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 A new chaotic system with line equilibrium is introduced in this paper. 

This system consists of five terms with two transcendental nonlinearities and 

two quadratic nonlinearities. Various tools of dynamical system such as 

phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation 

diagram and Poincarè map are used. It is interesting that this system has a 

line of fixed points and can display chaotic attractors. Next, this paper 

discusses control using passive control method. One example is given to 

insure the theoretical analysis. Finally, for the new chaotic system, 

an electronic circuit for realizing the chaotic system has been implemented. 

The numerical simulation by using MATLAB 2010 and implementation of 

circuit simulations by using MultiSIM 10.0 have been performed in 

this study. 
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1. INTRODUCTION 

Discovering chaotic attractor is an important issue in chaotic systems. We can classify two kinds of 

chaotic attractors: self-excited attractors and hidden attractors [1-2]. The chaotic system such as Lorenz 

system [3], R�̈�ssler [4], L�̈� [5], Chen [6], Rucklidge [7] Sprott [8] etc, belongs to the self-excited attractors. 

The chaotic systems with hidden attractors are divided into three parts: (a) system with no equilibria [9] 

(b) system with stable equilibria [10] and (c) system with infinite number of equilibria [11]. Hidden attractors 

have been used in applied models such as a model of the phase-locked loop (PLL) [12], aircraft flight control 

systems [13], drilling system actuated by induction motor [14], Lorenz–like system describing convective 

fluid motion in rotating cavity [15] and a multilevel DC/DC converter [16].  

Motivated by the major work of Jafari and Sprott, researchers focused on chaotic systems with line 

of equilibria. The nine simple chaotic flows with line of equilibria were proposed by Jafari and Sprott [17]. 

Five novel chaotic system with a line of equilibria and two parallel lines were proposed by Li and Sprott [18]. 

Li and Sprott have presented chaotic systems with a line of equilibria and two perpendicular lines of 

equilibria by using signum functions and absolute–value functions [19]. In addition, Li et al reported a 

hyperchaotic system with an infinite number of equilibria and circuit design [20]. Hyperchaos and horseshoe 

in a 4D memristive system with a line of equilibria were proposed in [21]. The simplest 4-D chaotic system 
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with line of equilibria, by applying a state feed-back control to R�̈�ssler equation was represented by Singh 

and Roy [22].  

Various control methods have been used for controlling chaotic systems such as adaptive 

control [23], sliding mode control [24], active control [25], passive control [26], Pecora–Carroll control [27], 

impulsive control [28], fuzzy control [29], optimal control [30], digital redesign control [31] and many others 

[32-33]. The concept of passivity theory has been found to be a nice tool in in various domains of science and 

engineering such as robotic [34], signal processing [35], permanent-magnet synchronous motors chaotic 

system [36], hopfield neural network [37], nuclear spin generator system [38], synchronization [39], 

compass-like biped robot [40] and complexity [41]. 

This paper introduces a new chaotic system with line of equilibria. Our new chaotic system has five 

terms with two transcendental nonlinearities and two quadratic nonlinearities. Basic properties of the new 

chaotic system are analyzed, including such as equilibrium points, Lyapunov exponents, Kaplan-Yorke 

dimension, bifurcation diagram and Poincar�́� map. Finally, passive control and circuit design. 

The rest of our paper is organized as follows. In Section 2, description of the new chaotic system 

with line of equilibria is presented. In addition, the dynamics properties of the new chaotic system are 

investigated. Stability analysis of the system is presented in Section 3. Some definitions and theorems of 

passive control are presented in Section 4 and control of this chaotic system using passive control is 

described in section 5. In Section 6, a new electronic implementation of the new chaotic system is described 

and examined in MultiSIM. Finally, conclusions are drawn in Section 7. 

 

 

2. DYNAMICAL ANALYSIS OF A NEW CHAOTIC SYSTEM WITH LINE OF EQUILIBRIA 

In this part, inspired by the method and structure proposed in [19], we present a new chaotic  

system as: 
 

2

,

| | | |,

| | ,

x yz

y x x y y

z a x by

 


 


 

         (1) 

 

where , ,x y z are state variables a and b are positive system parameters. Here the parameter 𝑎 is a control 

parameter to control the amplitude and frequency of all variables. 

The new chaotic system (1) exhibits chaotic behavior as shown in Figure 1 

 

1.6, 0.8,a b           (2) 

 

and with the initial conditions 
 

(0) 0.2, (0) 0.2, (0) 0.2.x y z          (3) 

 

The fourth order Runge–Kutta method is used for employing the numerical simulations. Moreover the 

Lyapunov exponents of the new system (1) are calculated using Wolf algorithm [42]. 
 

1 2 30.11026, 0, -1.66103LE LE LE          (4) 

 

As seen in Figure 2 (a). A positive Lyapunov exponent reveals the presence of chaotic system. Simulation is 

run for 50.000 seconds.  

The Kaplan-Yorke dimension of the new chaotic system (1) is calculated as 
 

 066.2
||

2D
3

21
KY 




LE

LELE        (5) 

 

Therefore, system (1) is really chaotic with fractional dimension. 

 

a. Fix a=1.6 and vary b: 

For this case b=0.46, the Lyapunov exponents for system (1) are: LE1=0.0230, LE2=-0.0169, 

LE3=-2.4458. It is clear that (1) has chaotic attractors for b≥0.46. For b = 0.45, the Lyapunov exponents 

for system (1) are: LE1=0.0223, LE2=-0.0284, LE3=-2.4847. Thus, periodic behavior can be seen in the 

system for b < 0.46. 
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b. Fix b=0.8 and vary a 

For a=0.1, the Lyapunov exponents for system (1) are: LE1=0.0063, LE2=-0.0053, LE3=-0.1072. It is 

clear that (1) has chaotic attractors for a≥0.1 and for a=0.09, the Lyapunov exponents for system (1) are: 

LE1=0.0048, LE2=-0.0078, LE3=-0.1048. Thus, periodic behavior can be seen in the system for a<0.09. 

The bifurcation diagram and Lyapunov exponent spectrum of new chaotic system (1) for a=1.6, 

b=0.8 and initial conditions x(0) = 0.2, y(0) = 0.2, z(0) = 0.2 are plotted in Figures 2(b) and 2(c), 

respectively. As shown in Figures 2(b) and 2(c), the system (1) has periodic behavior or chaotic behavior by 

varying the value of the parameter b. When the value of b<0.46, system (1) exhibits periodic state and when 

b≥0.46, the system (1) shows complex behavior. In addition, the Poincaré map of the system (1) in 

Figure 2(d) also reflects properties of chaos. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 1. Numerical simulation results using MATLAB, for a=1.6 and b=0.8, 

in (a) x-y plane, (b) y-z plane, (c) x-z plane and (d) x-y-z plane 

 

 

  
(a) (b) 

 

Figure 2 Complex analysis of new chaotic system (1) using MATLAB for a = 1.6  

(a) The Lyapunov exponents of the new system (1) (b) Bifurcation diagram of the new chaotic system (1) 

with b as varying parameter 
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(c) (d) 

 

Figure 2 Complex analysis of new chaotic system (1) using MATLAB for a = 1.6  

(c) Lyapunov spectrum of system (1) when varying the parameter b (d) Poincare map of system (1) 

 

 

3. EQUILIBRIUM AND STABILITY 

The equilibrium points of the new chaotic system (1) are obtained by solving the following  

system. 

 


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
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0

byxa
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System (1) has a line equilibrium (0,0, )zE z  and four nontrivial fixed points which are 

(±
𝑎

𝑏
, ±

𝑎

𝑏
, 0) and (±

𝑎

𝑏
, ∓

𝑎

𝑏
, 0). The Jacobian matrix of the system (1) is given by 
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The characteristic equation can be written as 

 

    

 

3 2

2 2

* (x) * (x)

2 2 (x) 0

x x sign z x ay xz sign

by x axy bxy ay x sign

        

   

   (8) 

 

It is clear that the eigenvalues for system (1) at the line equilibrium zE are λ1 = λ2 = λ3 = 0. 

System (1) has four equilibrium points at E1,2 (±2, ±2, 0), E3,4 (∓2, ∓2, 0) with a=1.6 and b=0.8. The 

eigenvalues at E1 are 

 

i48046.155744.0,11488.5 3,21         (9) 

 

Here λ1 is an negative real number, while λ2 and λ3 are a pair of complex conjugate eigenvalues with 

positive real parts. Thus, the equilibrium E1 is a saddle-focus point, which is unstable. For the second 

equilibrium E2 (-2, -2, 0), the eigenvalues are identical to those of E1. Similarly, for the equilibrium E3,4, 

The eigenvalues are 

 

1 2,3-4.93056, 0.465279 2.75167i          (10) 

 

which also are unstable. 
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4. THE THEORY OF PASSIVE CONTROL 

Consider the following differential: 

 

�̇�=𝛬(𝑢)+𝛶(𝑢)𝛩,

𝑣=𝛥(𝑢),                  

 (11) 

 

where 𝑢 ∈ ℝ𝑛 is state variable, Λ(𝑢) 𝑎𝑛𝑑 Υ(𝑢) are the smooth vector fields, Θ ∈ ℝ𝑚 is the control function, 

𝑛 > 𝑚 and Δ(𝑢) is a smooth mapping. 

Definition 1 [26, 43] If the matrix 𝐿ΥΔ(0) =
𝜕Δ

𝜕𝑢
Υ(𝑢) is nonsingular, system (11) is said to have 

relative degree [1, 1, ..., 1] at 𝑢 = 0 . 

Definition 2 [26, 43] System (11) is said to be Cr-passive if there exists a Cr -positive real valued 

function 𝑉(𝑢), 𝑉(0) = 0, called storage function, such that ∀ 𝑡 ≥  0, the following dissipation inequality 

holds: 

 

 𝑉(𝑢) − 𝑉(0) ≤ ∫ 𝛩𝑇(𝑠)
𝑡

0
𝑣(𝑠)𝑑𝑠.       (12) 

 

The parametric version of the normal form of system (11) can be written as follows: 

 

�̇�=𝜙0(𝜁)+𝜒(𝜁,𝑣)𝑣,

�̇�=𝜑(𝜁,𝑣)+𝜇(𝜁,𝑣)𝛩,
                                                          (13) 

 

where a new coordinate of the system (13) is (𝜁, 𝑣), locally defined in the neighborhood of the 

origin, 𝜁 ∈ ℝ𝒏−m and 𝜇(𝜁, 𝑣) is nonsingular for all (𝜁, 𝑣) in the neighborhood of the origin [26, 43]. 

Remark 1 Setting 𝑣 = 0 in system (13), yields the zero dynamic system: 

 

 𝜁̇ = 𝜙0(𝜁),      
                                                                    (14) 

where the stability of zero dynamics is a necessary condition for passivity control design. 

Definition 3 [26, 43] Suppose 𝐿ΥΔ(0) is nonsingular, then system (11) is said to be minimum phase 

if its zero dynamics is asymptotically stable. In other words, there exists the function 𝑊(𝜁) (called Lyapunov 

function of 𝜙₀(𝜁)) which is positive-definite and differentiable in 𝜁 such that: 

 
𝜕𝑊(𝜁)

𝜕𝜁
𝜙0(𝜁) ≤ 0,          (15) 

 

∀ 𝜁 in a neighborhood of 𝜁 = 0. 

Theorem 1 [26, 44] If the system (11) is a minimum phase system, the system (12) will be 

equivalent to a passive system and asymptotically stabilized at an equilibrium point if we let the local 

feedback control as follows: 

 

𝛩 = 𝜇−1(𝜁, 𝑣) (−𝜑(𝜁, 𝑣) − (
𝜕𝑊(𝜁)

𝜕𝜁
𝜒(𝜁, 𝑣))

𝑇

− 𝛾𝑣 + 𝛽),                          (16) 

 

where 𝛾 is a positive real value and 𝛽 is an external signal vector that is connected with the reference input. 

System (17) after control as shown in Figure 3. 
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Figure 3. System (17) after control 

 

 

5. THE CONTROL OF SYSTEM (1) USING PASSIVE CONTROL 

To control system (1), we add the control function to the first equation. So, the controller system can 

be written as: 

 
�̇�1 = 𝑢2𝑢3 + 𝛩,           

�̇�2 = 𝑢1|𝑢1| − 𝑢2|𝑢2|,

�̇�3 = 𝑎|𝑢1| − 𝑏𝑢2
2.       

                                                          (17) 

 

The main goal is to design the appreciate controller function 𝛩 to stabilize system (17). 

Theorem 2 If we choose the controller as follows 

 

𝛩 = −𝑢2𝑢3 − 𝑢2|𝑢1| − 𝛾𝑢1 + 𝛽,                                                       (18) 

 

where 𝛾 is a positive real constant, then the chaotic system (17) will be asymptotically stabilized at 

the fixed point. 

Proof. Clearly, 𝐿ΥΔ(0) = 1, where 

 

Δ = 𝑢1,   Υ = [1,0,0]𝑇 ,         (19) 

 

so according to definition 1, system (17) have relative degree [1, 1, ..., 1]. Let 𝜁
1

= 𝑢2, 𝜁
2

= 𝑢3, 𝑣 = 𝑢1, 

the (17) can be rewritten as: 

 

�̇�
1

= 𝑣|𝑣| − 𝜁
1
|𝜁

1
|,

�̇�
2

= 𝑎|𝑣| − 𝑏𝜁
1
2,   

�̇� = 𝜁
1
𝜁

2
+ 𝛩.      

                                                                (20) 

 

Comparing (20) by (13) one has 

 

𝜙0(𝜁) = [−𝜁1|𝜁1|     − 𝑏𝜁1
2 ]𝑇 ,

𝜒(𝜁, 𝑣) = [|𝑣|    𝑎 𝑠𝑖𝑔𝑛(𝑣)]𝑇 ,    

𝜑(𝜁, 𝑣) = 𝜁1𝜁2,                              

𝜇(𝜁, 𝑣) = 1.                                   

                                                (21) 
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Let 

 

𝑊(𝜁) =
1

2
𝜁1

2,          (22) 

 

with 𝑊(0) = 0, then we have 

 

�̇�(𝜁) =
𝜕𝑊(𝜁)

𝜕𝜁
�̇� =

𝜕𝑊(𝜁)

𝜕𝜁
𝜙

0
(𝜁)             

= [𝜁
1
    0][−𝜁

1
|𝜁

1
|     − 𝑏𝜁

1
2 ]

𝑇

= −𝜁
1
2|𝜁

1
| ≤ 0.                           

      (23) 

 

Regarding to definition 3, system (17) is minimum phase system. Consequently, based on theorem 

1, one can design the controller as 

 

𝛩 = −𝜁1𝜁2 − 𝜁1|𝑣| − 𝛾𝑣 + 𝛽,        (24) 

 

Namely 

 

𝛩 = −𝑢2𝑢3 − 𝑢2|𝑢1| − 𝛾𝑢1 + 𝛽.        (25) 

 

Remark [26] the attractors of the new chaotic system (17) after control are converted to non-trivial 

equilibrium E1 point if β = 2γ + 2|2|. For the numerical simulation, the fourth-order Runge-Kutta method is 

used to solve the system of differential (17), with step size equal 0.001 in numerical simulations. By taking γ 

equals to 0.2 and the initial conditions of (17) are u1(0) = 1, u2(0) = 3, u3 = 0.4. As expected, one can 

observe that the trajectories of the new chaotic system (17) asymptotically stabilized at equilibrium point E1 

as illustrated in Figure 3. 

 

 

6. CIRCUIT DESIGN OF THE NEW CHAOTIC SYSTEM 

Chaos phenomenon is widely applied in the field of engineering. Specifically, electronic circuits 

[44-50], secure communication [51], robotic [52], random bits generator [53], and voice encryption [54]. 

In this section, we describe a possible circuit to implement new chaotic system with line of equilibria (1) as 

presented in Figure 4. The circuit consists of twenty-one resistors, three capacitors, three integrators 

(U1A-U3A), three inverting amplifiers (U4A–U6A), four operational amplifiers (U7A-U10A) for absolute 

nonlinearity, which are implemented with the operational amplifier TL082CD. The circuit has two diodes 

(D1 (1N4148), D2(1N4148), which provide the signal |Y|, two diodes (D3 (1N4148), D4(1N4148) which 

produce the signal |X| and four multipliers (AD633JN). 

In this study, a linear scaling is considered as follows: 

 















22||

||2||2

2

byxaz

yyxxy

yzx






         (26) 

 

By applying Kirchhoff’s circuit laws, the corresponding circuital equations of the designed circuit can be 

written as 

 





















2

5343

3222

11

1
||

1

||
1

||
1

1

y
RC

x
RC

z

yy
RC

xx
RC

y

yz
RC

x







       (27) 

 

We choose the values of the circuital elements as: R1 = R2 = R3 = 20 kΩ, R4 = R5 = 25 kΩ, R6 = R7 = R8 = R9 = 

R10 = R11 = R12 = R13 = R14 = R15 = R16 = R17 = R18 = R19 = R20 = R21 = 10 kΩ, C1 = C2 = C3 = 10 nF 
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In system (27), the variables x, y and z correspond to the voltages in the outputs of the integrators 

U1A-U3A. The supplies of all active devices are ±15 volt. The MultiSIM projections of chaotic attractors 

with line equilibria are described in Figures 5 (a-c). The numerical simulations with MATLAB see Figure 1 

are similar with the circuital ones see Figure 5. 

 

 

 

 

 

 
 

Figure 4. Schematic of the proposed new chaotic system by using MultiSIM 
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(a) 

 

 
(b) 

 
(c) 

 

Figures 5. The phase portraits of new chaotic system (1) observed on the oscilloscope in different planes 

(a) x-y plane, (b) y-z plane and (c) x-z plane by MultiSIM 

 

 

7. CONCLUSION 

A new chaotic system with line of equilibria has been investigated. The proposed new chaotic 

system has rich dynamics as confirmed by eigenvalue structure, chaotic attractors, Lyapunov exponents, 

bifurcation diagram and Poincaré map. In addition, the possibility of passive control of a new chaotic system 

with line of equilibria has been analyzed and confirmed. Moreover, electronic circuit has been implemented 

and tested using the MultiSIM software. Comparison of the oscilloscope output and numerical simulations 

using MATLAB, showed good qualitative agreement between the chaotic system and circuit design. Further 

analyses like engineering application on robotic, random bits generator and secure communication system are 

interesting issues for future work. 
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