dendrite tree of
Golgi cell [21, 28, 23]. Input signals x1 and v1 represent any signal to be processed by cerebellum. Typically
for servomotor driven joint x1 will be joint position, while v1 will be joint speed or joint acceleration.
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Figure 6. Model for generating population and/or rate
coded spiking mossy fibers. Upper part generates
population coded spiking signal x1_L1 from input
signal x1. Block 1L_SBF generates 6 signals with

square basis function. Amplitude of these signals is
converted to corresponding stream of pulses (spikes)
with pulse generator block PulseGen L1. Lower part
generates rate coded spiking signal v1_R from input
signal v1, by directly feeding input signal to the input of
pulse generator block PulseGen R

input (Xa, Xp) there will be 9 two-dimensional
receptive fields, Df, Dg, Dh, Ef, Eg, Eh, Ff, Fg
dhe Fh. Positions of the two-dimensional
receptive fields have been shifted a little from
their real position determined from
corresponding one-dimensional receptive fields
to make them more distinctive

2.5. Averaging Cerebellar Model Controller with Granule Cell-Golgi Cell Building Blocks

Final averaging model of the cerebellum will have in the first processing layer several granule cell-
Golgi cell building blocks. Each of them generates a group of higher-order receptive fields by using
multiplication operator, for all possible combinations from a set of lower-order input signals. Blocks have
ability of modulating group output activity by separate modulating input signal [21]. Input signals are
functional equivalent of mossy fibers. Set of mossy fibbers mfl that target directly granule cells is expected to
be with population code. Other set mf2 that targets Golgi cell lower dendrite tree (modulating input signal) is
expected to be rate coded. Standard CMAC is special case of this cerebellar model with modulating input set
to constant, typically 1.

Outputs of building blocks will be functional equivalent of parallel fibers. Next stage is composed
from one or more Purkinje cells blocks, modeled as standard perceptron with linear activation function, and a
number of synaptic weight that is determined from dimensionality of signal (parallel fibers) entering the block.
Purkinje cell blocks receive teaching signals (equivalent of climbing fibers) that can be same or different for
all blocks, or in any combination. Each output will have one neuron of deep cerebellar nuclei as last stage,
modeled as simple summation, receiving outputs from corresponding Purkinje cells. All signals may have
positive and negative values, contrary to biological equivalent, but common to most artificial neural networks.
Other sites of synaptic connection that may be adjustable [36], beside parallel
fiber-Purkinje cell, are not modeled. For biologically consistent structural model for some of them adjustability
would be needed to bring model at the operating point, or some interdependency fulfilled. With new
functionality assigned to Golgi cell, including new functionalities to stellate cell and basket cell from [21] this
cerebellar model was referred to as CMACgbs [28], [23].

Simulation model of CMACgbs is given in the Figure 7 for single output. Model contains
preprocessing blocks for generating population coded mossy fibers of selected shape (square, triangular, or
Gaussian) from input signals, transformation common for most of these models. Functionally these blocks are
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thought to reside outside of the cerebellum. These blocks and granule cell-Golgi cell blocks are sharable
components [23]. If teaching signal is same for all Purkinje cell blocks they can be joined to single Purkinje
cell block, making deep cerebellar nuclei unnecessary. Standard CMAC follows this route. Gaining knowledge
with better generalization may require different teaching signals for different Purkinje cells, similar to
biological case where single climbing fiber (teaching signal) targets only several Purkinje cells and each mature
Purkinje cell is targeted from single climbing fiber. CMACgbs preserves this structural property. Granule cell-
Golgi cell blocks have four inputs matching typical number of dendrites that granule cells have. If receptive
fields of lower dimensionality are required unused inputs are tied to constant 1, upper block in Figure 7. If pure
rate coded signal is to be passed to Purkinje cell all inputs can be tied to constant, choice offered by switches
for two next blocks. In simulations there is no need to have these two blocks at all, but biologically there is no
direct route from mossy fibers to Purkinje cells.
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Figure 7. Simulation model for CMACgbs. Model contains three GrC-GoC building blocks with modulating
input and three Purkinje cells with separate learning signals situated inside cerebellar cortex. Only one
dimension is converted to population code. Purkinje cells are summed at deep cerebellar nuclei, modeled as
simple summation, with its output being total cerebellar control output. PC: Population Coded signal, RC:
Rate Coded signal

2.6. Robot Plant

Robot plant with one rotary link, mounted on at arbitrary positioning and orienting base, was used as
control plant for testing generalization capabilities of CMACgbs. General dynamics model [37] describing this
robot in disaggregated form [21] is given by following equation [28]

7, =0y, G +0+ Gy (0)- 9y Gy () gy, + Gy5(ay)- 9, t
Fld : q1 + Fls (ql) + (4)
diu -m, q1 +

GiLl(ql) -mg - gxD +GiL2 (ql) -m - gy0 +GiL2(ql) -m - gzD ’
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where: gy, Gy, and g are projections of gravity vector to 0-th coordinate system; G1r1(Q1), G1r1(qz) and Gir1(qa)
represent gravity loadings cause from robot link and gripper; di1r represents inertial loadings, constant in this
case; F1q and Fis represent dynamic and static friction; m. is the load mass. Other similar terms in (4) have
similar meaning, but are related to load mass. G and d terms are in general nonlinear functions dependent on
joint position. If load is constant and its effects are accounted within link and/or gripper, or there is no load,
four last terms can be omitted.

Dynamics of base movement and rotations are not included, assumed to be slow enough to be treated
as static. Dimensionality of the input space depending on the dynamical effects that will be accounted for
ranges from 1 to 7, being 1 for link and gripper gravity loading only, 2 for standard robot in fixed base without
friction and 3 including friction effects, 5-6 for previous case with different base rotation configurations, and
7 for full model including variable mass. For pendulum-like robot with rod-like link, gripper modeled as point
mass, and including viscous friction (4) becomes

1 n 1 i i
z’l=(§ms+mej|sz'(h + (Em5+m6)lss'n(9)'g + Fg-4, ©)

where ms and | are link mass and length. Simulation model of the robot [23] was developed in SimMechanics.
As main controller Proportional-Derivative (PD) controller was used.

3. RESULTS AND ANALYSIS

First processing of information entering the cerebellum by mossy fibers is done in the granular layer,
with circuits formed by granule cells and Golgi cells, and result is passed to molecular layer by granule cells
axons for further processing. Granule cells axons are composed of two distinctive parts: ascending axon and
parallel fiber, aa and PF in Figure 1. Vertical ascending axon part starts from granule cell and ascends up to
some level of the molecular layer, where it bifurcates in form of letter T and creates parallel fibers that travel
some distance in both directions. Outputs from group of about 5000 granule cells will make synaptic
connections with one Golgi cell [27, 23], which in turn will inhibit same group of granule cells. This feedback
inhibition is done through synaptic connections inside glomeruli, Gl in Figure 1, where set mf1 of mossy fibers
make excitatory synaptic connections with granule cell dendrites. Second route with functionally distinct
information comes by set mf2 of mossy fibers to Golgi cell through its lower dendrite tree Idt, with feedforward
inhibitory effect on granule cells. This would be one idealized elementary granule cell-Golgi cell building
block.

3.1. Modulated Higher Order Receptive Fields with Granule Cell-Golgi Cell Building Blocks

Lower dimensional information at the input of the cerebellum carried by mossy fibers is first
processed by granule cell layer. It will expand the information space by several orders of magnitude by
generating higher-order receptive fields that serve as associations for next processing steps, termed by Albus
as expansion recoding [3]. Typically in simulations inputs are one-dimensional information and processed
information carried by axons of granule cells (ascending axons and parallel fibers) at the output of granule cell
layer are multi-dimensional.

How effective is spiking single granule cell-Golgi cell elementary building block in generating
higher-order receptive field from one-dimensional inputs is explored. Simulations were done with model from
Figure 4. All granule cells in the model have same values for parameters [31], and each of them has four inputs
(basal dendrites). According to idealized model, only one Golgi cell is used. It receives excitatory synaptic
inputs from all granule cells in the block and sends inhibitory synaptic outputs to the same granule cells. All
but one relative synaptic strength gain blocks in the model are set to 1.

The one different is gain S_GrC-GoC set to 1/(number of granule cells targeting Golgi cell) for proper
scaling of synaptic strength [31]. Input space is two dimensional composed from two one-dimensional input
signals. Two layers of square receptive fields are used for each input signal, similar to the one shown in Figure
5. In this way there will be four groups of nonoverlapping receptive fields that carry information for inputs of
granule cells. Layers are composed from 2 receptive fields 2 quanta wide. Four combinations, from 9 possible,
were implemented targeting 4 granule cells. Model from Figure 6 is used to generate spiking mossy fibers from
receptive field activity. To explore whole input space two sawtooth signals are used. Frequency of x1 signal
(horizontal axis) is several times higher than that of x2 signal (vertical axis), depending on required vertical
resolution. This simulation used 1 Hz and 0.01 Hz frequencies. Input space is scanned in [-8, 8] range, but
effective used space is in [-4, 2] range, for both dimensions.

Figure 8 shows spiking activity at outputs of 4 selected granule cells. Dots represent presence of spike
at corresponding position and time. Density of dots is visual measure of activity. Centers of activity for
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resulting two-dimensional receptive fields are marked with squares on upper-left plot. Green square is center
of active receptive field. It can be seen that activity of this receptive field is almost suppressed at centers of
other receptive fields marked with red squares. At centers of two-dimensional receptive fields total output
activity is dominated mainly from activity of single corresponding receptive field, as is shown in four central
plots of Figure 8. Number 1 in squares denotes that total output activity will be dominated from one receptive
field. Other numbers, 2 and 4, indicate that total output activity will be shared between 2 or 4 neighboring
active two-dimensional receptive fields, but each contributing receptive field being proportionally less active.

Low-pass filtered output spike activity of a single granule cell at similar working conditions is given
in Figure 9 in two views, top and oblique view (axis scaling for this figure is different from the one in
Figure 8). Intensity is color coded, with red being most active and dark blue being inactive state. Looking at
excitation and inhibition that target granule cell, response in Figure 9 is qualitatively similar to center surround
response [38], where at the center excitation dominates the response while the surrounding is dominated by
inhibition, mostly caused by activity of other granule cells in the block. Effective used space is marked with
white square in Figure 9(a).

Relative suppression of activity between active receptive fields is handled by feedback (upper dendrite
tree) inhibition from Golgi cell, controlled by total activity of all granule cells in the block. This can be viewed
as gain control functionality [3, 21] that tries to keep total output activity of the group to constant level.
Artificial neural networks often use normalization of excitation, either by selecting proper receptive field basis
functions having this property inbuilt [39], or by having it as additional processing [23]. Normalization aids
learning and would be equivalent to gain control. Other view would be that total activity at the output of the
granule cell-Golgi cell building block will move the firing threshold of granule cell accordingly, leading to
suppression of less active and enhancing more active granule cells. These suppressed less active granule cells
are treated as noise that should be removed from signal, i.e. granule cells with higher activity.

Figure 8. Output spike activity of 4 granule cells (4 central plots) for two-dimensional input space, each with

two Albus layers composed from 2 square receptive fields 2 quanta wide. Inset in the left shows output spike

activity for one granule cell with Golgi cell feedback inhibition turned off. Inset in the right gives activity of
single granule cell with additional inhibition from Golgi cell lower dendrite tree

If Golgi cell inhibition is not present activity at the output of single granule cell would result with
higher-order receptive field typical for neurons with summation processing of incoming inputs, shown with
inset at left in Figure 8. It has high activity at side lobes, horizontal and vertical, where only one or two inputs
of granule cells are active. These side lobes are suppressed inside effective used space where there are other
more active neurons at corresponding positions of input space. Outside of the effective used space side lobe
activity reappears, seen in four central plots of Figure 8 and Figure 9.

Typical operator used for creating higher-dimensional receptive fields from lower-dimensional one in
case of artificial neural networks is multiplication. Square receptive fields at inputs would result with hypercube
(or hyper-parallelepiped) of corresponding dimensionality. In case of square receptive fields with 0/1 activity
same result would be obtained with AND operator. For given excitation in this simulation result would be
uniform activity inside square denoting center of the resulting receptive field (seen in Figure 8, or only red
zone in Figure 9), and zero otherwise. Activity would code only small portion of the input space, resulting in
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high number of neuron to cover whole input space, possibly leading to combinatorial explosion. Wider square
receptive field would relax this problem, but resolution would become worse. Wider receptive fields with
processing proposed by Albus [6], shown in Figure 5 for full overlaid two-dimensional CMAC case, will give
better generalization and preserve the resolution.

Different shapes of receptive fields for input information, like triangular or Gaussian, is other way for
tackling the problem [39]. Combination of both is common to later modified models of CMAC [18-20].
Processing with granule cell-Golgi cell building block with feedback from upper dendrite tree for same input
excitation gives more graded response. It resembles collective response of all corresponding two-dimensional
Albus overlays (seen in Figure 5), or to stepped approximation of two-dimensional receptive field that would
result from triangular receptive fields at input processed with multiplication operator, or min operator in fuzzy
networks case. Higher order receptive fields at input will result with smother high-dimensional receptive fields.

@

Figure 9. Lowe-pass filtered output spike activity of a single granule cell: (a) top view and (b) oblique view.
Intensity is color coded. Effective used space is marked with white square

How activity of receptive fields changes in time for a possibly real input trajectory encoding is shown
in Figure 10. Input signals used are x1=4-sin(27- 1-t) and x2=3-sin(27-2-t), that generate trajectory for drawing
number 8. Spike activities at the output of four granule cells are marked with colored dots. Signal amplitudes
were selected such that part of trajectory will travel through space not covered by two-dimensional receptive
fields. Numbers inside squares denote how many receptive fields will dominate encoding. At parts of the input
space that are not covered by corresponding receptive fields, side lobes will appear caused by lucking inhibition
from missing receptive fields. These activities will send incorrect associations to other processing layers. Two
such cases are encircled in Figure 9, with arrows pointing to correct association. Another example for one-
dimensional trajectory can be found in [23].
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Figure 10. Spiking output activity of 4 two-dimensional receptive fields at 4 granule cells with “number 8”
trajectory as input: x1=4-sin(2n-1-t) and x2=3-sin(2n-2-t). Activity of two receptive fields (blue and violet) is
shifted to the right for 0.3 units for better visibility, by avoiding overlapping. Encircled are wrong output
associations that lie outside of the effective used space that have equivalent associations inside that space.
Numbers inside squares denote how many receptive fields will dominate encoding. Dot of the specific color
denotes presence of spike at corresponding output, space, and time.
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Four central plots in Figure 8 are generated without activity at mossy fibers targeting lower Golgi cell
dendrite tree. Increasing excitation on this input will increase inhibition to all granule cells of this elementary
circuit, and multi-dimensional receptive field activity will get proportionally lower, and vanish for some higher
input level. Inset at the bottom-right in Figure 8 shows activity at the output of one granule cell when lower
dendrite tree of the Granule cell is active. We notice that center activity is still present, but mean activity at any
place of the input space became lower. Golgi cell upper dendrite tree (feedback) and lower dendrite tree
(feedforward) inhibition of one-dimensional trajectory can be seen in Figure 5 of [23]. In idealized case signal
targeting lower dendrite tree of Golgi cell (mf2 in Figure 1) is assumed to modulate multiplicatively amplitude
of resulting set of higher-order receptive fields [21, 28, 23]. If inhibition through lower dendrite tree is not used
(not active), or it follows stereotypical configuration being connected to same group of mossy fibers that target
granule cells of the same building block, output activity would be determined solely from activity of the mfl
group of mossy fibers as shown in Figure 1. Under any of these conditions model reverts to classical one,
generating unmodulated higher-order receptive fields.

Functional result of processing in granule cell-Golgi cell building block will be a group of multi-
dimensional receptive fields, whose activity can be modulated with input at lower dendrite tree of Golgi cell.
Without activity in the modulatory input, activity of resulting multidimensional receptive fields would be
maximal, and determined from mean total activity at group mfl of mossy fibers. This would produce high
activity on Purkinje cell, that finally would inhibit deep cerebellar nuclei, and with that output from cerebellum.
This could be balanced and brought to operating point with same group mf1 of mossy fibers targeting also deep
cerebellar nuclei. This condition would produce output results in function of synaptic strength between parallel
fibers and Purkinje cell, assumed as only site with synaptic weights where learning can take place. In addition
to that, current activity for certain point in the input space can be directly modulated with input at lower dendrite
tree of Golgi cell. Increased input would inhibit granule cell activity that in turn would decrease Purkinje cell
activity, causing less inhibition to deep cerebellar nuclei, resulting with increased final output activity. From
this inhibition of inhibitory neuron, effective constant of proportionality is positive.

3.2. CMACgbs with Two-Phase Learning as Robot Controller and Generalization

Pendulum-like robot plant, with fixed base including viscous friction effects, described in Section 2.6
was used as control plant for exploring generalization capabilities of averaging cerebellar controller with new
model of granule cell layer, composed from several granule cell-Golgi cell building blocks, given in Figure 7.
Parameters of the robot for following simulations are: link mass ms = 1 kg, link length Is = 1 m, and gripper
mass mg = 0.2 kg. Proportional-Derivative (PD) controller, with K, and Ky set to 30 and 4, was used as main
controller. Cerebellar controller will serve as secondary learning controller for robot dynamics, with one
granule cell-Golgi cell building block for each term of (4) that will be accounted by cerebellar controller. It
can be in feedforward or in computed torque configuration [40], depending on the source of position and speed
information.

In following computed torque configuration is used. Actual values of joint position and joint speed,
and desired joint acceleration are used as inputs to the cerebellar controller, signals q_a, dq_a and d2q_d in
Figure 7. Since base is fixed gravity projection inputs will be constant, and grav_x input in Figure 7 will be
tied to constant equal to 9.81. This configuration of the controller will set dimensionality of the input space
to 3. Only position information will be transformed to population coded information with 73 triangular
receptive fields of 4 quanta wide, and will serve as mossy fibers that target mf inputs of granule cell-Golgi cell
building blocks. Block 1L_1D_TBF (1-Layer of 1-Dimensional Triangular Basis Functions) in Figure 7
performs this function. Two other input signals, joint speed and joint acceleration, will be rate coded and serve
as mossy fibers that will be tied to mf_ldt (Golgi cell lower dendrite tree input) of granule cell-Golgi cell
building blocks. Since controller will be implemented in digital form, calculated output value will be held
constant until new calculation is done with zero-order-hold (block ZOH_CMACgbs in Figure 7), where
cerebellar controller update period can be set, being 0.01 second for simulations in this paper. Outputs of the
PD controller and cerebellar controller are summed together and result is used to drive simulated robot.

CMACgbs controller was trained on sinusoidal trajectory with cycling from0 — 27— 0 — -2n —
0 in selected time. Training was done in two phases. First phase was done with very slow motion, 100 s / cycle,
during which dynamics is dominated with gravitational loading. During this phase only gravity term is trained
by connecting error signal (output of the PD controller) to teaching input CF (climbing fiber) of Purkinje cell
block PC_Gx as shown in Figure 7. Teaching for two other Purkinje cell blocks is disabled by feeding 0 to
their CF inputs. Progress of learning and final result is given in Figure 11. Position error in Figure 11(a) shows
significant decrease of error during first cycle of learning (0-100 s), and some minor adjustments during second
cycle (100-200 s). Remaining error of cosinusoidal form is joint speed related and cannot be learned with only
joint position related term, and is caused from viscous friction torques. In fine scale error will change in rhythm
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of weight training (same as cerebellar controller update period, i.e. 100 trainings per second) and with amount
controlled by learning rate (equal to 0.0001), but it is hard to be noticed in a present scale of Figure 11.

Average update during one cycle is close to zero, causing error to be cycle-by-cycle similar during
subsequent cycles. High value of learning rate may lead to smaller error when learning is on, but with a risk
instability (especially at the beginning of learning when errors may be quite large) or of ending with less
accurate cerebellar model when learning is set to off, similar to behavior of adaptive controllers. Inset in the
Figure 11(a) shows testing error for one cycle with learning turned off, as measure of success in acquiring plant
model [41]. Note vertical axis scaling (position error axis in the range from -0.01 to 0.01) to make details
visible. Learned synaptic weights for gravitational term are pictured as heat map in Figure 11(b), with apparent
sinusoidal relation of weights from joint position. During learning this term there could be interference from
inertial effects, but considering maximal values for inertial and gravitational torques to be 0.0132 Nm and
6.867 Nm, it is expected to be negligible. These weights are not adjusted any more, since other circumstances
with higher speed are less informative regarding this term. Resulting receptive fields from granule cell-Golgi
cell block GrC-GoC_Gx are common unmodulated ones, since modulating signal is tied to constant, as in
standard CMAC model [42, 28].
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Figure 11. First phase of learning: only gravitational term is learned with slow motion. (a) Position error
during 5 cycles of learning, lasting 100 seconds per cycle. Inset shows position error during one cycle of
testing, with learning turned off. (b) Parallel fiber-Purkinje cell synaptic weights at the end of first phase of
learning

During second phase cycling was speeded up to 10 s/cycle, and only inertial and friction terms were
adapted. Since gravity loading is accounted properly from results of first phase of learning, current control
error will be caused by inertial or viscous friction torques. These effects will be compensated with two
additional subsystems shown in Figure 7, each composed of one granule cell-Golgi cell and one Purkinje cell
block, with proper learning. Two cases will be explored, first one when terms are not joint position dependent
and second one when they are. First case is configured with two switches at current position in Figure 7,
resulting in only one weight for each term [21].

Second case is for the other position of switches, resulting in 73 weights for each term. There are three
blocks for generating population coded receptive fields in Figure 7 for each term, but since input for all three
of them is joint position only one can be used and then sharing mossy fibers between three GrC-GoC building
blocks, similar to biological mossy fibers that distribute information to several granule cells in reach of their
length. Functionally both cases will have modulated receptive field/fields in parallel fibers targeting
corresponding Purkinje cell blocks. Output of the PD controller will serve as learning signal for both terms,
while for gravitational term learning signal will be tied to zero. Process of learning during 20 cycles, and
convergence of weights to ideal values for the first case is given in Figure 12(a). Middle plot shows trend of
decreasing joint position error during learning. Both weights converge to ideal values. Process of weight
convergence for both terms in second case is shown in Figure 12(b). There are 73 weights for each term.
Effective activity of the receptive fields is 2 (triangular receptive fields 4 quanta wide) causing weights to
converge to half the ideal value. Since information content of error signal is joint position dependent and term
dependent, different weights follow different convergence path, but group trend converges to proper value.
Heat map of all weights after second phase of learning is pictured in Figure 12(c). Stripes for inertial and
friction synaptic weights in ideal case should be uniform and positive. Stripe for gravity synaptic weights is
same one shown in Figure 11(b).
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3.3. Global Generalization to Joint Speed and Joint Acceleration Inputs

Convergence of weights to ideal values is important for proper global generalization property of
cerebellar controller with granule cell-Golgi cell building blocks by rate coded inputs targeting Golgi cell lower
dendrite tree. These inputs will be targeted by joint speed and joint acceleration [21, 28, 23], as described in
previous section. Two-phase learning was used to achieve learning of three controller terms without
interference between them, as one form of tackling credit assignment problem. Simultaneous learning of thee
terms will efficiently decrease error, but may fail to converge to ideal values [28]. Generalization to population
coded inputs remains local as in standard CMAC, determined by receptive field width and basis function, and
layered processing.
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Figure 12. Second phase of learning: only inertial and viscous friction terms are learned. (a) Learning
position independent terms. Weights converge to ideal values marked with bold red line. (b) Learning
position dependent terms. Effective activity of receptive fields at any point is equal to 2, causing convergence
of synaptic weights to half the ideal value. (c) Synaptic weights for three terms at the end of second phase of
learning. In ideal case stripes for inertial and friction synaptic weights should be uniform and positive

Trained cerebellar dynamics from previous section was assessed at same sinusoidal trajectory cycling
from 0 — 2n — 0 — -2n — 0 at different cycle times. During this phase learning is tuned off and all terms
will participate in control process, to illustrate quality of learned model [21]. Figure 13 gives results of joint
position error during four test runs with cycle times equal to 100 s, 10 s, 4 s and 2 s. Fifth dashed plot in the
same figure corresponds to test run at 2 s cycle time that was subject to additional second phase of learning at
same 2 s cycle time. Reference error is the one with 10 s notation (black line), obtained after learning from
Figure 12(a). Other lines give errors for other cycling times. Error increases with shorter cycle times, but it
remains at very low values. Additional second phase of training at high speed halved joint position error at
same speed, with additional improvements to lower cycle times (not shown in the figure). Since different
sinusoidal trajectories will be subject to different joint speeds and joint accelerations from reference one. Seen
in the three dimensional input state space with axis as joint position, joint speed, and joint acceleration they are
almost completely different trajectories [28]. Standard CMAC generalization would provide almost negligible
contribution to all new test trajectories, as shown in [28] for two times faster trajectory than reference. Results
of tracking trajectories that span the range from 10 times slower to 5 times faster than reference show very
good generalization property for this version of cerebellar controller. Errors could be made even smaller by
increasing update rate of the controller, but update period of 0.01 s is selected for practical reasons when real-
time control is to be implemented.
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Figure 13. Position error in tracking sinusoidal trajectory, cycling from 0 — 21 — 0 — -21 — 0, with
PD+CMACqgbs controller. Reference error is the one with 10 s notation (black line). It was obtained with 5
cycles of learning with 100 s / cycle for gravitational loading terms only, followed with 20 cycles of learning
with 10 s / cycle for other two terms. Testing was done with the same trajectory (hormalized to 2 s) at
different speeds of cycling. Generalization is very good for wide range of changes in cycle time, showing
good generalization over different joint speeds and joint accelerations. Error during 2 s cycle was halved with
one additional second phase of learning at same 2 s cycle time (dashed blue line)

Extending dimensionality of this cerebellar model controller with other terms in (4) can be done
adding one granule cell-Golgi cell building block and one Purkinje cell for each new term [23]. Purkinje cells
with same learning signal can be joined into one. For robots of up to four dimensions, extension is straight-
forward: precerebellar blocks that create one-dimensional receptive fields are added. They will be connected
to other inputs of granule cell-Golgi cell building block (tied to constant 1 if not used), and resulting receptive
fields will be of corresponding dimensionality.

One-dimensional receptive fields for all dimensions can be shared between any number of granule
cell-Golgi cell building blocks. If dimensionality of input space is higher than four, results of [43] for
approximation of frequency band-limited high-dimensional receptive fields can be approximated with full
overlaid limited connectivity (up to four in granule cell-Golgi cell building blocks) multi-dimensional receptive
fields.

4. CONCLUSION

Single compartment spiking neuronal model for the granule cell-Golgi cell building block illustrated
creation of multi-dimensional receptive fields from one-dimensional receptive fields at granule cell axons
(ascending axon and parallel fibers). Separate inputs to the lower dendrite tree of the Golgi cell can be used to
modulate group of higher dimensional receptive fields at outputs of the granule cells. Cerebellar model with
granule cell layer composed of collection of idealized granule cell-Golgi cell building blocks was used as
dynamics controller for robot joint plant, in computed torque configuration. Cerebellar model of this structure,
being biologically plausible, spans generalization capabilities to global for rate coded inputs that target lower
dendrite tree of the Golgi cell, while they remain local as in conventional cerebellar models for inputs targeting
granule cells. Simulations for robot sinusoidal trajectory tracking task over wide range of cycling time was
used for exploring generalization capabilities of controller. New cerebellar model controller with two-phase
learning, with separate training of gravitational term on very slow cycle time (100 s / cycle) and other terms to
some mid cycle time (10 s/ cycle), was able to acquire robot plant dynamics model. Testing phase with learning
turned off, over wide range of unlearned slower and faster trajectories with cycling times (from 100 s / cycle
to 2 s / cycle) performed with very low tracking error. Model can be extended to other dynamical effects, like
adaption to any orientation, variable mass load, and contact with environment, without exponential growth in
complexity.
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