
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 3, June 2019, pp. 2041~2048

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i3.pp2041-2048  2041

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Reengineering framework for open source software using

decision tree approach

Jaswinder Singh1, Kanwalvir Singh2, Jaiteg Singh3
1,3Department of Computer Application, IK Gujral Punjab Technical University, Kapurthala, Punjab, India

2Department of Computer Science and Engineering, Baba Banda Singh Bahadur Engineering College,

Fatehgarh Sahib, Punjab, India
1,3Department of Computer Applications, Chitkara University, Rajpura, Punjab, India

Article Info ABSTRACT

Article history:

Received Jan 9, 2018

Revised Nov 27, 2018

Accepted Dec 20, 2018

 A Software engineering is an approach to software development.

Once software gets developed and delivered, it needs maintenance. Changes

in software incur due to new requirements of the end-user, identification of

bug in software or failure to achieve system objective. It has been observed

that successive maintenance in the developed software reduces software

quality and degrades the performance of software system. Reengineering is

an approach of retaining the software quality and improving maintainability

of the software system. But the question arises “when to reengineer

the software”. The paper proposed a framework for software reengineering

process using decision tree approach which helps decision makers to decide

whether to maintain or reengineer the software systems.

Keywords:

Complexity metric

Decision tree

Maintainance

Reengineering

Software engineering Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Jaswinder Singh,

Department of Computer Application,

IK Gujral Punjab Technical University,

Kapurthala, India.

Email: jaswinder_luthra@yahoo.co.in

1. INTRODUCTION

Changes in software due to user requirements, faults or due to technology change are very frequent.

The need of customer or client may get changed as per business requirements. New changes may introduce

new challenges to the developer. To adapt these changing requirements software needs to maintain again and

again. According to Lehman [1] frequent changes increase the complexity of software. Summerville [2]

stated that aging of program results in increase in maintenance cost which further degrade the program

structure and it becomes harder to understand and change. There are various complications in upgrading

the legacy systems also [3]. Reengineering is defined as reconstitution of an existing system [4], system

changing activity [5], reconstruction or reworking on part or all of the legacy system [6] and aimed to

improve the quality of software [7].

Very important and crucial decision is whether a software must be further maintained or whether it

must be reengineered. Reengineering aimed to enhance the quality of software and the increasing

the software maintainability [7]. Another question is what metric or parameter can be used for this decision

making.

This framework describes a generic process to identify reengineering requirements based on

the software metrics. As reengineering is making changes of software at design level, so making right metric

choice is very important. Reengineering is also important for many popular software Metrics exist that aimed

for understanding and improving the quality and reducing the complexity of the software [8-12]. Ck Metric

[13] is well known complexity metric suit in the domain of object-oriented paradigms for measuring software

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2041 - 2048

2042

quality. The basic set of Metrics includes Weighted Methods per Class (WMC), coupling Between Object

classes (CBO), Depth of the Inheritance Tree (DIT), Number of Children (NOC) and Response for a Class

(RFC). In this paper, complexity of software is analyzed statistically using CK metric and then decision tree

is used to for deciding the reengineering requirements of software systems.

2. RELATED WORK

The concept of reengineering is having very strong research base but still, the use of decision tree

approach to support the decision of reengineering and maintenance is limited. The existing studies provide

software reengineering framework but in different domains. Rehma et al. [14] have suggested REXDES,

an Expert based Decision support framework for software Reengineering. This framework uses RASIC

components that use expert based decision system to assist decision makers in reengineering related

decisions. But this framework is having theoretical existence only, it lacks practical implementations.

Sood [15] proposed a metric framework for making the decision among reengineering and maintenance.

He calculates Reengineering requirement cost with ‘defect cost’, ‘Fault cost’ as reengineering metrics, but his

approach ignores use of functional independence in reengineering decision making. Many reengineering

models have also been given by various authors [16-22].

3. METHODOLOGY

Dataset consist of open source JAVA projects of different sizes. Diomidis [23] derived CKJM

(Chidamber and Kemerer Java Metrics) tool to apply CK complexity metric. Proposed research used CKJM

ver-1.9 [24] for java code analysis. CK metrics are measured for all the java projects. For classes in the java

project, statistical methods (measuring average complexity) are applied for basic set of CK metrics. For all

the Java projects, average of six set of complexities for each class has been computed and the sum of all

average complexities computer per class is the Total Average Complexity of Modules of the project

(TACMP) [25]. Total mean complexity (TMC) is average complexity of all project’s TACMP. Decision

making is based on the prediction with the help of decision tree. Rapid Miner studio ver- 7.1 [26] is used to

model the decision tree for data sets. TACMP and size (LOC) are used in Decision Tree as attributes to

predict the required outcome. Decision Trees are predictive in nature [27, 28]. Prediction is based on

the rules by dividing data into groups. A training data set is generated consisting of 15 Java projects. Training

data set contains SIZE (LOC), Total Average Complexity of Modules of the project and category as

attributes. The category attribute is a label and is measured on the basis of TMC and size. Another Model

dataset contains 5 Java projects on which predictions will be applied.

Here proposed algorithm is presented which calculate the complexity metric for open source

software and use Rapid Miner tool to predict the maintenance and reengineering requirement.

Input: Open source JAVA projects,

Output: Statistical Complexity Measures and Reengineering predictions

1) Consider 20 Open source JAVA projects

2) Apply CKJM Metric tool to calculate Basic Metric set of CK metric for each module of every single

JAVA project

3) Perform statistical analysis to calculate total average complexity of modules of project [TACMP].

4) Calculate total Mean complexity [TMC] for all projects

5) Analyze the correlation between size and total average complexity

6) Use Rapid Miner studio to import Data Sets

7) Apply ‘select attribute ‘operator on imported data to select Size and TMC as attributes.

8) Design Roles to apply predictions

9) After Designing Roles, apply Decision tree operator on Training data stream

10) Use Apply Model operator to apply prediction to Model Dataset

11) Execute the designed Process to get the predicted result

4. DISCUSSION

 Our dataset consist of 20 open source Java projects. For every project, the basic set of CK metrics

are generated using CKJM. Table 1 present measure for one of the Java Project. For every class of

the project, we get the numeric count of six metrics. To get one central or typical value for all six different

metric measures we used the average of the numeric count of six metrics. To get the overall complexity

measure for a complete project, the total average complexity of modules of the project (TACMP) is measured

which is sum of all the averages of modules.

Int J Elec & Comp Eng ISSN: 2088-8708 

Reengineering framework for open source software using decision tree approach (Jaswinder Singh)

2043

Table 1. Metric Measure for Point of Sale JAVA Project [25]

Sr No Metrics & Classes WMC DIT NOC CBO RFC LCOM
Avg

Complexity

1. Customer by Id 8 5 0 3 66 16 16.3

2. Remove Product 8 5 0 3 68 8 15.3

3. Pro By Type 4 5 0 2 44 4 9.8

4. Purchase 16 5 0 7 86 76 31.7

5. Main Frame 65 6 0 47 187 1324 271.5

6. Update Customer 10 5 0 4 70 25 19

7. Pro By Name 4 5 0 2 45 4 10

8. Product Report 4 5 0 2 43 4 9.7

9. Cust By Name 4 5 0 2 43 4 9.7

10. New Product 10 5 0 4 83 29 21.8

11. Product By Id 6 5 0 2 64 3 13.3

12. Payment 4 5 0 2 65 0 12.7

13. Update Product 10 5 0 4 78 25 20.3

14. Cutomer Report 4 5 0 2 43 4 9.6

15. Print 4 5 0 9 38 6 10.3

16. Remove Customer 10 5 0 4 70 25 19

17. New Customer 12 5 0 5 80 56 26.3

 Total average complexity of modules of projects 526.5

Similarly, TACMP for all the 20 JAVA projects have been calculated. The dataset is further divided

into two subsets to be used in the decision tree. One data set is training data set and other is model data set.

Projects of varying sizes are chosen in two sets as swon in Table 2.

Table 2. Complexity Measure for Training Data Set
Sr No Project Name Size (LOC) TACMP

1 Battle City 563 77.2

2 Bounce Ball 160 12.1

3 Chess Game 150 29
4 Fifo 637 75

5 Pong Game 713 31.3

6 TicTacToe 276 12.7
7 Parser 143 13.8

8 Cricket Analyzer 234 16.7

9 CustomerInfoSystem 1139 120.3
10 DiaryApp 431 26.3

11 Dictionary 337 24.7

12 Trignomatric Function 634 362.7
13 Scheduling and dispatch 203 82.7

14 Mynotepad 290 2

15 Chat Server 284 24.3
 TMC 62.68

Statistical measure for the calculating complexity for each module of the java project is given

in (1) [25].

TACMP = Avm1 + Avm2 + Avm3 +⋯+ Avmn (1)

Total Mean complexity (TMC) of training data set having different size is calculated as 62.68.

The formulation is given in (2) [25].

TMC = (TACMP1 + TACMP2 +⋯+ TACMPN)/N (2)

In general, size (LOC) alone is considered as one of the metric to determine the complexity and as

the size increases, complexity of software also increases. In our experiment, Size and TACMP have

also shared a moderate relationship and correlated to each other as swon in Table 3. Figure 1 shows

the relationship between TACMP and Size.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2041 - 2048

2044

Table 3. Complexity Measure for the Model Data Set
Sr No Project Name Size(LOC) TACMP

1 CodeLevelSecurity 201 144.5

2 PointofSale 1082 526.5
3 e-library 323 55

4 Smart File Convertor 440 39.7

5 Shopping Cart 154 24.7
 Total 440 158.08

Figure 1. Correlation between TACMP and SIZE

Both size and TACMP attributes are used in training and model data set. Another attribute

‘Category’ is generated in training dataset. This attribute will serve as a label when training data will be

applied to model data. This attribute is providing decision of whether java project will undergo maintenance

or reengineering. Import both the data sets named training data and data model in Rapid Miner repository

using retrieve operator. To remove the empty columns or selecting required attributes ‘select attributes’

operator is connected with the Training data set. In design, predictions are applied to the Roles. First Role is

connected and in parameters, select category as the label. Project names are not required to be a part of

analysis so another role is designed to create project name attribute as ID that is an identification that means

it will not be a part of the analysis. After designing the roles, decision tree operator is selected and added to

the training data stream. This decision tree operator generates a multiway decision tree. Rapid Miner uses

the C4.5 algorithm in order to obtain multiway decision tree. The input to the decision tree is our training

data set consisting of 15 projects. The output of the decision tree is classification model that can be applied to

the new dataset (model data in our case) for prediction. In Decision tree parameters, we selected criterion as

Gini index. Retrieve operator of data model is connected with the role. The parameter of this role ‘category’

is set to be predicted. As shown in Figure 2, the output of decision operator is connected to the model input

of the Apply model operator. The model data is connected to the unlabelled data input of Apply model

operator. The model as an input to the Apply model is applied to the model data at an unlabelled input.

The apply model applies the training model to the model data to predict the value of the attribute

that is with ‘category’ attribute. The prediction is applied to the model data. Apply model produces two

outputs. One is labeled data that is when training data is applied to model data, the attribute with prediction

role is added to the model data. This attribute stores the predicted values of the labeled attribute using

the given trained model. Another output of apply model operator is model. The training model that was input

is passed without changes to the output port. Finally, execute the designed scenario.

5. RESULT

Executing the design, decision tree model as shown in Figure 3 will be generated and can be viewed

by clicking on the tree tab. A decision tree is a collection of nodes and leaves. Nodes are represented as gray

oval shapes. Nodes are the attributes that serve as good predictor. On the root is the average complexity

(TMC). The root node represents the prominent predictor. So TMC is our best predictor of whether or not the

java project is reengineered. The predicted value for TMC is 25.5. Size (LOC) is the second best predictor.

The leaves are represented with multicolored endpoints that show us the distribution of category attribute.

Each leaf node represents value of a labeled attribute that is category in our case. Leaf R represent

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 101112131415

TACMP

SIZE(LOC)

Int J Elec & Comp Eng ISSN: 2088-8708 

Reengineering framework for open source software using decision tree approach (Jaswinder Singh)

2045

reengineering and leaf M represents maintenance. The number of edges of the node is equal to the number of

possible values of label attribute. The edges are labeled with disjoint ranges as per the prediction made by

the decision tree. Tree from root to leaf can be interpreted as if TMC>25.5 and size (LOC)>176.5 the

software undergoes reengineering.

Figure 2. Decision tree modelling in rapid miner

Figure 3. Decision tree stucture for model data set

 Decision tree not only provides predictions but also determine how reliable the predictions are.

Decision tree consists of nodes and leaves that can generate predictions based on percentage of confidence

using actual attributes in the training data set and can then be applied to similarly structured data (data model

in our case) to generate predictions. Decision trees not only tell us about prediction but also about confidence

percentage on prediction and how to arrived on these predictions. As shown in Figure 4, level of confidence

in prediction is 100% for both Reengineering and maintenance. Four projects (Row 1 to 4 in Figure 4) need

to be reengineered with 100% of confidence and one project (Row 5th) need to be maintained again with

100% of confidence. As stated earlier in this paper, Rehma et al. [14] work is having theoretical existence

only, it lacks practical implementations. Comparision of proposed framework and Sood [15] framework is

given in Table 4.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2041 - 2048

2046

Figure 4. Level of confidence in predictions

Table 4. Comparison of Existing and Proposed Framework
 Proposed Framework Existing Framework

Approach used Prediction based on decision tree using Ck

metric suit.Complexity and size as attributes.

Measuring reengineering requirements by

knowing the changes in numbers of lines of code

Data Set Twenty open source Java based software Three C,C++ based software
Metric Used for

reengineering

decision making

Well known CK metric suit-

Weighted Methods per Class (WMC), coupling

Between Object classes (CBO), Depth of the
Inheritance Tree (DIT), Number of Children

(NOC) and Response for a Class (RFC)

Defect cost and Fault cost are used to calculate

Reengineering

Requirement Cost.

Methodology
differences

Framework is based on data set of heterogeneous
(Different size and measured CK complexity)

Java Projects. Decision tree based prediction

approach is used for reengineering and
maintenance decision making.

Framework is based on three projects developed
in C and C++.

Results Analysis Statistical Measure of Complexity of CK metric

suit for twenty Java based Projects.
Reengineering is prediction based using decision

tree prediction approach supported by

confidence measure. Results can surely be
further improved with improvement of data set.

Calculation of Reengineering

Requirement Cost metric is dependent on defect
cost metric which needs to calculate total lines

affected by defect. Method of calculating total

lines affected by defect is ambiguous.

6. CONCLUSION

To improve the quality of the software, it is important to analyze the changes at design level without

changing the functionality of the software. By calculating the complexity using six basic CK metrics and

with the help of decision tree using rapid miner, predictions have been made regarding the requirements of

reengineering or maintenance for the software. This framework can become a basis for deciding whether the

project should undergo reengineering or maintenance. Further, the results can be generalized by considering

more projects of different size and complexity.

REFERENCES
[1] Lehman G. and Meir M., “Programs Life Cycles, and Laws of Software Evolution,” Proc. IEEE, vol/issue: 68(9),

pp. 1060–1076, 1980.

[2] Ian S., “Software Engineering,” 9th edition, Pearson Publication, 2014.

[3] Srinivas M., et al., “Analysis of Legacy System In Software Application Development: A Comparative Study,”

International Journal of Electrical and Computer Engineering (IJECE), vol/issue: 6(1), pp. 292-297, 2016.

[4] Chikofsky and Cross J. H., “Reverse Engineering and Design Recovery: A Taxono,” IEEE Software Engineering

journal, pp. 13-17, 1990.

[5] IEEE Std 1219-1998, “IEEE Standards Software Engineering,” 1999 Edition, Volume Two, Process Standards,

IEEE Press, 1999.

[6] Ian S., “Software Engineering,” 8th edition, Addison Wesley, 2008.

[7] Sneed M., “20 Years of Software-Reengineering: A Resume,” 10th Workshop software reengineering (WSR’08), pp.

115-124, 2008.

Int J Elec & Comp Eng ISSN: 2088-8708 

Reengineering framework for open source software using decision tree approach (Jaswinder Singh)

2047

[8] Basili V. R. and Perricone B. T., “Software errors and complexity: An empirical investigation.” ACM, vol. 27,

pp. 42-52, 1984. http://portal.acm.org/citation.cfm?id=2085.

[9] McCabe T. J., “A complexity measure,” IEEE Trans. Software Eng., vol. 2, pp. 308-320, 1976.

[10] Halstead M. H., “Elements of Software Science,” 1st Edn, Elsevier North Holland, New York, pp. 127, 1977.

[11] Li W. and Henry S., “Maintenance Metrics for the Object Oriented Paradigm,” Proc. of IEEE 1st Int. Sw. Metrics

Symposium, pp. 52-60, 1993.

[12] Bhardwaj M. and Rana A., “Key software Metrics and its Impact on each other for Software Development

Projects,” International Journal of Electrical and Computer Engineering (IJECE), vol/issue: 6(1), pp. 242-248,

2016.

[13] Chidamber S. R. and Kemerer C. F., “A metrics suite for object-oriented design,” IEEE Trans. Software Eng.,

vol. 20, pp. 476-493, 1994.

[14] Rahma A. K., et al., “Expert-based decision support framework for software reengineering,” Malaysian Conference

in Software Engineering, 2011.

[15] Sood S., “Software reengineering: a metric set based approach,” PhD Thesis, Himachal Pradesh University, 2012.

http://hdl.handle.net/10603/129186.

[16] Wood S., et al., “Semantic Foundation for Architectural Reengineering and Interchange,” Proc. International

Conference on Software Maintenance (ICSM-99), Oxford, England, Los Alamitos, Ca: IEEE Computer Society,

pp. 391-398, 1999.

[17] R. Kazman, et al., “Requirements for Integrating Software Architecture and Reengineering Modes: CORUM II,”

Proc. 5th Working Conference on Reverse Engineering (WCRE-98), Honolulu, Hi, Los Alamitos, Ca: IEEE

Computer Society, pp. 154-163, 1998.

[18] E. J. Byrne, “A conceptual foundation for software reengineering,” Proc of conference on Software Maintenance,

Orlando, Florida, pp. 226-235, 1992.

[19] Yang X., et al., “Dual-Spiral Reengineering Model for Legacy System,” TENCON 2005, IEEE Region 10, pp. 1-5,

2005.

[20] Su X., et al., “Parallel iterative reengineering model of legacy systems,” Proc. of IEEE International Conference on

Systems, Man and Cybernetics, USA, pp. 4054-4058, 2009.

[21] Murphy G. C. and Notkin D., “Reengineering with reflexion models: a case study,” IEEE Computer, vol/issue:

30(8), pp. 26-36, 1997.

[22] Chung S., “Service-Oriented Software Reengineering: SoSR,” Proc. HICSS 2007 - 40th Hawaii International

Conference on Systems Science, Waikoloa, Big Island, HI, USA. pp. 172, 2007.

[23] Spinellis D., “Tool writing: A forgotten art?” IEEE Software, vol/issue: 22(4), pp. 9-11, 2005.

[24] CKJM Tool Website, Available: http://www.spinellis.gr/sw/ckjm/doc/ver.html

[25] Singh J., et al., “Identification of requirements of software reengineering for JAVA projects,” 2017 International

Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, pp. 931-934, 2017.

[26] Rapid Miner Tool Website Available : http://rapid-i.com/content/view/30/82/lang,en/

[27] North M., “Data Mining for the masses,” A Global Text Project Book, 2012.

[28] Niswatin R. K. and Wulanningrum R., “Prediction of College Student Achievement Based on Educational

Background Using Decision Tree Methods,” Indonesian Journal of Electrical Engineering and Computer Science,

vol/issue: 4(2), pp. 429-438, 2016.

BIOGRAPHIES OF AUTHORS

Jaswinder Singh holds Masters in Computer Application and persuing PhD in computer

application from IK Gujral Punjab technical University. He is having 10 years of experience in

Acedemics and his expertise includes Software Maintenanace, Reengineering, Algorithm

generations and Data Mning.Current work includes Identification of Metrics for reengineering

Java projects, study of significance of reengineering in todays scenario for Sofftware development

industry.

Dr. Kanwalvir Singh Dhindsa is currently working as Professor in the Department of CSE at

Baba Banda Singh Bahadur Engg. College, Fatehgarh Sahib (Punjab). He earned his Ph.D in

Computer Engg. (in the field of Mobile Computing & Information System) from Punjabi

University, Patiala. He has been awarded the ‘Best Ph.D. Thesis Award’ in International

Conference held in association with Computer Society of India (CSI) at Roorkee (Uttarakhand) in

2014. He has guided dissertations of many M.Tech. students & is currently guiding 7 Ph.D.

scholars. He has authored more than 90 publications in various esteemed international referred

journals & proceedings of reputed international conferences. His research interests are in the fields

of Cloud Computing, Big Data, IoT, Mobile Computing, Database & Security, and Web

Engineering.

http://rapid-i.com/content/view/30/82/lang,en/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 3, June 2019 : 2041 - 2048

2048

Dr Jaiteg holds a PhD in Computer Science and Engineering with 12 years of experience in

Research, Development, Training, Academics at Institutes of Higher Technical Education. His

areas of expertise are Software Engineering, Business Intelligence, Data and Opinion mining,

Cartography, Curriculum design, Pedagogical Innovation & Management. Areas of interest include

Sustainable Software Engineering, Education Technology, Offline Navigation Systems and Cloud

Computing.

