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 Bag-of-words approach is popularly used for Sentiment analysis. It maps the 

terms in the reviews to term-document vectors and thus disrupts the syntactic 

structure of sentences in the reviews. Association among the terms or the 

semantic structure of sentences is also not preserved. This research work 

focuses on classifying the sentiments by considering the syntactic and 

semantic structure of the sentences in the review. To improve accuracy, 

sentiment classifiers based on relative frequency, average frequency and term 

frequency inverse document frequency were proposed. To handle terms with 

apostrophe, preprocessing techniques were extended. To focus on 

opinionated contents, subjectivity extraction was performed at phrase level. 

Experiments were performed on Pang & Lees, Kaggle’s and UCI’s dataset. 

Classifiers were also evaluated on the UCI’s Product and Restaurant dataset. 

Sentiment Classification accuracy improved from 67.9% for a comparable 

term weighing technique, DeltaTFIDF, up to 77.2% for proposed classifiers. 

Inception of the proposed concept based approach, subjectivity extraction 

and extensions to preprocessing techniques, improved the accuracy to 93.9%. 
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1. INTRODUCTION 

The web which is massively increasing resource of information has changed from read only to read 

write. Large amount of opinionated data is generated by online activities like social media, blogging, surveys 

and forums [1]. Electronic Word of Mouth (eWoM) has become more popular than the traditional Word of 

Mouth (WoM) publicity [2]. Automatically processing sentiment data needs to be handled systematically.  

Sentiment Analysis involves extracting, preprocessing, understanding, classifying & presenting 

sentiments expressed by the users [3]. Sentiment analysis generally involves classifying the polarity of a 

piece of text as positive, negative or neutral. It also involves subjectivity extraction [4], intensity prediction 

[5] and emotion classification [6]. Sentiment analysis was also performed at the term, sentence, paragraph, 

document level and was also extended to aspect level [7], [8]. Sentiment Analysis was performed on 

languages like English, Chinese, Arabic and Vietnamese language. There are very few multilingual sentiment 

classifiers [9].  

Sentiment analysis techniques can be broadly classified as supervised learning and unsupervised 

learning techniques [10]. Many unsupervised learning techniques use existing lexical resources like WordNet 

[11] and language specific sentiment information like sentiment seed words, their Synonyms and antonyms 

to construct and update sentiment lexicons [5], [12]. Unsupervised learning techniques assigned a generalized 

polarity and weight to a term and thus fail to capture its domain specific context. Supervised learning 

techniques use a set of reviews, tagged positive or negative to train the classifiers. Preprocessing tasks such 

as stopwords removal [13], punctuations removal are performed on these documents. Terms are then 
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classified on the basis of their dominancy in positively tagged documents versus negatively tagged 

documents. This lexicon is then used for classifying the reviews using bag-of-words (BOW) approach [14]. 

Supervised as well as unsupervised techniques used bag-of-words approach. Processing structured 

vectors was systematic compared to unstructured, but positional information carried by term was ignored. 

Syntactic structure of a sentence plays an important role in sentiment analysis [15]. Term-document vectors 

provided the count of term in document but the term as an individual may carry a different meaning than 

what it meant as group of words in sentence. Semantic structure of words in sentence contributes to the actual 

meaning & thus may adjoin for sentiment analysis also. This information was not handled when representing 

documents as term vectors. Bag-of-words based approaches thus fail to capture syntactic and semantic 

structure of reviews. Although supervised techniques such as SVM, NN & unsupervised approaches such as 

lexicon-based approaches are popular, intelligent systems such as concept-based approaches is need  

of hour [1].  

Sentiment Classifiers, preprocessing techniques & deduction methodologies are the core 

components of Supervised Sentiment Analysis. Pang, Lee, & Vaithyanathan stated that sentiment analysis 

needs to be handled in a more sophisticated way than traditional text categorization [16]. They are pioneers 

for extracting, transforming & tagging popular movie review dataset [17].Domain specific sentiment analysis 

models were designed for various domains such as movie, restaurant, mobile, books and DVD’s. The movie 

domain was relatively difficult to classify [18]. Top ranked index terms were not the top ranked sentimentally 

polarized terms. So terms were classified on the basis of term presence distribution across positively and 

negatively tagged documents [19]. Frequency distribution was not considered. Classifiers such as Naive 

Bayes, SVM and Random Forest Classifiers were among popular techniques for sentiment classification [20]. 

These classifiers classified a term as positive if it was more frequent in positively tagged documents, negative 

if more frequent in negatively tagged documents and neutral if equally distributed. Neutral terms might not 

have exactly equal occurrence in positively tagged documents and negatively tagged documents. Even if the 

term was distributed with a slight difference, the term was classified. Actually the term might be neutral. 

Classifiers also suffered due to high dimensionality if preprocessing was not performed. 

As the training data had grown exponentially, dimension of the input space had also splurged. 

Sentiment analysis being a specialized domain of text mining benefitted after text preprocessing [21]. Pre-

processing includes tokenizing, eliminating tags, stopwords removal, discarding punctuations & symbols, 

stemming & lemmatization [22]. Ensemble approaches were used to identify an appropriate combination of 

preprocessing [23]. Punctuation marks are important when writing in English or any natural language, but are 

hardly of any use for computational linguistics [24]. Apostrophe was discarded. The terms with apostrophe 

would then form a new dimension, defeating the purpose of dimensionality reduction. For example: After 

apostrophe removal term didn’t was mapped to didnt. The term didnt not being a word in English, mapped to 

a new dimension. There wasn’t any standard stopwords list [13]. The available stopwords list didn’t include 

domain-specific stopwords. Discarding neutral terms or sentiment stopwords was also a herculean task. 

Training set was enriched by adding antonyms of the tagged reviews in term-document vectors of 

opposite orientation [25]. Negation handling was not performed. Implicit and explicit negation modifiers 

were handled using a three stage model [26]. The polarity shifter term might not modify the term exactly next 

to it. The other drawback was the availability of exact antonym. Scope of linguistic negation was determined 

by using Dependency Analysis [27]. Sentences were represented in form of parse trees using Stanford Parser 

[28]. Initial score of feature descriptors were based on SentiWordNet. 93.75% of the synonymous sets in 

SentiWordNet are ignored as they have a stronger objective tendency than positive and negative [29]. 

Processing structured vectors was easier and systematic as compared to unstructured text reviews, 

but the positional information carried by a term was not considered. The syntactic structure of the sentence 

plays an important role in sentiment analysis [15]. Term-document vectors provided the count of the term in 

document but the term might be associated with one or more terms in the document. This information was 

not recorded when representing terms as documents. The term as an individual may carry a different meaning 

than what it meant as group of words in the sentence structure. The semantic structures of the words in the 

sentence contribute to the actual meaning and thus may adjoin for sentiment analysis also. The bag-of-words 

based approaches failed to capture the syntactic and semantic structure of reviews.  

Although supervised techniques such as SVM, NN and unsupervised approaches such as lexicon 

based approaches are very popular, intelligent systems such as concept based approaches is the need of the 

hour [1]. 

 

1.1. Contribution 

Proposed model attempts to go beyond traditional Bags-of-words approach. It considers syntactic 

and the semantic structure of sentences in reviews. Terms in a review were classified as positive or negative 

based on their position & association with other terms in the review. The association among the terms and the 
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position of the term in the sentence was considered. Classifiers were designed to handle neutral terms, on the 

basis of relative dominance. Existing preprocessing techniques were extended to handle terms with 

apostrophe. Rules were set to handle terms with apostrophe before discarding punctuations. A set of domain 

specific rules for the movie domain were proposed in the deduction phase. Subjectivity extraction was done 

at phrase level. 

Reasearch method for proposed CSAM model is described in Section 2. Results are reported & 

analyzed in Section 3. Conclusion & future scope are put forth in Section 4. 

 

 

2. PROPOSED METHOD 

Figure 1 presents the proposed Conceptual Sentiment Analysis Model (CSAM). 

 

 

 
 

Figure 1. Proposed conceptual sentiment analysis model 

 

 

2.1. Preprocessing phase 
The words with apostrophe such as isn’t and that’s were an overhead in term-document matrix, as 

illustrated with an example in Table 1. Unlike traditional preprocessing technique where punctuation symbols 

are discarded, a set of rules to handle words with apostrophe, are proposed in Table 2. After proposed 

extension of handling terms with apostrophe, traditional preprocessing task of discarding punctuations and 

other symbols were performed.  

 

 

Table 1. Example of Term-Document Matrix entries for word “isn’t” before and after handling apostrophe 
Before Handling Terms with Apostrophe          After Handling Terms with Apostrophe 

Documents 
Terms  

Documents 
Terms 

Is not isn’t  Is not 
Document 1 1 3 -  Document 1 1 3 
Document 2 - 1 1  Document 2 1 2 
Document 3 1 1 -  Document 3 1 1 

 

 

Table 2. Set of rules for Handling terms with Apostrophe 
No Rule Example 

1 n’t  _ not wasn’t  was not 

2 ’s  _ is that’s  that is 

3 ’re  _ are you’re  you are 

4 ’ve  _ have they’ve  they have 

5 ’m  _ am I’m  I am 
6 ’d  _would they’d  they would 

7 ’ll  _ will you’ll  you will 

8 ’em  _them make’em  make them 
9 in’  _ ing fringgin’  frigging 

Note: Symbol “_” indicates space 

  

 

2.2. Polarity classification phase  

Preprocessed term-document matrices were provided as input to proposed Sentiment Classifier. A 

term was classified as positive if it was dominant in positively tagged reviews & viceversa. Dominancy of a 
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term in reviews was determined by proposed Classifiers. Negation handling was performed at conceptual 

level.  

Weighted Relative Term Frequency Sentiment Classifier (WRTFSC) classified term as positive if its 

frequency in positively tagged documents was larger than in negatively tagged documents & vice-versa 

Weighted Average Relative Term Frequency Sentiment Classifier (WARTFSC) was proposed to 

overcome the drawback of WRTFSC. As WRTFSC was based on frequency count, it fails to handle biased 

data. Biased data typically includes reviews with important terms repeated too many times. To overcome this 

drawback, a term was classified as positive if its average frequency in positively tagged documents was 

larger than its average frequency in negatively tagged documents and vice-versa. 

Weighted Sentiment Term Frequency Inverse Document Frequency (WSenti-TFIDF) works on the 

principle of relative Term Frequency Inverse Document Frequency (TFIDF) of a term across positively 

tagged documents and negatively tagged documents. A term was classified as positive if its TFIDF across 

positively tagged documents was larger than its TFIDF across negatively tagged documents and vice-versa. 

Term would be classified as neutral term if its dominance in positively & negatively tagged 

documents was equal. Conversely even if dominance varied slightly, term would be classified as positive or 

negative. Ideally term should have been classified as neutral. To avoid biased classification, a window was 

provided defined by ± Neutral Term Window Boundary (NTWB) as shown in Figure 2 for handling neutral 

terms. 

 

 

  Polarityt = Negative 

Polarityt 

=     Polarityt = Positive 

   Neutral    

        
      -NTWB 0        NTWB   

 

Figure 2. Sentiment Classification based on Polarity value with window for neutral words. 

 

 

That is if the Polarity value of a term was between –NTWB and NTWB, the term was classified as 

neutral. If Polarityt value was greater than NTWB then the term was classified as positive. Conversely, if 

Polarityt value was lesser than −NTWB then the term was classified as negative. More words were classified 

as neutral if NTWB was larger, resulting to lesser number of opinionated words. Conversely if NTWB value 

was a smaller value neutral words would not be appropriately identified. Either condition would affect the 

accuracy of the classifiers. So an optimal NTWB value for each Sentiment Classification Model was 

experimentally determined to maximize accuracy.  

 

 

Table 3. Proposed and traditional Sentiment Classifier Models 
Sr. No. Sentiment Classifier Classification Criteria for term Based on 

1 TSC Traditional Sentiment Classifier [16]  ctdctd NPMax ,  Frequency Count 
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where, 

Pctd = Frequency of term t in positively tagged documents. 

Pt  = count of positively tagged documents with term t. 
P  = Total Number of positively tagged documents.  

 

Nctd = Frequency of term t in negatively tagged documents. 

Nt  = count of negatively tagged documents with term t. 
N  = Total Number of negatively tagged documents. 
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NTWB values for all 3 proposed classifiers were experimentally determined. The classified terms 

were used in Concept based Deduction Phase. The mathematical models of the proposed classifier and those 

which were experimented for comparative analysis are summarized in Table 3. 

 

2.3. Concept based deduction phase 

Bag-of-words approach assumes that positions of words in reviews aren’t important. It also fails to 

capture association within terms. Traditional approaches thus ignore syntactic & semantic structure of 

reviews.  

Consider the reviews: Review 1: Boring and not interesting. Review 2: Interesting and not boring. 

Although both of above mentioned reviews mean exactly the opposite, statistical method would treat 

them in the same way. Both the reviews will be represented as vectors. Each word in the review would be 

recorded as an element in the term-document vector with its frequency. Both vectors will be identical, though 

they are of different orientation. Thus statistical classifiers fail to capture their correct orientation. The 

proposed approaches handle the issues related to syntactic & semantic structure of sentences. Language 

grammar adds meaning to the text. Grammatical structure was explored using Stanford Parser [30]. It 

returned dependencies among terms in reviews. The proposed concept based approach then identified that 

negation modifier not is associated with term boring in first review thus it modifies the orientation of term 

boring. While classifying review, the polarity of term boring was reversed & summed with the term 

interesting, to compute the correct orientation of review 1. Similarly review 2 could also be appropriately 

classified. Instead of summing polarities of term in reviews, they were added by considering syntactical 

structure of the terms in a review.   

Consider another review: A visually flashy but narratively opaque vapid exercise in style & 

mystification. 

A classifier that follows BoW approach would sum the weights of all terms to compute review 

polarity. Actually the conjunction “but” notifies that only later part of sentence should be considered & prior 

should be ignored. Traditional approaches fail to handle these semantic relationships. Adjectives & adverbs 

also modify the intensity of associated terms. They should not be simply summed as in BoW approach. 

Semantic structure of review was systematically handled in proposed approach. Grammatical rules were 

explored to handle semantic structure of reviews. Stanford Parser returns dependencies among the terms in 

review. Polarities of the term were aggregated by considering the association of the terms in a review with 

other terms in the same review. Dependencies were treated to capture the correct sentiment in the review. 

Conjunctions, adverb modifiers and negation modifier dependencies were treated individually. 

Semantic structure of example review was handled as in Figure 3. Determinant A was classified as 

stopwords. Sub-tree before conjunction BUT & conjunction BUT was discarded. Polarities of terms in 

adjective phrase, with adverb, NARRATIVELY & adjective, OPAQUE was multiplied. This branch was 

summed with noun EXERCISE and added to polarity of right sub-tree. In right sub-tree IN was classified as 

stopwords. Conjunction AND was ignored. Polarities of associated noun phrases STYLE & MYSTIFICATION 

were added. 

 

 

 
 

Figure 3. Grammatical dependencies for the example review using Stanford Parser 

 

 

Apart from handling syntactic and semantic structure of reviews, SentiWordNet and Domain 

Specific Rules were also incorporated. To handle rare case of the new terms that are not present in training 

set, SentiWordNet was used. If a term was present in lexicon as well as SentiWordNet, the polarity of 
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domain specific lexicon was utilized. Although only nearly 7% of the words in SentiWordNet are 

opinionated, sometimes these were also useful for Sentiment Classification. Polarity of the terms in 

constructed domain-specific lexicon was normalized to adapt with the SentiWordNet.  

Domain specific rules for Movie domain were generated and expanded to improve overall 

Sentiment Classification accuracy. Reviewers generally remarks in a review with their final opinion about the 

movie. The opinion expressed about movie could be positive or negative. Two sets of rule based classifiers 

were designed to classify the sentiments. In first sets, various rules that are related to term Movie and all its 

synonyms to words with positive orientation like good, great and happy were listed. Similar terms were 

explored using WordNet [11]. If a review satisfied any of the condition in this it would be classified as 

positive. The second set was designed to classify a review as negative. 

The object part of text review, which is the verb phrase of sentence, carries more opinionated 

information as compared to subject part or the noun phrase of the same sentence.  

Consider the review. The movie was good. 

The movie  subject part  informative was good  object part  opinionated  

Considering this subjective & objective composition of a statement, subjectivity extraction was 

performed at phrase level. The noun phrase was ignored & the polarity for the rest of the review was 

computed. Noun Phrase (NP), THE MOVIE was ignored. The polarity was computed for the Verb Phrase 

(VP) WAS GOOD. 

 

2.4. Experimental setup 

Proposed Conceptual Sentiment Analysis Model (CSAM) model was evaluated on Pang & Lee’s, 

Kaggle’s & UCI’s movie datasets. Proposed classifier, being domain independent, were evaluated on movie 

as well as restaurants and product dataset. Pang and Lee’s Movie Review Dataset contains 2000 positively & 

negatively tagged text documents [17]. Kaggle’s Bag of Words meets Bag of Popcorns dataset contains 

25000 positively & negatively tagged reviews [31]. Due to computational limitation experiments were 

performed on Kaggle’s subset of 1800 positively & negatively tagged reviews. UCI’s Sentiment Labelled 

Movie, Restaurant & Product datasets individually consists of 1000 reviews tagged positive & negative [32].  

If the label of the review and the classification outcome was same, then it contributed to accuracy. 

Otherwise the outcome added to error rate. Accuracy was computed using, 10 Fold Cross Validation (10 fold 

CV) [21]. Instead of evaluating the Conceptual Sentiment Analysis Model (CSAM) as a whole, it was 

evaluated in incremental manner in every experiment.  

Experiment 1 was performed to determine the optimal values of Neutral Term Window Boundary 

(NTWB) parameter for proposed WRTFSC, WARTFSC and WSentiTFIDF classifiers. The NTWB value 

was varied between, 0 to ±2 in step of 0.1. Accuracy was computed at each step. Minimum value for NTWB 

parameter that yielded maximum accuracy was set for the respective classifiers in all further experiments. 

Experiment 2 was performed to evaluate proposed classifiers. Accuracy was computed for the 

Traditional Sentiment Classifier (TSC), a comparable term weighting classifier (Delta-TFIDF) & proposed 

WRTFSC, WARTFSC and WSenti-TFIDF classifiers. 

Experiment 3 was performed to evaluate proposed extensions to existing preprocessing techniques. 

Traditional preprocessing techniques of discarding punctuations & other symbols were applied on proposed 

classifiers. The proposed extension to handle terms with apostrophe was applied. Accuracy was computed for 

the traditional preprocessing techniques and the proposed extension to the existing preprocessing techniques. 

Experiment 4 was performed to evaluate Proposed Conceptual Sentiment Analysis Model. 

Experiment 5 was performed to evaluate Proposed CSAM with phrase level Subjectivity Extraction. 

Only the object part of the sentences in the dataset was provided as input to the CSAM model. 

 

 

3. RESULTS AND DISCUSSIONS 

Results of experiment 1, for Pang and Lee’s Movie Review dataset are presented in Figure 4. 

 

 

   
 

Figure 4.  NTWB parameter determination for proposed WRTFSC, WARTFSC and WSentiTFIDF classifiers 
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Experimented NTWB values are represented on x axis. Accuracy at specific NTWB value is 

represented on y axis. Accuracy of each fold is represented in different colour. It can be observed from figure 

4, when NTWB=0, accuracy was nearly 50%. As NTWB parameter was incremented, accuracy improved 

until a certain value. This NTWB value was selected as the optimal NTWB value. It can be observed from 

figure 4 that maximum accuracy for WRTFSC classifier was achieved at NTWB value of 1.4. Similarly it 

can also be noted that optimal NTWB values for WARTFSC classifier and WSentiTFIDF are 1.1 and 0.4 

respectively. These are marked using a blue block. Window boundary values concept was not applicable for 

Traditional Sentiment Classifier (TSC) as it is not based on relative or ratio based mathematical model. 

 

 

 
 

Figure 5. Accuracy Graph for evaluating Performance of Proposed Classifiers on mentioned datasets 

 

 

Results for experiment 2 are presented in Figure 5. Classifiers performance was evaluated. 

Classifiers being independent of domain were evaluated on datasets from movie as well as product and 

restaurant domains. It was observed that proposed classifiers outperform the traditional classifiers. 

Irrespective of the input dataset the proposed classifiers achieve accuracy higher than traditional classifiers.  

 

 

 
 

Figure 6. Accuracy graph for evaluating performance 

after preprocessing dataset 

 
 

Figure 7. Accuracy graph for evaluating performance 

of proposed conceptual sentiment analysis model 

 

 

Results for experiment 3 & 4 are presented in Figure 6 and Figure 7 respectively. A slight 

improvement in accuracy due to proposed extensions to existing preprocessing techniques can be observed. It 

can be observed that the proposed Conceptual Sentiment Analysis models (CSAM) shows remarkable 

improvement in accuracy. 

Results for experiment 5 are presented in Figure 8. The Proposed Conceptual Sentiment Analysis 

model shows a remarkable improvement in accuracy after Subjectivity Extraction at the phrase level. 

 

 

   
 

Figure 8. Accuracy graph for evaluating performance after subjectivity extraction 

 

 

Results are discussed here considering the outcomes of Pang and Lee’s Movie Review Dataset as it 

has been popularly used for analysis. Proposed classifier WRTFSC stands first with an accuracy of 77.2%. 

Figure 6 represents the evaluation with traditional preprocessing and proposed preprocessing extensions. 
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WSentiTFIDF outperformed with an accuracy of 78%. Figure 7 and Figure 8 represents the accuracy of 

proposed Conceptual Sentiment Analysis model and proposed Modified Conceptual Sentiment Model where 

WARTFSC classifier had maximum accuracy of 88.5% & 93.9% respectively.  

 

 

4. CONCLUSION/S AND FUTURE SCOPE 

Proposed WRTFSC, WARTFSC & WSentiTFIDF classifiers showed an improvement in sentiment 

classification accuracy from 67.9% to 77.2%.Preprocessing techniques were extended to handle term with 

apostrophe, along with traditional way of discarding punctuations and other symbols. A slight improvement 

in accuracy from 77.2% to 78% was observed due to preprocessing extensions. Bag-of-words approach failed 

to handle syntactic & semantic structure of reviews. As classifiers are based on probabilistic models, 

adapting classifiers for handling natural language specifications was an intricate task. Proposed concept 

based approaches handled syntactic & semantic structure of sentence. Remarkable leap in accuracy from 

78% to 88.5% was observed due to proposed Conceptual Sentiment Analysis model. Subjectivity extraction 

was performed at the phrase level, resulting to an improvement in accuracy from 88.5% to 93.9%.  

The accuracies of surveyed techniques that used Pang and Lee’s Movie Review Dataset were 

between 76.37% and 92.7%. Although these accuracies cannot be directly compared as the experimental 

setup may vary, the proposed Conceptual Sentiment Analysis Model performs better than existing techniques 

with a remarkable accuracy of 93.9%. 

CSAM model follows the concept based approach at word, phrase and sentence level. Models that 

focus on the concept based approaches, at inter statement level and inter document or review level can be 

designed. 
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